Research Article
BibTex RIS Cite

Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi

Year 2022, Volume: 25 Issue: 2, 843 - 853, 01.06.2022
https://doi.org/10.2339/politeknik.707130

Abstract

Günümüzde endüstri paydaşları, yapı elemanlarını daha ergonomik, daha hafif ve daha sağlam malzemeler kullanarak üretme yoluna gitmektedirler. Bu durum fiber takviyeli kompozitlerin talebini arttırmıştır. Farklı çalışma koşulları altında kullanılan kompozit malzemelerin, kullanım yerlerine göre sahip olması gereken bir takım mekanik özellikler mevcuttur. Malzemenin bu mekanik davranışlarına etki eden faktörlerden biri de üretim, montaj veya kullanım sırasında meydana gelen çatlak oluşumlarıdır. Tabakalı kompozitlerin kırılma davranışlarına, deformasyon hızı, çatlak uzunluğu ve çatlak geometrisi doğrudan etki eder. Bu çalışmada, farklı uzunluk ve farklı geometride çatlağa sahip S-2 cam/epoksi tabakalı kompozitlerin farklı deformasyon hızlarındaki kırılma davranışları deneysel ve nümerik olarak incelenmiştir. Çalışma kapsamında 5mm, 10mm ve 15mm çatlak uzunluğuna ve 0º ve 45º çatlak geometrisine sahip test numunelerinin farklı deformasyon hızındaki Mod I (açılma modu) ve Mod I/II (karma mod) kırılma davranışları araştırılmıştır. Çatlak başlangıcı ile deformasyon hızı arasındaki ilişkiyi ifade etmek için kırılma testleri 8,3×10-3, 8,3×10-4 ve 8,3×10-5 s-1 olmak üzere üç farklı deformasyon hızında gerçekleştirilmiştir. Ayrıca S-2 cam / epoksi tabakalı kompozitlerin kırılma davranışları, Sonlu Elemanlar Yöntemi (SEY) kullanılarak analiz edilmiştir. Elde edilen sonuçların birbirleriyle uyumlu olduğu görülmüştür. Deneysel ve SEY sonuçları hem Mod I hem de Mod I/II çatlak ucu açma koşullarındaki S-2 cam/epoksi lamine kompozit malzemenin kırılma davranışlarının, çatlak geometrisine ve deformasyon hızına duyarlı olduğunu, ayrıca incelenen test parametrelerine göre değiştiği görülmüştür.  

Supporting Institution

Uşak Üniversitesi

Project Number

UBAP 01 2018/MF003

References

  • [1] Emin M, Çelik YH, Kiliçkap E. Cam ve karbon elyaf takviyeli kompozitlerde elyaf cinsinin , yükün , kayma hızı ve mesafesinin abrasiv aşınmaya etkisi. J Polytech; 22: 811–817, (2019).
  • [2] Balcıoğlu HE. Fracture Behaviors of SiC Particle Filled and Jute Fiber Reinforced Natural Composites. J Nat Fibers 00: 1–18, (2020).
  • [3] Balcioglu HE, Yalcin D. The Determination of Fracture Characterization of Knitted Fabric Reinforced Composites Using Arcan Test. Fibers Polym ;21:849–863, (2020)
  • [4] Tiber B, Balcıoğlu HE. Flexural and fracture behavior of natural fiber knitted fabric reinforced composites. Polym Compos ; 40, (2019)
  • [5] Kopietz M, Wetzel B, Friedrich K. Flexural and fracture mechanical properties of in situ particulate reinforced organomineral hybrid resins modified by organofunctional silanes. Compos Sci Technol; 174: 169–175 (2019).
  • [6] Aktas M, Balcioglu HE, Külahli G. Strain rate effects on tensile and compressive behaviour of woven-knitting glass/epoxy composites. Adv Compos Lett; 22:13–9. (2013)
  • [7] Junjia Cui , Shaoluo Wang, Shuhao Wang, Guangyao Li PW and, Liang C. The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites :1–18. (2019)
  • [8] Jia Z, Yuan G, Hui D, Feng X, Zou Y. Effect of high loading rate and low temperature on mode I fracture toughness of ductile polyurethane adhesive. J Adhes Sci Technol; 33:79–92. (2019)
  • [9] Rojas-sanchez JF, Schmack T, Boesl B, Bjekovic R. Strain rate-dependent characterization of carbon fibre-reinforced composite laminates using four-point bending tests (2019).
  • [10] Zhang M, Jiang B, Chen C, Drummer D, Zhai Z. The Effect of Temperature and Strain Rate on the Interfacial Behavior of Glass Fiber Reinforced Polypropylene Composites : A Molecular Dynamics Study. Polymers (Basel);11:1–18. (2019)
  • [11] Arasan Ş, Aktaş M, Balcıoğlu HE. Fracture toughness of woven glass and carbon reinforced hybrid and non-hybrid composite plates. Polym Compos;39:783–93. (2018). [12] Meng Q, Wang T. An improved crack-bridging model for rigid particle-polymer composites. Eng Fract Mech;211:291–302. (2019)
  • [13] Satyanarayana A, Gattu M. Effect of displacement loading rates on mode-I fracture toughness of fiber glass-epoxy composite laminates. Eng Fract Mech 218:106535. (2019)
  • [14] Siddique A, Abid S, Shafiq F, Nawab Y, Wang H, Shi B, et al. Mode I fracture toughness of fiber-reinforced polymer composites: A review. J Ind Text (2019).
  • [15] Kaya Z, Ersen H, Halit B. The strain rate and temperature effects on the static and dynamic properties of S2 glass / epoxy composites. Appl Phys A;126:1–15. (2020)
  • [16] Yildirim F, Aydin M, Avci A. Mechanical properties of nano-SiO 2 reinforced 3D glass fiber / epoxy composites;108, (2017)
  • [17] Sorucu A. Orthotropic malzemelerde çatlak i̇lerlemesi̇ ve kırılma tokluğu tayi̇ni̇. Dokuz Eylül Üniversitesi, Fen Bilim Enstitüsü, Makine Mühendisligi Bölümü, Mek Anabilim Dalı, (2007)
  • [18] Vieille B, Gonzalez JD, Bouvet C. Fracture mechanics of hybrid composites with ductile matrix and brittle fibers: Influence of temperature and constraint effect. J Compos Mater;53:1361–76, (2019).
  • [19] Rahmani A, Choupani N. Experimental and numerical analysis of fracture parameters of adhesively bonded joints at low temperatures. Eng Fract Mech;207:222–36. (2019)
  • [20] Torabi AR, Pirhadi E. Failure analysis of round-tip V-notched laminated composite plates under mixed mode I/II loading. Theor Appl Fract Mech;104:102342. (2019)
  • [21] Shahani AR, Abolfathitabar R, Shooshtar H. On the validity of LEFM methods to investigate the fracture behavior of angle-ply laminates. Compos Part B Eng;160:249–53. (2019)
  • [22] Koçyiğit K, Akbaş ŞD. Çatlak içeren bir çerçeve taşıyıcı sistemin zorlanmış titreşim analizi. J Polytech:1–13. (2020). [23] Jamali J, Fan Y, Wood JT. The mixed-mode fracture behavior of epoxy by the compact tension shear test. Int J Adhes Adhes; 63:79–86. (2015)
  • [24] Choupani N. Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Mater Sci Eng A; 478: 229–242 (2008).
  • [25] Kaman MO. Stress Intensity Factor Analysis of Antisymmetrically Carbon / Epoxy Laminated Composite Plates with Different. Turkish J Sci Technol; 6:61–74, (2011)
  • [26] Kaman MO. Effect of fiber orientation on fracture toughness of laminated composite plates [0°/θ°]s. Eng Fract Mech 78: 2521–2525, (2011)
  • [27] Aliha MRM, Shaker S, Keymanesh MR. Low temperature fracture toughness study for bitumen under mixed mode I + II loading condition. Eng Fract Mech; 206: 297–309, (2019)
  • [28] Poon CY, Ruiz C. Hybrid experimental-numerical approach for determining strain energy release rates. Theor Appl Fract Mech; 20: 123–131, (1994).
  • [29] Gautham S, Sasmal S. Determination of fracture toughness of nano-scale cement composites using simulated nanoindentation technique. Theor Appl Fract Mech; 103: 102275, (2019).
  • [30] Kim HB, Naito K, Oguma H. Mode II fracture toughness of two-part acrylic-based adhesive in an adhesively bonded joint: end-notched flexure tests under static loading. Fatigue Fract Eng Mater Struct; 40: 1795–808, (2017).
  • [31] Manzella AF, Gama BA, Gillespie JW. Effect of punch and specimen dimensions on the confined compression behavior of S-2 glass/epoxy composites. Compos Struct; 93: 1726–1737, (2011).
  • [32] J.R.Rice. “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks.” J Appl Mech; 35: 379-386, (1968).
  • [33] Kim JH, Paulino GH. Mixed-mode J-integral formulation and implementation using graded elements for fracture analysis of nonhomogeneous orthotropic materials. Mech Mater;35: 107–128, (2003) .
  • [34] Zou G, Chen H. Path-dependent J-integrals under mixed-mode loads of mode I and mode II. Theor Appl Fract Mech ;96: 380–386, (2018).
  • [35] Rocha AVM, Akhavan-Safar A, Carbas R, Marques EAS, Goyal R, El-zein M, et al. Fatigue crack growth analysis of different adhesive systems: Effects of mode mixity and load level. Fatigue Fract Eng Mater Struct; 43: 330–341, (2020)..
  • [36] Zeinedini A. A novel fixture for mixed mode I/II/III fracture testing of brittle materials. Fatigue Fract Eng Mater Struct; 42: 838–853, (2019).
  • [37] Hein J, Kuna M. A generalized J-integral for thermal shock analyses of 3D surface cracks in spatially and temperature dependent materials. Theor Appl Fract Mech (2017) ;92:318–30.
  • [38] Benzeggagh ML, Kenane M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/ poxy Composites with Mixed-Mode Bending Apparatus. Compos Sci Technol; 56: 439–449, (1996).
  • [39] Alizadeh F, Soares CG. European Journal of Mechanics / A Solids Experimental and numerical investigation of the fracture toughness of Glass / Vinylester composite laminates. Eur J Mech / A Solids; 73: 204–211, (2019).

Investigation of Mode I and Mode I/II Fracture Behavior at Different Deformation Rates of Fiber Reinforced Composites

Year 2022, Volume: 25 Issue: 2, 843 - 853, 01.06.2022
https://doi.org/10.2339/politeknik.707130

Abstract

Today, industry stakeholders are producing building elements using more ergonomic, lighter and more strength materials. This has increased the demand for fiber reinforced composites. Composite materials, which used in different environments and loading conditions, must have several mechanical properties according to their use. One of the factors affecting these mechanical behaviors of the material is crack formation that occurs during production, assembly or usage. The deformation rate, crack length and crack geometry directly affect the fracture behavior of the laminated composites. In this study, the fracture behaviors of S-2 glass/epoxy laminated composites having cracks in different lengths and geometries were investigated at different deformation rates experimentally and numerically. Within the scope of the study, the Mode I (opening mode) and Mode I/II (mixed mode) fracture behaviors of the samples with 5mm, 10mm and 15mm crack length and 0º and 45º crack geometry were investigated at different deformation rates. Fracture tests were carried out in three different deformation rates, such as 8.3×10-3, 8.3×10-4 and 8.3×10-5 s-1 to express the relationship between crack onset and deformation rate. Also, the fracture behavior of S-2 glass/epoxy laminated composites was analyzed by using the Finite Element Method (FEM). It was found that the results obtained were compatible with each other. Experiments and FEM results show that the fracture behavior of S-2 glass/epoxy composite material is sensitive to environmental temperature and strain rate in both Mode I and Mode I/II crack tip opening conditions and varies according to the investigated test parameters. 

Project Number

UBAP 01 2018/MF003

References

  • [1] Emin M, Çelik YH, Kiliçkap E. Cam ve karbon elyaf takviyeli kompozitlerde elyaf cinsinin , yükün , kayma hızı ve mesafesinin abrasiv aşınmaya etkisi. J Polytech; 22: 811–817, (2019).
  • [2] Balcıoğlu HE. Fracture Behaviors of SiC Particle Filled and Jute Fiber Reinforced Natural Composites. J Nat Fibers 00: 1–18, (2020).
  • [3] Balcioglu HE, Yalcin D. The Determination of Fracture Characterization of Knitted Fabric Reinforced Composites Using Arcan Test. Fibers Polym ;21:849–863, (2020)
  • [4] Tiber B, Balcıoğlu HE. Flexural and fracture behavior of natural fiber knitted fabric reinforced composites. Polym Compos ; 40, (2019)
  • [5] Kopietz M, Wetzel B, Friedrich K. Flexural and fracture mechanical properties of in situ particulate reinforced organomineral hybrid resins modified by organofunctional silanes. Compos Sci Technol; 174: 169–175 (2019).
  • [6] Aktas M, Balcioglu HE, Külahli G. Strain rate effects on tensile and compressive behaviour of woven-knitting glass/epoxy composites. Adv Compos Lett; 22:13–9. (2013)
  • [7] Junjia Cui , Shaoluo Wang, Shuhao Wang, Guangyao Li PW and, Liang C. The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites :1–18. (2019)
  • [8] Jia Z, Yuan G, Hui D, Feng X, Zou Y. Effect of high loading rate and low temperature on mode I fracture toughness of ductile polyurethane adhesive. J Adhes Sci Technol; 33:79–92. (2019)
  • [9] Rojas-sanchez JF, Schmack T, Boesl B, Bjekovic R. Strain rate-dependent characterization of carbon fibre-reinforced composite laminates using four-point bending tests (2019).
  • [10] Zhang M, Jiang B, Chen C, Drummer D, Zhai Z. The Effect of Temperature and Strain Rate on the Interfacial Behavior of Glass Fiber Reinforced Polypropylene Composites : A Molecular Dynamics Study. Polymers (Basel);11:1–18. (2019)
  • [11] Arasan Ş, Aktaş M, Balcıoğlu HE. Fracture toughness of woven glass and carbon reinforced hybrid and non-hybrid composite plates. Polym Compos;39:783–93. (2018). [12] Meng Q, Wang T. An improved crack-bridging model for rigid particle-polymer composites. Eng Fract Mech;211:291–302. (2019)
  • [13] Satyanarayana A, Gattu M. Effect of displacement loading rates on mode-I fracture toughness of fiber glass-epoxy composite laminates. Eng Fract Mech 218:106535. (2019)
  • [14] Siddique A, Abid S, Shafiq F, Nawab Y, Wang H, Shi B, et al. Mode I fracture toughness of fiber-reinforced polymer composites: A review. J Ind Text (2019).
  • [15] Kaya Z, Ersen H, Halit B. The strain rate and temperature effects on the static and dynamic properties of S2 glass / epoxy composites. Appl Phys A;126:1–15. (2020)
  • [16] Yildirim F, Aydin M, Avci A. Mechanical properties of nano-SiO 2 reinforced 3D glass fiber / epoxy composites;108, (2017)
  • [17] Sorucu A. Orthotropic malzemelerde çatlak i̇lerlemesi̇ ve kırılma tokluğu tayi̇ni̇. Dokuz Eylül Üniversitesi, Fen Bilim Enstitüsü, Makine Mühendisligi Bölümü, Mek Anabilim Dalı, (2007)
  • [18] Vieille B, Gonzalez JD, Bouvet C. Fracture mechanics of hybrid composites with ductile matrix and brittle fibers: Influence of temperature and constraint effect. J Compos Mater;53:1361–76, (2019).
  • [19] Rahmani A, Choupani N. Experimental and numerical analysis of fracture parameters of adhesively bonded joints at low temperatures. Eng Fract Mech;207:222–36. (2019)
  • [20] Torabi AR, Pirhadi E. Failure analysis of round-tip V-notched laminated composite plates under mixed mode I/II loading. Theor Appl Fract Mech;104:102342. (2019)
  • [21] Shahani AR, Abolfathitabar R, Shooshtar H. On the validity of LEFM methods to investigate the fracture behavior of angle-ply laminates. Compos Part B Eng;160:249–53. (2019)
  • [22] Koçyiğit K, Akbaş ŞD. Çatlak içeren bir çerçeve taşıyıcı sistemin zorlanmış titreşim analizi. J Polytech:1–13. (2020). [23] Jamali J, Fan Y, Wood JT. The mixed-mode fracture behavior of epoxy by the compact tension shear test. Int J Adhes Adhes; 63:79–86. (2015)
  • [24] Choupani N. Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Mater Sci Eng A; 478: 229–242 (2008).
  • [25] Kaman MO. Stress Intensity Factor Analysis of Antisymmetrically Carbon / Epoxy Laminated Composite Plates with Different. Turkish J Sci Technol; 6:61–74, (2011)
  • [26] Kaman MO. Effect of fiber orientation on fracture toughness of laminated composite plates [0°/θ°]s. Eng Fract Mech 78: 2521–2525, (2011)
  • [27] Aliha MRM, Shaker S, Keymanesh MR. Low temperature fracture toughness study for bitumen under mixed mode I + II loading condition. Eng Fract Mech; 206: 297–309, (2019)
  • [28] Poon CY, Ruiz C. Hybrid experimental-numerical approach for determining strain energy release rates. Theor Appl Fract Mech; 20: 123–131, (1994).
  • [29] Gautham S, Sasmal S. Determination of fracture toughness of nano-scale cement composites using simulated nanoindentation technique. Theor Appl Fract Mech; 103: 102275, (2019).
  • [30] Kim HB, Naito K, Oguma H. Mode II fracture toughness of two-part acrylic-based adhesive in an adhesively bonded joint: end-notched flexure tests under static loading. Fatigue Fract Eng Mater Struct; 40: 1795–808, (2017).
  • [31] Manzella AF, Gama BA, Gillespie JW. Effect of punch and specimen dimensions on the confined compression behavior of S-2 glass/epoxy composites. Compos Struct; 93: 1726–1737, (2011).
  • [32] J.R.Rice. “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks.” J Appl Mech; 35: 379-386, (1968).
  • [33] Kim JH, Paulino GH. Mixed-mode J-integral formulation and implementation using graded elements for fracture analysis of nonhomogeneous orthotropic materials. Mech Mater;35: 107–128, (2003) .
  • [34] Zou G, Chen H. Path-dependent J-integrals under mixed-mode loads of mode I and mode II. Theor Appl Fract Mech ;96: 380–386, (2018).
  • [35] Rocha AVM, Akhavan-Safar A, Carbas R, Marques EAS, Goyal R, El-zein M, et al. Fatigue crack growth analysis of different adhesive systems: Effects of mode mixity and load level. Fatigue Fract Eng Mater Struct; 43: 330–341, (2020)..
  • [36] Zeinedini A. A novel fixture for mixed mode I/II/III fracture testing of brittle materials. Fatigue Fract Eng Mater Struct; 42: 838–853, (2019).
  • [37] Hein J, Kuna M. A generalized J-integral for thermal shock analyses of 3D surface cracks in spatially and temperature dependent materials. Theor Appl Fract Mech (2017) ;92:318–30.
  • [38] Benzeggagh ML, Kenane M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/ poxy Composites with Mixed-Mode Bending Apparatus. Compos Sci Technol; 56: 439–449, (1996).
  • [39] Alizadeh F, Soares CG. European Journal of Mechanics / A Solids Experimental and numerical investigation of the fracture toughness of Glass / Vinylester composite laminates. Eur J Mech / A Solids; 73: 204–211, (2019).
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Zafer Kaya 0000-0002-5489-3997

Ersen Balcıoğlu 0000-0002-8579-5142

Halit Gün This is me 0000-0003-0573-4962

Project Number UBAP 01 2018/MF003
Publication Date June 1, 2022
Submission Date March 21, 2020
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Kaya, Z., Balcıoğlu, E., & Gün, H. (2022). Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi. Politeknik Dergisi, 25(2), 843-853. https://doi.org/10.2339/politeknik.707130
AMA Kaya Z, Balcıoğlu E, Gün H. Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi. Politeknik Dergisi. June 2022;25(2):843-853. doi:10.2339/politeknik.707130
Chicago Kaya, Zafer, Ersen Balcıoğlu, and Halit Gün. “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I Ve Mod I/II Kırılma Davranışların İncelenmesi”. Politeknik Dergisi 25, no. 2 (June 2022): 843-53. https://doi.org/10.2339/politeknik.707130.
EndNote Kaya Z, Balcıoğlu E, Gün H (June 1, 2022) Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi. Politeknik Dergisi 25 2 843–853.
IEEE Z. Kaya, E. Balcıoğlu, and H. Gün, “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi”, Politeknik Dergisi, vol. 25, no. 2, pp. 843–853, 2022, doi: 10.2339/politeknik.707130.
ISNAD Kaya, Zafer et al. “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I Ve Mod I/II Kırılma Davranışların İncelenmesi”. Politeknik Dergisi 25/2 (June 2022), 843-853. https://doi.org/10.2339/politeknik.707130.
JAMA Kaya Z, Balcıoğlu E, Gün H. Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi. Politeknik Dergisi. 2022;25:843–853.
MLA Kaya, Zafer et al. “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I Ve Mod I/II Kırılma Davranışların İncelenmesi”. Politeknik Dergisi, vol. 25, no. 2, 2022, pp. 843-5, doi:10.2339/politeknik.707130.
Vancouver Kaya Z, Balcıoğlu E, Gün H. Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi. Politeknik Dergisi. 2022;25(2):843-5.