Research Article
BibTex RIS Cite

Vacuum Pyrolysis of Woody Biomass to Bio-oil Production

Year 2021, Volume: 24 Issue: 3, 1257 - 1261, 01.09.2021

Abstract

Woody biomass is an important resource that can be utilized to obtain liquid fuel. Bio-oil is an encouraging renewable energy source due to finite fossil resources. In this study, vacuum pyrolysis of oak wood (Quercus petraea L.) residue was performed in a fixed-bed reactor at a high-temperature of 500 °C. Bio-oil, derived from oak wood was examined by a series of chromatographic/spectroscopic methods including elemental composition, FT-IR, and GC/MS analysis to determine the chemical structure. All the results indicated that the bio-oil comprises a complex mixture of oxygen-containing aromatic compounds such as phenols, alcohols, ketones, aldehydes, organic acids, and benzenes. The major compounds were identified as phenol and phenol derivatives. Bio-oil, produced from woody biomass may be used as an alternative fuel or chemical feedstock in different industrial applications.

References

  • [1] Mohan D., Pittman Jr C. U. and Steele P. H. “Pyrolysis of wood/biomass for bio-oil: a critical review”, Energy & Fuels, 20(3): 848-889, (2006).
  • [2] Chakraborty A., “Advancements in power electronics and drives in interface with growing renewable energy resources.”, Renewable and Sustainable Energy Reviews, 15(4): 1816-1827, (2011).
  • [3] Kumar Y., Ringenberg J., Depuru S. S., Devabhaktuni V. K., Lee J. W., Nikolaidis E. and Afjeh A., “Wind energy: Trends and enabling technologies”, Renewable and Sustainable Energy Reviews, 53: 209-224, (2016).
  • [4] Demirbaş A., “Sustainable cofiring of biomass with coal”, Energy Conversion and Management, 44(9): 1465-1479, (2003).
  • [5] Yang Z., Kumar A. and Huhnke R. L., “Review of recent developments to improve storage and transportation stability of bio-oil”, Renewable and Sustainable Energy Reviews, 50: 859-870, (2015).
  • [6] Kan T., Strezov V. and Evans T. J., “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters”, Renewable and Sustainable Energy Reviews, 57: 1126-1140, (2016).
  • [7] Thyrel M., Backman R., Boström D., Skyllberg U. and Lestander T. A., “Phase transitions involving Ca–The most abundant ash forming element–In thermal treatment of lignocellulosic biomass”, Fuel, 285: 119054, (2021).
  • [8] Staš M., Kubička D., Chudoba J. and Pospíšil M., “Overview of analytical methods used for chemical characterization of pyrolysis bio-oil”, Energy & Fuels, 28(1): 385-402, (2014).
  • [9] Abnisa F., Daud W. W., Husin W. N. W. and Sahu J. N., “Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis proces”, Biomass and Bioenergy, 35(5): 1863-1872, (2011).
  • [10] Özbay G., “Pyrolysis of Firwood (Abies bornmülleriana Mattf.) Sawdust: Characterization of Bio-Oil and Bio-Char”, Drvna Industrija, 66(2): 105-114 (2015).
  • [11] Zhou L., Yang H., Wu H., Wang M. and Cheng D., “Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior”, Fuel Processing Technology, 106: 385-391, (2013).
  • [12] Adjaye J. D., Sharma R. K. and Bakhshi N. N., “Characterization and stability analysis of wood-derived bio-oil”, Fuel Processing Technology, 31(3): 241-256, (1992).
  • [13] Balat M., “An overview of the properties and applications of biomass pyrolysis oils. Energy Sources, Part A: Recovery”, Utilization and Environmental Effects, 33(7): 674-689, (2011).
  • [14] Garcia-Perez M., Wang S., Shen J., Rhodes M., Lee W. J. and Li C. Z., “Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomas”, Energy & Fuels, 22(3): 2022-2032, (2008).
  • [15] Mullen C. A., Boateng A. A., Mihalcik D. J. and Goldberg N. M., “Catalytic fast pyrolysis of white oak wood in a bubbling fluidized bed”, Energy & Fuels, 25(11): 5444-5451, (2011).
  • [16] Choi Y. S., Johnston P. A., Brown R. C., Shanks B. H. and Lee K. H., “Detailed characterization of red oak-derived pyrolysis oil: Integrated use of GC, HPLC, IC, GPC and Karl-Fischer”, Journal of Analytical and Applied Pyrolysis, 110: 147-154, (2014).
  • [17] Özbay G., Özçifçi A., and Kokten E. S., “The pyrolysis characteristics of wood waste containing different types of varnishes”, Turkish Journal of Agriculture and Forestry, 40(5): 705-714, (2016).
  • [18] Chen D., Li Y., Cen K., Luo M., Li H. and Lu B., “Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature”, Bioresource Technology, 218: 780-788, (2016).
  • [19] Hu X., Guo H., Gholizadeh M., Sattari B. and Liu Q., “Pyrolysis of different wood species: Impacts of C/H ratio in feedstock on distribution of pyrolysis products”, Biomass and Bioenergy, 120: 28-39, (2019).
  • [20] Varma A. K., Thakur L. S., Shankar R. and Mondal P., “Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products”, Waste Management, 89: 224-235, (2019).
  • [21] Dufourny A., Van De Steene L., Humbert G., Guibal D., Martin L. and Blin J. “Influence of pyrolysis conditions and the nature of the wood on the quality of charcoal as a reducing agent”, Journal of Analytical and Applied Pyrolysis, 137: 1-13, (2019).
  • [22] Wang B., Huang J., Gao X. and Qiao Y., “Effects of secondary vapor-phase reactions on the distribution of chlorine released from the pyrolysis of KCl-loaded wood”, Energy & Fuels, 34(9): 11717-11721, (2020).
  • [23] Roy C., Pakdel H. and Brouillard D., “The role of extractives during vacuum pyrolysis of wood” Journal of Applied Polymer Science, 41(1‐2): 337-348, (1990).
  • [24] Pakdel H., Roy C., Amen‐Chen C. and Roy C., “Phenolic compounds from vacuum pyrolysis of wood wastes”, The Canadian Journal of Chemical Engineering, 75(1): 121-126, (1997).
  • [25] Luo G., Chandler D. S., Anjos L. C., Eng R. J., Jia P. and Resende F. L., “Pyrolysis of whole wood chips and rods in a novel ablative reactor”, Fuel, 194: 229-238, (2017).
  • [26] ASTM Standarts D 4442-92 Easton, American Society for Testing and Materials, “Standart test method for direct moisture content measurement of wood and wood-base materials”, M. D., USA, (1997).
  • [27] ASTM Standarts E-897-88 Easton, American Society for Testing and Materials, “Standart test method for volatile matter in analysis sample refuse derived fuel”, M. D., USA, (2004).
  • [28] ASTM Standarts D-1102-84, Easton, American Society for Testing and Materials, “Standart test method for ash in wood”, M. D., USA, (1983).
  • [29] Rowell R. M., Pettersen R., Han J. S., Rowell J.S. and Tshabalala M.A., “Handbook of Wood Chemistry and Wood Composites”, CRC Press, Boca Raton, 72–487, (2005).
  • [30] Wise L. E. and John E.C., “Wood Chemistry”, Reinhold Publication Co, New York, U.S.A., 1-2: 1330, (1952).
  • [31] Technical Association of the Pulp and Paper Industry, “Acid-insoluble lignin in wood and pulp. TAPPI T 222 om-02, Tappi Pres” Atlanta, GA, U.S.A, (2002).
  • [32] Technical Association of the Pulp and Paper Industry, “Solvent extractives of wood and pulp. TAPPI T 204 cm-97, Tappi Pres” Atlanta, GA, USA, (1997).
  • [33] Channiwala S. A. and Parikh P. P., “A unified correlation for estimating HHV of solid, liquid and gaseous fuels”, Fuel, 81(8): 1051-1063, (2002).
  • [34] Grønli M. G., Várhegyi G. and Di Blasi C., “Thermogravimetric analysis and devolatilization kinetics of wood” Industrial & Engineering Chemistry Research, 41(17): 4201-4208, (2002).
  • [35] Keleş S., Kaygusuz K. and Akgün, M., “Pyrolysis of woody biomass for sustainable bio-oil” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 33(9): 879-889, (2011).
  • [36] Poletto M., Zattera A. J. and Santana R. M., “Thermal decomposition of wood: kinetics and degradation mechanisms”, Bioresource Technology, 126: 7-12, (2012).
  • [37] TranVan L., Legrand V. and Jacquemin F., “Thermal decomposition kinetics of balsa wood: Kinetics and degradation mechanisms comparison between dry and moisturized materials”, Polymer Degradation and Stability, 110: 208-215, (2014).
  • [38] Guzelciftci B., Park K. B. and Kim J. S., “Production of phenol-rich bio-oil via a two-stage pyrolysis of wood”, Energy, 200: 117536, (2020).
  • [39] Cai W. and Liu R., “Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production”, Fuel, 182: 677-686, (2016).
  • [40] Ingram L., Mohan D., Bricka M., Steele P., Strobel D., Crocker D. and Pittman Jr C. U., “Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils”, Energy & Fuels, 22(1): 614-625, (2008).
  • [41] Kim T. S., Oh S., Kim J. Y., Choi I. G. and Choi J. W., “Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis”, Energy, 68: 437-443, (2014).
  • [42] Chang G., Huang Y., Xie J., Yang H., Liu H., Yin X. and Wu C., “The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw and pine sawdust”, Energy Conversion and Management, 124: 587-597, (2016).
  • [43] Ma Z., Sun Q., Ye J., Yao Q. and Zhao C., “Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS”, Journal of Analytical and Applied Pyrolysis, 117: 116-124, (2016).
  • [44] Kumar G., Panda A. K. and Singh R. K., “Optimization of process for the production of bio-oil from eucalyptus wood”, Journal of Fuel Chemistry and Technology, 38(2): 162-167, (2010).
  • [45] Özçifçi A. and Özbay G., “Bio-oil production from catalytic pyrolysis method of furniture industry sawdust.”, J. Fac. Eng. Archit. Gaz., 28: 473–479, (2013).
  • [46] Crespo Y. A., Naranjo R. A., Quitana Y. G., Sanchez C. G. and Sanchez E. M. S., “Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis”, Wood Science and Technology, 51(5): 1155-1171, (2017)
  • [47] Rahman M. M., Sarker M., Chai M., Li C., Liu R. and Cai J., “Potentiality of combined catalyst for high quality bio-oil production from catalytic pyrolysis of pinewood using an analytical Py-GC/MS and fixed bed reactor”, Journal of the Energy Institute, 93(4): 1737-1746, (2020).

Odunsu Biyokütleden Vakum Piroliz ile Biyoyakıt Üretimi

Year 2021, Volume: 24 Issue: 3, 1257 - 1261, 01.09.2021

Abstract

Odunsu biyokütle, sıvı yakıt üretiminde kullanılabilecek önemli bir kaynaktır. Biyoyağ, sınırlı fosil kaynakları nedeniyle umut verici bir alternatif enerji kaynağıdır. Bu çalışmada, meşe ağacı (Quercus petraea L.) odun talaşı, 500 °C sıcaklıkta vakum atmosferi altında sabit yataklı reaktörde piroliz edilmiştir. Biyoyağın kimyasal yapısı Elementel, FT-IR ve GC/MS analizi gibi bazı kromatografik ve spektroskopik teknikler kullanılarak analiz edilmiştir. Tüm sonuçlar gösterdi ki, biyoyağın fenoller, alkoller, ketonlar, aldehitler, organik asitler ve benzenler gibi çok çeşitli aromatik bileşikler içerdiği belirlenmiştir. Baskın bileşikler fenol ve fenol türevleri olarak tanımlanmıştır. Odunsu biyokütleden üretilen biyoyağ, alternative yakıt olarak veya farklı endüstriyel uygulamalarda kimyasalların üretiminde kullanılabilir.

References

  • [1] Mohan D., Pittman Jr C. U. and Steele P. H. “Pyrolysis of wood/biomass for bio-oil: a critical review”, Energy & Fuels, 20(3): 848-889, (2006).
  • [2] Chakraborty A., “Advancements in power electronics and drives in interface with growing renewable energy resources.”, Renewable and Sustainable Energy Reviews, 15(4): 1816-1827, (2011).
  • [3] Kumar Y., Ringenberg J., Depuru S. S., Devabhaktuni V. K., Lee J. W., Nikolaidis E. and Afjeh A., “Wind energy: Trends and enabling technologies”, Renewable and Sustainable Energy Reviews, 53: 209-224, (2016).
  • [4] Demirbaş A., “Sustainable cofiring of biomass with coal”, Energy Conversion and Management, 44(9): 1465-1479, (2003).
  • [5] Yang Z., Kumar A. and Huhnke R. L., “Review of recent developments to improve storage and transportation stability of bio-oil”, Renewable and Sustainable Energy Reviews, 50: 859-870, (2015).
  • [6] Kan T., Strezov V. and Evans T. J., “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters”, Renewable and Sustainable Energy Reviews, 57: 1126-1140, (2016).
  • [7] Thyrel M., Backman R., Boström D., Skyllberg U. and Lestander T. A., “Phase transitions involving Ca–The most abundant ash forming element–In thermal treatment of lignocellulosic biomass”, Fuel, 285: 119054, (2021).
  • [8] Staš M., Kubička D., Chudoba J. and Pospíšil M., “Overview of analytical methods used for chemical characterization of pyrolysis bio-oil”, Energy & Fuels, 28(1): 385-402, (2014).
  • [9] Abnisa F., Daud W. W., Husin W. N. W. and Sahu J. N., “Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis proces”, Biomass and Bioenergy, 35(5): 1863-1872, (2011).
  • [10] Özbay G., “Pyrolysis of Firwood (Abies bornmülleriana Mattf.) Sawdust: Characterization of Bio-Oil and Bio-Char”, Drvna Industrija, 66(2): 105-114 (2015).
  • [11] Zhou L., Yang H., Wu H., Wang M. and Cheng D., “Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior”, Fuel Processing Technology, 106: 385-391, (2013).
  • [12] Adjaye J. D., Sharma R. K. and Bakhshi N. N., “Characterization and stability analysis of wood-derived bio-oil”, Fuel Processing Technology, 31(3): 241-256, (1992).
  • [13] Balat M., “An overview of the properties and applications of biomass pyrolysis oils. Energy Sources, Part A: Recovery”, Utilization and Environmental Effects, 33(7): 674-689, (2011).
  • [14] Garcia-Perez M., Wang S., Shen J., Rhodes M., Lee W. J. and Li C. Z., “Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomas”, Energy & Fuels, 22(3): 2022-2032, (2008).
  • [15] Mullen C. A., Boateng A. A., Mihalcik D. J. and Goldberg N. M., “Catalytic fast pyrolysis of white oak wood in a bubbling fluidized bed”, Energy & Fuels, 25(11): 5444-5451, (2011).
  • [16] Choi Y. S., Johnston P. A., Brown R. C., Shanks B. H. and Lee K. H., “Detailed characterization of red oak-derived pyrolysis oil: Integrated use of GC, HPLC, IC, GPC and Karl-Fischer”, Journal of Analytical and Applied Pyrolysis, 110: 147-154, (2014).
  • [17] Özbay G., Özçifçi A., and Kokten E. S., “The pyrolysis characteristics of wood waste containing different types of varnishes”, Turkish Journal of Agriculture and Forestry, 40(5): 705-714, (2016).
  • [18] Chen D., Li Y., Cen K., Luo M., Li H. and Lu B., “Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature”, Bioresource Technology, 218: 780-788, (2016).
  • [19] Hu X., Guo H., Gholizadeh M., Sattari B. and Liu Q., “Pyrolysis of different wood species: Impacts of C/H ratio in feedstock on distribution of pyrolysis products”, Biomass and Bioenergy, 120: 28-39, (2019).
  • [20] Varma A. K., Thakur L. S., Shankar R. and Mondal P., “Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products”, Waste Management, 89: 224-235, (2019).
  • [21] Dufourny A., Van De Steene L., Humbert G., Guibal D., Martin L. and Blin J. “Influence of pyrolysis conditions and the nature of the wood on the quality of charcoal as a reducing agent”, Journal of Analytical and Applied Pyrolysis, 137: 1-13, (2019).
  • [22] Wang B., Huang J., Gao X. and Qiao Y., “Effects of secondary vapor-phase reactions on the distribution of chlorine released from the pyrolysis of KCl-loaded wood”, Energy & Fuels, 34(9): 11717-11721, (2020).
  • [23] Roy C., Pakdel H. and Brouillard D., “The role of extractives during vacuum pyrolysis of wood” Journal of Applied Polymer Science, 41(1‐2): 337-348, (1990).
  • [24] Pakdel H., Roy C., Amen‐Chen C. and Roy C., “Phenolic compounds from vacuum pyrolysis of wood wastes”, The Canadian Journal of Chemical Engineering, 75(1): 121-126, (1997).
  • [25] Luo G., Chandler D. S., Anjos L. C., Eng R. J., Jia P. and Resende F. L., “Pyrolysis of whole wood chips and rods in a novel ablative reactor”, Fuel, 194: 229-238, (2017).
  • [26] ASTM Standarts D 4442-92 Easton, American Society for Testing and Materials, “Standart test method for direct moisture content measurement of wood and wood-base materials”, M. D., USA, (1997).
  • [27] ASTM Standarts E-897-88 Easton, American Society for Testing and Materials, “Standart test method for volatile matter in analysis sample refuse derived fuel”, M. D., USA, (2004).
  • [28] ASTM Standarts D-1102-84, Easton, American Society for Testing and Materials, “Standart test method for ash in wood”, M. D., USA, (1983).
  • [29] Rowell R. M., Pettersen R., Han J. S., Rowell J.S. and Tshabalala M.A., “Handbook of Wood Chemistry and Wood Composites”, CRC Press, Boca Raton, 72–487, (2005).
  • [30] Wise L. E. and John E.C., “Wood Chemistry”, Reinhold Publication Co, New York, U.S.A., 1-2: 1330, (1952).
  • [31] Technical Association of the Pulp and Paper Industry, “Acid-insoluble lignin in wood and pulp. TAPPI T 222 om-02, Tappi Pres” Atlanta, GA, U.S.A, (2002).
  • [32] Technical Association of the Pulp and Paper Industry, “Solvent extractives of wood and pulp. TAPPI T 204 cm-97, Tappi Pres” Atlanta, GA, USA, (1997).
  • [33] Channiwala S. A. and Parikh P. P., “A unified correlation for estimating HHV of solid, liquid and gaseous fuels”, Fuel, 81(8): 1051-1063, (2002).
  • [34] Grønli M. G., Várhegyi G. and Di Blasi C., “Thermogravimetric analysis and devolatilization kinetics of wood” Industrial & Engineering Chemistry Research, 41(17): 4201-4208, (2002).
  • [35] Keleş S., Kaygusuz K. and Akgün, M., “Pyrolysis of woody biomass for sustainable bio-oil” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 33(9): 879-889, (2011).
  • [36] Poletto M., Zattera A. J. and Santana R. M., “Thermal decomposition of wood: kinetics and degradation mechanisms”, Bioresource Technology, 126: 7-12, (2012).
  • [37] TranVan L., Legrand V. and Jacquemin F., “Thermal decomposition kinetics of balsa wood: Kinetics and degradation mechanisms comparison between dry and moisturized materials”, Polymer Degradation and Stability, 110: 208-215, (2014).
  • [38] Guzelciftci B., Park K. B. and Kim J. S., “Production of phenol-rich bio-oil via a two-stage pyrolysis of wood”, Energy, 200: 117536, (2020).
  • [39] Cai W. and Liu R., “Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production”, Fuel, 182: 677-686, (2016).
  • [40] Ingram L., Mohan D., Bricka M., Steele P., Strobel D., Crocker D. and Pittman Jr C. U., “Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils”, Energy & Fuels, 22(1): 614-625, (2008).
  • [41] Kim T. S., Oh S., Kim J. Y., Choi I. G. and Choi J. W., “Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis”, Energy, 68: 437-443, (2014).
  • [42] Chang G., Huang Y., Xie J., Yang H., Liu H., Yin X. and Wu C., “The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw and pine sawdust”, Energy Conversion and Management, 124: 587-597, (2016).
  • [43] Ma Z., Sun Q., Ye J., Yao Q. and Zhao C., “Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS”, Journal of Analytical and Applied Pyrolysis, 117: 116-124, (2016).
  • [44] Kumar G., Panda A. K. and Singh R. K., “Optimization of process for the production of bio-oil from eucalyptus wood”, Journal of Fuel Chemistry and Technology, 38(2): 162-167, (2010).
  • [45] Özçifçi A. and Özbay G., “Bio-oil production from catalytic pyrolysis method of furniture industry sawdust.”, J. Fac. Eng. Archit. Gaz., 28: 473–479, (2013).
  • [46] Crespo Y. A., Naranjo R. A., Quitana Y. G., Sanchez C. G. and Sanchez E. M. S., “Optimisation and characterisation of bio-oil produced by Acacia mangium Willd wood pyrolysis”, Wood Science and Technology, 51(5): 1155-1171, (2017)
  • [47] Rahman M. M., Sarker M., Chai M., Li C., Liu R. and Cai J., “Potentiality of combined catalyst for high quality bio-oil production from catalytic pyrolysis of pinewood using an analytical Py-GC/MS and fixed bed reactor”, Journal of the Energy Institute, 93(4): 1737-1746, (2020).
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Günay Özbay 0000-0002-7951-8421

Ayhan Özçifçi 0000-0001-7733-9959

Publication Date September 1, 2021
Submission Date March 30, 2021
Published in Issue Year 2021 Volume: 24 Issue: 3

Cite

APA Özbay, G., & Özçifçi, A. (2021). Vacuum Pyrolysis of Woody Biomass to Bio-oil Production. Politeknik Dergisi, 24(3), 1257-1261.
AMA Özbay G, Özçifçi A. Vacuum Pyrolysis of Woody Biomass to Bio-oil Production. Politeknik Dergisi. September 2021;24(3):1257-1261.
Chicago Özbay, Günay, and Ayhan Özçifçi. “Vacuum Pyrolysis of Woody Biomass to Bio-Oil Production”. Politeknik Dergisi 24, no. 3 (September 2021): 1257-61.
EndNote Özbay G, Özçifçi A (September 1, 2021) Vacuum Pyrolysis of Woody Biomass to Bio-oil Production. Politeknik Dergisi 24 3 1257–1261.
IEEE G. Özbay and A. Özçifçi, “Vacuum Pyrolysis of Woody Biomass to Bio-oil Production”, Politeknik Dergisi, vol. 24, no. 3, pp. 1257–1261, 2021.
ISNAD Özbay, Günay - Özçifçi, Ayhan. “Vacuum Pyrolysis of Woody Biomass to Bio-Oil Production”. Politeknik Dergisi 24/3 (September 2021), 1257-1261.
JAMA Özbay G, Özçifçi A. Vacuum Pyrolysis of Woody Biomass to Bio-oil Production. Politeknik Dergisi. 2021;24:1257–1261.
MLA Özbay, Günay and Ayhan Özçifçi. “Vacuum Pyrolysis of Woody Biomass to Bio-Oil Production”. Politeknik Dergisi, vol. 24, no. 3, 2021, pp. 1257-61.
Vancouver Özbay G, Özçifçi A. Vacuum Pyrolysis of Woody Biomass to Bio-oil Production. Politeknik Dergisi. 2021;24(3):1257-61.