Research Article
BibTex RIS Cite

Yarıçapa Bağlı Katılık Oranının bir H-Tip Dikey Eksenli Rüzgâr Türbinine Etkisinin Sayısal Olarak İncelenmesi

Year 2022, Volume: 25 Issue: 3, 1007 - 1019, 01.10.2022
https://doi.org/10.2339/politeknik.799767

Abstract

Bu çalışmada yarıçapa bağlı olarak değiştirilen katılık oranının, NACA 0021 kanat profiline sahip 3 kanatlı H-tip dikey eksenli rüzgar türbini aerodinamik performansına olan etkisi sayısal olarak Ansys – Fluent 14.1 yazılımında incelenmiştir. Meshten bağımsızlığa ulaşıldıktan sonra kullanılan sayısal methodlar deneysel çalışmadan elde edilen sonuçlar ile doğrulanmış ve farklı katılık oranlarında sayısal analizler tekrarlanmıştır. Sonuçlar incelendiğinde, katılık oranının artması ile birlikte düşük kanat uç hız oranlarında (TSR), katılık oranının azalması ile birlikte ise yüksek TSR değerlerinde daha yüksek aerodinamik verim elde edileceği görülmüştür. Gözlemlenen en büyük güç katsayıları, 1 m yarıçapa sahip olan turbine göre (Cp) 0.75 m yarıçapa sahip olan (M1) türbinde %4.25 artmış, 1.25 m yarıçapa sahip olan (M3) türbinde ise % 0.57 azalmıştır.

References

  • [1] Naccache G. and Paraschivoiu M., “Parametric study of the dual vertical axis wind turbine using CFD”, J Wind Eng Ind Aerodyn, 172:244–55, (2018).
  • [2] Kragten A., “The Darrieus Rotor, A Vertical Axis Wind Turbine (VAWT) with Only A Few Advantages and Many Disadvantages”, Sint-Oedenrode, (2004).
  • [3] Wong KH., Chong WT., Poh SC., Shiah YC., Sukiman NL. and Wang CT., “3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine”, Renew Energy, 129:32–55, (2018).
  • [4] Li Q., Maeda T., Kamada Y., Murata J., Furukawa K. and Yamamoto M., “Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine”, Energy, 90:784–95, (2015).
  • [5] Rezaeiha A., Montazeri H. and Blocken B., “Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades”, Energy, 165:1129–48, (2018).
  • [6] Abu-el-yazied TG., Ali AM., Al-ajmi MS. and Hassan IM., “Effect of Number of Blades and Blade Chord Length on the Performance of Darrieus Wind Turbine”, Am J Mech Eng, 2:16–25, (Autom 2015).
  • [7] Sunyoto A., Wenehenubun F., Sutanto H., “The effect of number of blades on the performance of H-Darrieus type wind turbine”, International Conference on QiR, 192–6, (2013).
  • [8] Castelli MR., Betta S. De., Benini E., “Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine”, World Acad Sci Eng Technol, 6:256–62, (2012).
  • [9] Yang Y., Guo Z., Song Q., Zhang Y., Li Q., “Effect of blade pitch angle on the aerodynamic characteristics of a straight-bladed vertical axis wind turbine based on experiments and simulations”, Energies, 11, (2018).
  • [10] Zhang LX., Liang Y. Bin., Liu. XH., Guo J., “Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine”, J Cent South Univ, 21:1417–27, (2014).
  • [11] Fiedler AJ. and Tullis S., “Blade offset and pitch effects on a high solidity vertical axis wind turbine”, Wind Eng, 33:237–46, (2009).
  • [12] Bogateanu R., Dumitrache A., Dumitrescu H., Stoica CI., “Reynolds number efects on the aerodynamic performance of small VAWTs”, UPB Sci Bull Ser D Mech Eng, 76:25–36, (2014).
  • [13] Gosselin R., Dumas G. and Boudreau M., “Parametric study of H-Darrieus vertical-axis turbines using CFD simulations”, J Renew Sustain Energy, 8, (2016).
  • [14] Bachant P. and Wosnik M., “Effects of reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine”, Energies, 9:1–18, (2016).
  • [15] Li Q., Maeda T., Kamada Y., Murata J., Yamamoto M., Ogasawara T. et al., “Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test”, Renew Energy, 90:291–300, (2016).
  • [16] Siddiqui MS., Rasheed A., Kvamsdal T., Tabib M., “Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine”, Energy Procedia, 80:312–20, (2015).
  • [17] Mǎlǎel I., Drǎgan V., Gherman B., “Turbulence intensity effects on the vertical axis wind turbine starting efficiency”, Ann DAAAM Proc Int DAAAM Symp, 974–9, (2015-January).
  • [18] Ahmadi-Baloutaki M., Carriveau R., Ting DSK., “Performance of a vertical axis wind turbine in grid generated turbulence”, Sustain Energy Technol Assessments, 11:178–85, (2015).
  • [19] Carbó Molina A., De Troyer T., Massai T., Vergaerde A., Runacres MC., Bartoli G., “Effect of turbulence on the performance of VAWTs: An experimental study in two different wind tunnels”, J Wind Eng Ind Aerodyn, 193, (2019).
  • [20] Sobhani E., Ghaffari M., Maghrebi MJ., “Numerical investigation of dimple effects on darrieus vertical axis wind turbine”, Energy, 133:231–41, (2017) .
  • [21] Zamani M., Nazari S., Moshizi SA., Maghrebi MJ., “Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine”, Energy, 116:1243–55, (2016) .
  • [22] Subramanian A., Yogesh SA., Sivanandan H., Giri A., Vasudevan M., Mugundhan V. et al., “Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model”, Energy, 133:179–90, (2017).
  • [23] Kumar R., Baredar P., “Solidity Study and its Effects on the Performance of A Small Scale Horizontal Axis Wind Turbine”, Impending Power Demand Innov Energy Paths, 290–7, (2014).
  • [24] Liang C., Xi D., Zhang S., Yang Q., “Effects of Solidity on Aerodynamic Performance of H-Type Vertical Axis Wind Turbine”, IOP Conference Series: Earth and Environmental Science, 170. 042061, (2018).
  • [25] G.J.M Darrieus., “Turbine having its rotating shaft transverse to the flow of the current” US Patent no. 1.835.018, (1931).
  • [26] Marsh P., Ranmuthugala D., Penesis I., Thomas G., “The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines”, Renew Energy, 105:106–16, (2017).
  • [27] Şahin İ., Acir A., “Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil”, Int J Mater Mech Manuf, 3:22–5, (2015).
  • [28] Alqurashi F., Mohamed MH., “Aerodynamic forces affecting the H-rotor darrieus wind turbine”, Model Simul Eng, (2020).
  • [29] Danao LA., Qin N., Howell R., “A numerical study of blade thickness and camber effects on vertical axis wind turbines”, Proc Inst Mech Eng Part A J Power Energy, 226:867–81, (2012).
  • [30] Ferziger JH., Perić M., “Computational Methods for Fluid Dynamics”, Berlin: springer, (2002).
  • [31] Mohamed MH., “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes”, Energy, 47:522–30, (2012).
  • [32] Roy S., Saha UK., “Computational study to assess the influence of overlap ratio on static torque characteristics of a vertical axis wind turbine”, Procedia Eng, 51:694–702, (2013).
  • [33] Tanürün HE., Acır A., “Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi”, J Polytech, 0900:185–95, (2019).
  • [34] Hashem I., Mohamed MH., “Aerodynamic performance enhancements of H-rotor Darrieus wind turbine", vol. 142. Elsevier B.V, (2018).
  • [35] Roy S., Saha U., “Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine”, Proceedings of Indo-Danish International Conference on WEMEP 22–23, (2012).
  • [36] Mohamed MH., Ali AM., Hafiz AA., “CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter”, Engineering Science and Technology, an International Journal, 18:1-13, (2015).
  • [37] Sumantraa RB., Chandramouli S., Premsai TP., Prithviraj P., Vivek M., Kishore VR., “Numerical analysis of effect of pitch angle on a small scale vertical axis wind turbine”, Int J Renew Energy Res, 4:929–35, (2014).
  • [38] Tanürün HE., Ata İ., Canlı ME., Acır A., “Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi”, J Polytech, 0900:371–381, (2020).

Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines

Year 2022, Volume: 25 Issue: 3, 1007 - 1019, 01.10.2022
https://doi.org/10.2339/politeknik.799767

Abstract

In this study, radius-dependent solidity effect to the aerodynamic characteristic of a three bladed H-rotor Darrieus wind turbine consisting of NACA 0021 profile blades was investigated numerically in Ansys Fluent 14.1 software. After achieving independence from the mesh, the numerical method was validated with the experimental data and then numerical analyses were performed for different solidity values. Results show that the higher efficiency can be obtained both in low Type Speed Ratio (TSR) values with the increase of solidity and in high TSR values with the decrease in solidity. Power coefficient (Cp) has been enhanced as 4.25% with 0.75 m (M1) and Cp has been reduced as 0.57% with 1.25 m (M3) rotor radius according to 1 m rotor radius (M2), respectively. 

References

  • [1] Naccache G. and Paraschivoiu M., “Parametric study of the dual vertical axis wind turbine using CFD”, J Wind Eng Ind Aerodyn, 172:244–55, (2018).
  • [2] Kragten A., “The Darrieus Rotor, A Vertical Axis Wind Turbine (VAWT) with Only A Few Advantages and Many Disadvantages”, Sint-Oedenrode, (2004).
  • [3] Wong KH., Chong WT., Poh SC., Shiah YC., Sukiman NL. and Wang CT., “3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine”, Renew Energy, 129:32–55, (2018).
  • [4] Li Q., Maeda T., Kamada Y., Murata J., Furukawa K. and Yamamoto M., “Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine”, Energy, 90:784–95, (2015).
  • [5] Rezaeiha A., Montazeri H. and Blocken B., “Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades”, Energy, 165:1129–48, (2018).
  • [6] Abu-el-yazied TG., Ali AM., Al-ajmi MS. and Hassan IM., “Effect of Number of Blades and Blade Chord Length on the Performance of Darrieus Wind Turbine”, Am J Mech Eng, 2:16–25, (Autom 2015).
  • [7] Sunyoto A., Wenehenubun F., Sutanto H., “The effect of number of blades on the performance of H-Darrieus type wind turbine”, International Conference on QiR, 192–6, (2013).
  • [8] Castelli MR., Betta S. De., Benini E., “Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine”, World Acad Sci Eng Technol, 6:256–62, (2012).
  • [9] Yang Y., Guo Z., Song Q., Zhang Y., Li Q., “Effect of blade pitch angle on the aerodynamic characteristics of a straight-bladed vertical axis wind turbine based on experiments and simulations”, Energies, 11, (2018).
  • [10] Zhang LX., Liang Y. Bin., Liu. XH., Guo J., “Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine”, J Cent South Univ, 21:1417–27, (2014).
  • [11] Fiedler AJ. and Tullis S., “Blade offset and pitch effects on a high solidity vertical axis wind turbine”, Wind Eng, 33:237–46, (2009).
  • [12] Bogateanu R., Dumitrache A., Dumitrescu H., Stoica CI., “Reynolds number efects on the aerodynamic performance of small VAWTs”, UPB Sci Bull Ser D Mech Eng, 76:25–36, (2014).
  • [13] Gosselin R., Dumas G. and Boudreau M., “Parametric study of H-Darrieus vertical-axis turbines using CFD simulations”, J Renew Sustain Energy, 8, (2016).
  • [14] Bachant P. and Wosnik M., “Effects of reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine”, Energies, 9:1–18, (2016).
  • [15] Li Q., Maeda T., Kamada Y., Murata J., Yamamoto M., Ogasawara T. et al., “Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test”, Renew Energy, 90:291–300, (2016).
  • [16] Siddiqui MS., Rasheed A., Kvamsdal T., Tabib M., “Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine”, Energy Procedia, 80:312–20, (2015).
  • [17] Mǎlǎel I., Drǎgan V., Gherman B., “Turbulence intensity effects on the vertical axis wind turbine starting efficiency”, Ann DAAAM Proc Int DAAAM Symp, 974–9, (2015-January).
  • [18] Ahmadi-Baloutaki M., Carriveau R., Ting DSK., “Performance of a vertical axis wind turbine in grid generated turbulence”, Sustain Energy Technol Assessments, 11:178–85, (2015).
  • [19] Carbó Molina A., De Troyer T., Massai T., Vergaerde A., Runacres MC., Bartoli G., “Effect of turbulence on the performance of VAWTs: An experimental study in two different wind tunnels”, J Wind Eng Ind Aerodyn, 193, (2019).
  • [20] Sobhani E., Ghaffari M., Maghrebi MJ., “Numerical investigation of dimple effects on darrieus vertical axis wind turbine”, Energy, 133:231–41, (2017) .
  • [21] Zamani M., Nazari S., Moshizi SA., Maghrebi MJ., “Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine”, Energy, 116:1243–55, (2016) .
  • [22] Subramanian A., Yogesh SA., Sivanandan H., Giri A., Vasudevan M., Mugundhan V. et al., “Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model”, Energy, 133:179–90, (2017).
  • [23] Kumar R., Baredar P., “Solidity Study and its Effects on the Performance of A Small Scale Horizontal Axis Wind Turbine”, Impending Power Demand Innov Energy Paths, 290–7, (2014).
  • [24] Liang C., Xi D., Zhang S., Yang Q., “Effects of Solidity on Aerodynamic Performance of H-Type Vertical Axis Wind Turbine”, IOP Conference Series: Earth and Environmental Science, 170. 042061, (2018).
  • [25] G.J.M Darrieus., “Turbine having its rotating shaft transverse to the flow of the current” US Patent no. 1.835.018, (1931).
  • [26] Marsh P., Ranmuthugala D., Penesis I., Thomas G., “The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines”, Renew Energy, 105:106–16, (2017).
  • [27] Şahin İ., Acir A., “Numerical and Experimental Investigations of Lift and Drag Performances of NACA 0015 Wind Turbine Airfoil”, Int J Mater Mech Manuf, 3:22–5, (2015).
  • [28] Alqurashi F., Mohamed MH., “Aerodynamic forces affecting the H-rotor darrieus wind turbine”, Model Simul Eng, (2020).
  • [29] Danao LA., Qin N., Howell R., “A numerical study of blade thickness and camber effects on vertical axis wind turbines”, Proc Inst Mech Eng Part A J Power Energy, 226:867–81, (2012).
  • [30] Ferziger JH., Perić M., “Computational Methods for Fluid Dynamics”, Berlin: springer, (2002).
  • [31] Mohamed MH., “Performance investigation of H-rotor Darrieus turbine with new airfoil shapes”, Energy, 47:522–30, (2012).
  • [32] Roy S., Saha UK., “Computational study to assess the influence of overlap ratio on static torque characteristics of a vertical axis wind turbine”, Procedia Eng, 51:694–702, (2013).
  • [33] Tanürün HE., Acır A., “Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi”, J Polytech, 0900:185–95, (2019).
  • [34] Hashem I., Mohamed MH., “Aerodynamic performance enhancements of H-rotor Darrieus wind turbine", vol. 142. Elsevier B.V, (2018).
  • [35] Roy S., Saha U., “Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine”, Proceedings of Indo-Danish International Conference on WEMEP 22–23, (2012).
  • [36] Mohamed MH., Ali AM., Hafiz AA., “CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter”, Engineering Science and Technology, an International Journal, 18:1-13, (2015).
  • [37] Sumantraa RB., Chandramouli S., Premsai TP., Prithviraj P., Vivek M., Kishore VR., “Numerical analysis of effect of pitch angle on a small scale vertical axis wind turbine”, Int J Renew Energy Res, 4:929–35, (2014).
  • [38] Tanürün HE., Ata İ., Canlı ME., Acır A., “Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi”, J Polytech, 0900:371–381, (2020).
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ahmet Fatih Kaya 0000-0002-7888-0250

Himmet Erdi Tanürün 0000-0001-7814-7043

Adem Acır 0000-0002-9856-3623

Publication Date October 1, 2022
Submission Date September 24, 2020
Published in Issue Year 2022 Volume: 25 Issue: 3

Cite

APA Kaya, A. F., Tanürün, H. E., & Acır, A. (2022). Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines. Politeknik Dergisi, 25(3), 1007-1019. https://doi.org/10.2339/politeknik.799767
AMA Kaya AF, Tanürün HE, Acır A. Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines. Politeknik Dergisi. October 2022;25(3):1007-1019. doi:10.2339/politeknik.799767
Chicago Kaya, Ahmet Fatih, Himmet Erdi Tanürün, and Adem Acır. “Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines”. Politeknik Dergisi 25, no. 3 (October 2022): 1007-19. https://doi.org/10.2339/politeknik.799767.
EndNote Kaya AF, Tanürün HE, Acır A (October 1, 2022) Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines. Politeknik Dergisi 25 3 1007–1019.
IEEE A. F. Kaya, H. E. Tanürün, and A. Acır, “Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines”, Politeknik Dergisi, vol. 25, no. 3, pp. 1007–1019, 2022, doi: 10.2339/politeknik.799767.
ISNAD Kaya, Ahmet Fatih et al. “Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines”. Politeknik Dergisi 25/3 (October 2022), 1007-1019. https://doi.org/10.2339/politeknik.799767.
JAMA Kaya AF, Tanürün HE, Acır A. Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines. Politeknik Dergisi. 2022;25:1007–1019.
MLA Kaya, Ahmet Fatih et al. “Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines”. Politeknik Dergisi, vol. 25, no. 3, 2022, pp. 1007-19, doi:10.2339/politeknik.799767.
Vancouver Kaya AF, Tanürün HE, Acır A. Numerical Investigation of Radius Dependent Solidity Effect on H-Type Vertical Axis Wind Turbines. Politeknik Dergisi. 2022;25(3):1007-19.

Cited By