Vortex Generator Design for Electrical Energy Harvesting with Piezoelectric in Rivers
Year 2021,
Volume: 24 Issue: 3, 771 - 777, 01.09.2021
Sedat Yayla
,
Sümeyya Ayça
,
Mehmet Oruç
Abstract
Nowadays, technology and progress in parallel with the energy needs of the increasing population and affluence are increasing day by day with the science and alternative energy production methods are investigated to meet the growing energy needs. To find solutions to the growing energy needs in this study; closed system flow channel plates inserted into the vortex generators establishing a turbulent flow of electricity from the piezoelectric material generated vibration is to be developed. Within the scope of the specified study; vertically in the design of the turbulence value of fluid through the vortex generators made four different Reynolds number can be increased and the channel plate eluted with a piezoelectric material disposed of in two different distances. The results of the experimental studies designed and produced with the vortex generating plate were obtained numerically with the HAD (Computational Fluid Dynamics) simulation program and thus, the boundary conditions for the numerical studies on the same subject were defined after this study. As a result of this study; it was observed that the best energy harvesting efficiency was obtained with the piezoelectric material positioned vertically at the number of 30825 Reynolds and when the distance between the piezoelectric material and the vortex generator plate was 65 mm, the value of 0.017 V voltage and 4.82 J / kg Turbulent Kinetic Energy value was obtained.
References
- REFERANSLAR (REFERENCES)
- [1] Khojasteh D., Kamali R., Beyene A., Iglesias, G., ‘’Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy’’, Renewable and Sustainable Energy Reviews, 81: 2992– 3005, (2018).
- [2] Koçer A. ve Öztürk M., ‘’Elektrik ve hidrojen üretimi için entegre sisteminin termodinamik analizi’’, Mühendis ve Makine ,57: 25-44, (2016).
- [3] Koç M., ‘’Yenilenebilir enerji kaynaklarının Türkiye’de yaz ve kış klimasında uygulama alanlarının belirlenmesi’’, (Yüksek Lisans Tezi), Yıldız Teknik Üniversitesi, İstanbul, Türkiye, (2002).
- [4] Talaat M., Farahat M. A. ve Elkholy M. H., ‘’Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies’’, Energy, 170: 668-682, (2018).
- [5] Yurchenko D. ve Alevras P., ‘’Parametric pendulum based wave energy converter’’, Mechanical Systems and Signal Processing, 99: 504-515, (2018).
- [6] Huang J. ve Yu H., ‘’Dynamic electromechanical response of piezoelectric plates as sensors or actuators’’, Materials Letters, 46: 70-80, (2000).
- [7] Cheng Y., Wu N. ve Wang Q., ‘’An efficient piezoelectric energy harvester with frequency self-tuning’’, Journal of Sound and Vibration, 396: 69-82, (2017).
- [8] Jabbar H., Jung H., Chen N., Cho D., Sung T., ‘’Piezoelectric energy harvester impedance matching using apiezoelectric transformer’’, Sensors and Actuators A: Physical, 264:141-150, (2017).
- [9] Zhang Z., Xiang H., Shi Z., Zhan J., ‘’Experimental investigation on piezoelectric energy harvesting from vehiclebridge coupling vibration’’, Energy Conversion and Management, 163: 169-179, (2018).
- [10] Mutsudaa H., Tanakaa Y., Patel R., Doi Y., ‘’Harvesting flow-induced vibration using a highly flexible piezoelectric energy device’’, Applied Ocean Research, 68: 39-52, (2017).
- [11] Chen X., Yang T., Wang W., Yao X., ‘’Vibration energy harvesting with a clamped piezoelectric circular diaphragm’’, Ceramics International, 38: 271-274, (2012).
- [12] Fiebig M., ‘’Embedded vortices in internal flow: heat transfer and pressure loss enhancement’’, International Journal of Heat and Fluid Flow, 16: 376-388, (1995).
- [13] Xu W., Luan Y., Han Q., Ji C., Cheng A., ‘’The effect of yaw angle on VIV suppression for an inclined flexible cylinder fitted with helical strakes’’, Applied Ocean Research, 67: 263-276, (2017).
- [14] Rostami A. ve Armandei M., ‘’Renewable energy harvesting by vortex-induced motions: Review and benchmarking of Technologies’’, Renewable and Sustainable Energy Reviews, 70: 193-214, (2017).
- [15] Song, R., Shann X., Lv F., Xie T., ‘’A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension’’, Ceramics International, 41: 768-773, (2015).
- [16] Hu Y., Yang B., Chen X., Wang X., Liu J., ‘’Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration’’, Energy Conversion and Management, 162: 145-158, (2018).
Akarsularda Piezoelektik ile Elektrik Enerjisi Hasadı İçin Girdap Üretici Tasarımı
Year 2021,
Volume: 24 Issue: 3, 771 - 777, 01.09.2021
Sedat Yayla
,
Sümeyya Ayça
,
Mehmet Oruç
Abstract
Günümüzde, teknoloji ve bilimin ilerlemesiyle birlikte artan nüfus ve refah seviyesine paralel olarak enerji ihtiyacı da gün geçtikçe artmaktadır ve giderek artan bu enerji ihtiyacını karşılamak için de alternatif enerji üretim yöntemleri araştırılmaktadır. Yapılan bu çalışmada da artan enerji ihtiyacına çözüm üretmek amacıyla; kapalı sistem bir akış kanalı içerisine girdap üretici plakalar yerleştirilip türbülanslı akış oluşturularak piezoelektrik malzemede meydana getirilen titreşimlerden elektrik enerjisi üretilmeye çalışılmıştır. Belirtilen çalışma kapsamında, tasarımı yapılan girdap üretici plaka aracılığıyla akışkanın türbülans değeri arttırılıp 4 farklı Reynolds sayısı ve kanal içine dikey olarak 2 farklı mesafede konumlandırılan bir piezoelektrik malzeme ile çalışılmıştır. Tasarlanıp üretilen girdap üretici plaka ile yapılan deneysel çalışmaların sonuçları sayısal olarak da HAD (Hesaplamalı Akışkanlar Dinamiği) simülasyon programı ile elde edilmiş ve böylece bu çalışmadan sonra aynı konu üzerinde yapılacak sayısal çalışmalar için sınır şartları tanımlanmıştır. Bu çalışma sonucunda en iyi enerji hasadı veriminin dikey olarak konumlandırılan piezoelektrik malzeme ile 30825 Reynolds sayısında ve piezoelektrik malzeme ile girdap üretici plaka arasındaki mesafenin 65 mm olduğu anda elde edildiği gözlenmiş olup 0.017 V voltaj ve 4.82 J/kg Türbülans Kinetik Enerji değeri elde edilmiştir.
References
- REFERANSLAR (REFERENCES)
- [1] Khojasteh D., Kamali R., Beyene A., Iglesias, G., ‘’Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy’’, Renewable and Sustainable Energy Reviews, 81: 2992– 3005, (2018).
- [2] Koçer A. ve Öztürk M., ‘’Elektrik ve hidrojen üretimi için entegre sisteminin termodinamik analizi’’, Mühendis ve Makine ,57: 25-44, (2016).
- [3] Koç M., ‘’Yenilenebilir enerji kaynaklarının Türkiye’de yaz ve kış klimasında uygulama alanlarının belirlenmesi’’, (Yüksek Lisans Tezi), Yıldız Teknik Üniversitesi, İstanbul, Türkiye, (2002).
- [4] Talaat M., Farahat M. A. ve Elkholy M. H., ‘’Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies’’, Energy, 170: 668-682, (2018).
- [5] Yurchenko D. ve Alevras P., ‘’Parametric pendulum based wave energy converter’’, Mechanical Systems and Signal Processing, 99: 504-515, (2018).
- [6] Huang J. ve Yu H., ‘’Dynamic electromechanical response of piezoelectric plates as sensors or actuators’’, Materials Letters, 46: 70-80, (2000).
- [7] Cheng Y., Wu N. ve Wang Q., ‘’An efficient piezoelectric energy harvester with frequency self-tuning’’, Journal of Sound and Vibration, 396: 69-82, (2017).
- [8] Jabbar H., Jung H., Chen N., Cho D., Sung T., ‘’Piezoelectric energy harvester impedance matching using apiezoelectric transformer’’, Sensors and Actuators A: Physical, 264:141-150, (2017).
- [9] Zhang Z., Xiang H., Shi Z., Zhan J., ‘’Experimental investigation on piezoelectric energy harvesting from vehiclebridge coupling vibration’’, Energy Conversion and Management, 163: 169-179, (2018).
- [10] Mutsudaa H., Tanakaa Y., Patel R., Doi Y., ‘’Harvesting flow-induced vibration using a highly flexible piezoelectric energy device’’, Applied Ocean Research, 68: 39-52, (2017).
- [11] Chen X., Yang T., Wang W., Yao X., ‘’Vibration energy harvesting with a clamped piezoelectric circular diaphragm’’, Ceramics International, 38: 271-274, (2012).
- [12] Fiebig M., ‘’Embedded vortices in internal flow: heat transfer and pressure loss enhancement’’, International Journal of Heat and Fluid Flow, 16: 376-388, (1995).
- [13] Xu W., Luan Y., Han Q., Ji C., Cheng A., ‘’The effect of yaw angle on VIV suppression for an inclined flexible cylinder fitted with helical strakes’’, Applied Ocean Research, 67: 263-276, (2017).
- [14] Rostami A. ve Armandei M., ‘’Renewable energy harvesting by vortex-induced motions: Review and benchmarking of Technologies’’, Renewable and Sustainable Energy Reviews, 70: 193-214, (2017).
- [15] Song, R., Shann X., Lv F., Xie T., ‘’A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension’’, Ceramics International, 41: 768-773, (2015).
- [16] Hu Y., Yang B., Chen X., Wang X., Liu J., ‘’Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration’’, Energy Conversion and Management, 162: 145-158, (2018).