Research Article
BibTex RIS Cite

AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi

Year 2022, Volume: 25 Issue: 3, 1201 - 1209, 01.10.2022
https://doi.org/10.2339/politeknik.836460

Abstract

Sac malzemelerin yüzeyleri, boyanabilme ve şekillendirme açısından belli bir pürüzlülük profiline sahip olmalıdır. Yüzeyin pürüzlülüğünün az olması boya veya kaplamaların yapışmasını azaltabileceği gibi fazla olması boya veya kaplamanın yetersiz olması sonucunda paslanmaya neden olabilecek ayrıca boya veya kaplamanın fazla kullanılmasına sebep olarak maliyetlerin artmasına sebep olacaktır. Bu sebeplerden dolayı, sac malzeme yüzeyinin en uygun seviyede pürüzlülüğe sahip olması istenir. Sac malzemelerin yüzeylerine genellikle temper haddeleme olarak bilinen, özel pürüzlü merdanelerle pürüzlülük profili transfer edilir. Sac malzeme yüzeyine aktarılan pürüzlülük profili, haddeleme parametrelerinden etkilenir. Bu deneysel çalışmada otomotiv endüstrisinde yoğun bir şekilde kullanılan yüksek akma mukavemeti ve uzama kabiliyetine sahip olan AISI 304 paslanmaz çelik sac malzemelere temper haddeleme ile pürüzlülük transferine ezme miktarı, haddeleme hızı, merdane pürüzlülüğü, yağlama koşulları ve malzeme kalınlığının etkisi araştırılmış ve pürüzlülük dağılımı malzeme oranı eğrileri yardımıyla değerlendirilmiştir. Ezme miktarı arttıkça pürüzlülük transfer oranı arttı. Yağlayıcı kullanılan koşullar altında, merdane pürüzlülüğü, malzeme kalınlığı artışıyla birlikte pürüzlülük transfer oranı azaldı. Haddeleme hızının artışı pürüzlülük transfer oranına etkisi olmadığı sonucuna varıldı. Ayrıca düşük ezme miktarı, düşük haddeleme hızı, düşük pürüzlülüğe sahip merdane, kalın malzeme ve yağlı koşulların tercih edilmesi ile daha homojen bir pürüzlülük dağılımına ulaşılabileceği sonucuna varılmıştır.

Supporting Institution

Ondokuz Mayıs Üniversitesi

Project Number

PYO.MUH.1904.19.013

Thanks

Yazarlar, Ondokuz Mayıs Üniversitesi PYO. MUH.1904.19.013 proje numarası ve TÜBİTAK “2211-C” tarafından sağlanan destekler ile Karabük Üniversitesi Teknoloji Fakültesinin laboratuvar destekleri ve ERDEMİR T.A.Ş’nin malzeme bağışları için teşekkür ederler.

References

  • [1] Plicht, G., Schillak, H., Lin, M., Edwards, R., Mebrahtu, T., Hofinghoff, H. and Demski, T., “Skin-pass rolling of steel strip using liquid nitrogen”, Materials Scıence & Technology (MS&T) 2007, Detroit, Michigan, 149-157, (2007).
  • [2] Grassino, J., Vedani, M., Vimercati, G. and Zanella, G., “Effects of skin pass rolling parameters on mechanical properties properties of steels”, International Journal of Precision Engineering and Manufacturing, 13(11): 2017-2026, (2012).
  • [3] Sharma, A. and Yadava, V., “Experimental analysis of Nd-YAG laser cutting of sheet materials–A review”, Optics & Laser Technology, 98: 264-280, (2018).
  • [4] Wentink, D. J., Matthews, D., Appelman, N. M. and Toose, E. M., “A generic model for surface texture development, wear and roughness transfer in skin pass rolling”, Wear, 328: 167-176, (2015).
  • [5] Özakın, B. and Kurgan, N., “Temper Haddelemede Pürüzlülük Transferini Etkileyen Parametrelerin İncelenmesine Yönelik Bir Derleme Çalışması”, International Periodical of Recent Technologies in Applied Engineering, 1(2): 67-78, (2019).
  • [6] Elkoca, O., “A study on the characteristics of electrical discharge textured skin pass mill work roll”, Surface and Coatings Technology, 202(12): 2765-2774, (2008).
  • [7] Pawelski, O., Rasp, W., Zwick, W., Nettelbeck, H. J. and Steinhoff, K., “The influence of different work-roll texturing systems on the development of surface structure in the temper rolling process of steel sheet used in the automotive industry”, Journal of Materials Processing Technology, 45(1-4): 215-222, (1994).
  • [8] Ma, B., Tieu, A. K., Lu, C. and Jiang, Z., “An experimental investigation of steel surface characteristic transfer by cold rolling”, Journal of Materials Processing Technology, 125: 657-663, (2002).
  • [9] Kijima, H. and Bay, N., “Skin-pass rolling I—Studies on roughness transfer and elongation under pure normal loading”, International Journal of Machine Tools and Manufacture, 48(12-13): 1313-1317, (2008).
  • [10] Kijima, H. and Bay, N., “Skin-pass rolling II—Studies of roughness transfer under combined normal and tangential loading”, International Journal of Machine Tools and Manufacture, 48(12-13): 1308-1312, (2008).
  • [11] Kijima, H., “Influence of roll radius on roughness transfer in skin-pass rolling of steel strip”, Journal of Materials Processing Technology, 214(5): 1111-1119 (2014).
  • [12] Kijima, H., “An experimental investigation on the influence of lubrication on roughness transfer in skin-pass rolling of steel strip”, Journal of Materials Processing Technology, 225: 1-8, (2015).
  • [13] Wu, C., Zhang, L., Qu, P., Li, S. and Jiang, Z., “A simple approach for analysing the surface texture transfer in cold rolling of metal strips”, The International Journal of Advanced Manufacturing Technology, 95(1-4): 597-608, (2018).
  • [14] Çolak, B. and Kurgan, N., “An experimental investigation into roughness transfer in skin-pass rolling of steel strips”, The International Journal of Advanced Manufacturing Technology, 96(9-12): 3321-3330, (2018).
  • [15] Wu, C., Zhang, L., Qu, P., Li, S. and Jiang, Z., “A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips”, Wear, 426: 1246-1264 (2019).
  • [16] EN ISO 13565-2, “Geometrical Product Specifications (GPS)- Surface texture: Profile method- Surfaces having stratified functional properties- Part 2: Height characterization using the linear material ratio curve”, (1997).
  • [17] Walton, K., Blunt, L. and Fleming, L., “The topographic development and areal parametric characterization of a stratified surface polished by mass finishing”, Surface Topography: Metrology and Properties, 3(3): 035003, (2015).
  • [18] Mekicha, M. A., de Rooij, M. B., Jacobs, L., Matthews, D. T. A. and Schipper, D. J., “Experimental validation of contact models for cold-rolling processes”, Journal of Materials Processing Technology, 275: 116371, (2020).
  • [19] Jeng, Y. R., Lee, J. T., Hwu, Y. J., Liu, L. C. and Lu, C. Y., (2020). “Effects of operation parameters of cold rolling on surface finish of aluminum”, Tribology International, 148: 106321, (2020).
  • [20] Nagase, N., Shido, S. and Yarita, I., “The effect of soluble lubricant on surface imprinting in temper rolling by 4 hi rolling mill”, ISIJ International, 49(6): 881-889, (2009).
  • [21] Özakın, B. and Kurgan, N., “DC04 kalite sac malzemelere temper haddeleme ile pürüzlülük transferinde yağlayıcının etkisinin incelenmesi”, International Journal of Eastern Anatolian Science Engineering and Design, 2(2): 325-336, (2020).
  • [22] Dick, K. and Lenard, J. G., “The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips”, Journal of Materials Processing Technology, 168(1): 16-24, (2005).

Investigation of the Effect of Rolling Parameters in Roughness Transfer by Skin-Pass Rolling to AISI 304 Stainless Steel Sheet Materials

Year 2022, Volume: 25 Issue: 3, 1201 - 1209, 01.10.2022
https://doi.org/10.2339/politeknik.836460

Abstract

The surfaces of sheet materials must have a certain roughness profile in terms of paintability and forming. As well as low roughness of the surface may reduce the adhesion of paints/coatings, excess of paint/coating may lead to rusting as a result of insufficient of paint/coating also excessive use of paint/coating will cause increased costs. For these reasons, the surface of sheet material is desired an optimal level of roughness. Roughness profile is transferred to surface of sheet materials by special roughing rollers, commonly known as skin-pass rolling. Roughness profile transferred to the sheet material surface is influenced by the rolling parameters. In this experimental study, it was investigated effect of the reduction ratio, rolling speed, roll roughness, lubrication conditions and material thickness on the roughness transfer by skin-pass rolling to AISI 304 stainless steel sheet materials with high yield strength and elongation ability, which are used extensively in the automotive industry and the roughness distribution was evaluated with the help of material ratio curves. Roughness transfer ratio increased as the reduction ratio increased. Roughness transfer ratio decreased with increasing material thickness, roll roughness, under the conditions of using lubricant. It was concluded that the increase in rolling speed had no effect on the roughness transfer ratio. Also, it was concluded that a more homogeneous roughness distribution can be achieved by choosing low reduction ratio, low rolling speed, low roughness roll, thick material and lubrication conditions.

Project Number

PYO.MUH.1904.19.013

References

  • [1] Plicht, G., Schillak, H., Lin, M., Edwards, R., Mebrahtu, T., Hofinghoff, H. and Demski, T., “Skin-pass rolling of steel strip using liquid nitrogen”, Materials Scıence & Technology (MS&T) 2007, Detroit, Michigan, 149-157, (2007).
  • [2] Grassino, J., Vedani, M., Vimercati, G. and Zanella, G., “Effects of skin pass rolling parameters on mechanical properties properties of steels”, International Journal of Precision Engineering and Manufacturing, 13(11): 2017-2026, (2012).
  • [3] Sharma, A. and Yadava, V., “Experimental analysis of Nd-YAG laser cutting of sheet materials–A review”, Optics & Laser Technology, 98: 264-280, (2018).
  • [4] Wentink, D. J., Matthews, D., Appelman, N. M. and Toose, E. M., “A generic model for surface texture development, wear and roughness transfer in skin pass rolling”, Wear, 328: 167-176, (2015).
  • [5] Özakın, B. and Kurgan, N., “Temper Haddelemede Pürüzlülük Transferini Etkileyen Parametrelerin İncelenmesine Yönelik Bir Derleme Çalışması”, International Periodical of Recent Technologies in Applied Engineering, 1(2): 67-78, (2019).
  • [6] Elkoca, O., “A study on the characteristics of electrical discharge textured skin pass mill work roll”, Surface and Coatings Technology, 202(12): 2765-2774, (2008).
  • [7] Pawelski, O., Rasp, W., Zwick, W., Nettelbeck, H. J. and Steinhoff, K., “The influence of different work-roll texturing systems on the development of surface structure in the temper rolling process of steel sheet used in the automotive industry”, Journal of Materials Processing Technology, 45(1-4): 215-222, (1994).
  • [8] Ma, B., Tieu, A. K., Lu, C. and Jiang, Z., “An experimental investigation of steel surface characteristic transfer by cold rolling”, Journal of Materials Processing Technology, 125: 657-663, (2002).
  • [9] Kijima, H. and Bay, N., “Skin-pass rolling I—Studies on roughness transfer and elongation under pure normal loading”, International Journal of Machine Tools and Manufacture, 48(12-13): 1313-1317, (2008).
  • [10] Kijima, H. and Bay, N., “Skin-pass rolling II—Studies of roughness transfer under combined normal and tangential loading”, International Journal of Machine Tools and Manufacture, 48(12-13): 1308-1312, (2008).
  • [11] Kijima, H., “Influence of roll radius on roughness transfer in skin-pass rolling of steel strip”, Journal of Materials Processing Technology, 214(5): 1111-1119 (2014).
  • [12] Kijima, H., “An experimental investigation on the influence of lubrication on roughness transfer in skin-pass rolling of steel strip”, Journal of Materials Processing Technology, 225: 1-8, (2015).
  • [13] Wu, C., Zhang, L., Qu, P., Li, S. and Jiang, Z., “A simple approach for analysing the surface texture transfer in cold rolling of metal strips”, The International Journal of Advanced Manufacturing Technology, 95(1-4): 597-608, (2018).
  • [14] Çolak, B. and Kurgan, N., “An experimental investigation into roughness transfer in skin-pass rolling of steel strips”, The International Journal of Advanced Manufacturing Technology, 96(9-12): 3321-3330, (2018).
  • [15] Wu, C., Zhang, L., Qu, P., Li, S. and Jiang, Z., “A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips”, Wear, 426: 1246-1264 (2019).
  • [16] EN ISO 13565-2, “Geometrical Product Specifications (GPS)- Surface texture: Profile method- Surfaces having stratified functional properties- Part 2: Height characterization using the linear material ratio curve”, (1997).
  • [17] Walton, K., Blunt, L. and Fleming, L., “The topographic development and areal parametric characterization of a stratified surface polished by mass finishing”, Surface Topography: Metrology and Properties, 3(3): 035003, (2015).
  • [18] Mekicha, M. A., de Rooij, M. B., Jacobs, L., Matthews, D. T. A. and Schipper, D. J., “Experimental validation of contact models for cold-rolling processes”, Journal of Materials Processing Technology, 275: 116371, (2020).
  • [19] Jeng, Y. R., Lee, J. T., Hwu, Y. J., Liu, L. C. and Lu, C. Y., (2020). “Effects of operation parameters of cold rolling on surface finish of aluminum”, Tribology International, 148: 106321, (2020).
  • [20] Nagase, N., Shido, S. and Yarita, I., “The effect of soluble lubricant on surface imprinting in temper rolling by 4 hi rolling mill”, ISIJ International, 49(6): 881-889, (2009).
  • [21] Özakın, B. and Kurgan, N., “DC04 kalite sac malzemelere temper haddeleme ile pürüzlülük transferinde yağlayıcının etkisinin incelenmesi”, International Journal of Eastern Anatolian Science Engineering and Design, 2(2): 325-336, (2020).
  • [22] Dick, K. and Lenard, J. G., “The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips”, Journal of Materials Processing Technology, 168(1): 16-24, (2005).
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Batuhan Özakın 0000-0003-1754-949X

Naci Kurgan 0000-0001-7297-7249

Project Number PYO.MUH.1904.19.013
Publication Date October 1, 2022
Submission Date December 5, 2020
Published in Issue Year 2022 Volume: 25 Issue: 3

Cite

APA Özakın, B., & Kurgan, N. (2022). AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi. Politeknik Dergisi, 25(3), 1201-1209. https://doi.org/10.2339/politeknik.836460
AMA Özakın B, Kurgan N. AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi. Politeknik Dergisi. October 2022;25(3):1201-1209. doi:10.2339/politeknik.836460
Chicago Özakın, Batuhan, and Naci Kurgan. “AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme Ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi”. Politeknik Dergisi 25, no. 3 (October 2022): 1201-9. https://doi.org/10.2339/politeknik.836460.
EndNote Özakın B, Kurgan N (October 1, 2022) AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi. Politeknik Dergisi 25 3 1201–1209.
IEEE B. Özakın and N. Kurgan, “AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi”, Politeknik Dergisi, vol. 25, no. 3, pp. 1201–1209, 2022, doi: 10.2339/politeknik.836460.
ISNAD Özakın, Batuhan - Kurgan, Naci. “AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme Ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi”. Politeknik Dergisi 25/3 (October 2022), 1201-1209. https://doi.org/10.2339/politeknik.836460.
JAMA Özakın B, Kurgan N. AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi. Politeknik Dergisi. 2022;25:1201–1209.
MLA Özakın, Batuhan and Naci Kurgan. “AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme Ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi”. Politeknik Dergisi, vol. 25, no. 3, 2022, pp. 1201-9, doi:10.2339/politeknik.836460.
Vancouver Özakın B, Kurgan N. AISI 304 Paslanmaz Çelik Sac Malzemelere Temper Haddeleme ile Pürüzlülük Transferinde Haddeleme Parametrelerinin Etkisinin İncelenmesi. Politeknik Dergisi. 2022;25(3):1201-9.