Research Article
BibTex RIS Cite

Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure as an Instantaneous Center of Rotation

Year 2022, Volume: 25 Issue: 3, 1123 - 1132, 01.10.2022
https://doi.org/10.2339/politeknik.901642

Abstract

In the study, an alternative 7-dof dynamical model that can be used in gait analysis of human, bipedal robots and exoskeleton systems is proposed. The dimensions and kinematic data of the model are specified on the basis of anthropometry and kinematic data of real human gait. The 7-link model consists of the trunk, two thighs, two shanks and two feet links. The movement is examined in the sagittal plane and during the single support phase (SSP). Unlike the rotation about a fixed point, it is assumed that the right foot rotates about the center of pressure (COP). The part between the COP and the tip of the toe is considered to be a passive limb which is horizontally on the ground. The effect of this part on dynamic analysis is neglected. The equations of motions are derived by applying Lagrange equations. Using the kinematic data obtained in clinical gait analysis (CGA) conducted by Winter [1], the net joint torques are calculated and then compared with CGA torque data. As a result of the comparisons, it is seen that the curves are overlapped significantly.

References

  • [1] Winter, D. A., "Biomechanics and Motor Control of Human Movement", 4. Ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, (2009).
  • [2] Ito, D., Murakami, T., and Ohnishi, K., "An Approach to Generation of Smooth Walking Pattern for Biped Robot", International Workshop on Advanced Motion Control, AMC, Maribor, Slovenia, 98–103 (2002).
  • [3] Chen, B., Ma, H., Qin, L. Y., Gao, F., Chan, K. M., Law, S. W., Qin, L., and Liao, W. H., "Recent developments and challenges of lower extremity exoskeletons", Journal Of Orthopaedic Translation, 5: 26–37 (2016).
  • [4] Viteckova, S., Kutilek, P., and Jirina, M., "Wearable lower limb robotics: A review", Biocybernetics And Biomedical Engineering, 33 (2): 96–105 (2013).
  • [5] Bakırcıoğlu, V. and Kalyoncu, M., "A literature review on walking strategies of legged robots", Journal Of Polytechnic, 23 (4): 961–986 (2019).
  • [6] Oh, S. N., Kim, K. Il, and Lim, S., "Motion Control of Biped Robots Using a Single-Chip Drive", IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2461–2465 (2003).
  • [7] Chevallereau, C., Bessonnet, G., Abba, G., and Aoustin, Y., "Bipedal Robots : Modeling, Design and Walking Synthesis", ISTE, London, UK, (2009).
  • [8] Dollar, A. M. and Herr, H., "Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art", IEEE Transactions On Robotics, 24 (1): 144–158 (2008).
  • [9] Ji, Z. and Manna, Y., "Synthesis of a pattern generation mechanism for gait rehabilitation", Journal Of Medical Devices, Transactions Of The ASME, 2 (3): (2008).
  • [10] Dillmann, R., Albiez, J., Gaßmann, B., Kerscher, T., and Zöllner, M., "Biologically inspired walking machines: Design, control and perception", Philosophical Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 365 (1850): 133–151 (2007).
  • [11] Pfeiffer, F. and Inoue, H., "Walking: Technology and biology", Philosophical Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 365 (1850): 3–9 (2007).
  • [12] Kirtley, C., "Clinical Gait Analysis: Theory and Practice.", 1. Ed., Elsevier Churchill Livingstone, London, 316 (2006).
  • [13] Popovic, M. B., Goswami, A., and Herr, H., "Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications", The International Journal Of Robotics Research, 24 (12): 1013–1032 (2005).
  • [14] Jung, W. C. and Lee, J. K., "Treadmill-to-overground mapping of marker trajectory for treadmill-based continuous gait analysis", Sensors, 21 (3): 1–13 (2021).
  • [15] Nagymáté, G. and Kiss, R. M., "Affordable gait analysis using augmented reality markers", PLoS ONE, 14 (2): (2019).
  • [16] Haque, M. R., Imtiaz, M. H., Kwak, S. T., Sazonov, E., Chang, Y. H., and Shen, X., "A lightweight exoskeleton-based portable gait data collection system†", Sensors, 21 (3): 1–17 (2021).
  • [17] Cruse, H., Kindermann, T., Schumm, M., Dean, J., and Schmitz, J., "Walknet - A biologically inspired network to control six-legged walking", Neural Networks, 11 (7–8): 1435–1447 (1998).
  • [18] Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Aral, H., Koyachi, N., and Tanie, K., "Planning walking patterns for a biped robot", IEEE Transactions On Robotics And Automation, 17 (3): 280–289 (2001).
  • [19] Zoss, A. and Kazerooni, H., "Design of an electrically actuated lower extremity exoskeleton", Advanced Robotics, 20 (9): 967–988 (2006).
  • [20] Tzafestas, S., Raibert, M., and Tzafestas, C., "Robust sliding-mode control applied to a 5-link biped robot", Journal Of Intelligent And Robotic Systems: Theory And Applications, 15 (1): 67–133 (1996).
  • [21] Pournazhdi, A. B., Mirzaei, M., and Ghiasi, A. R., "Dynamic Modeling and Sliding Mode Control for Fast Walking of Seven-Link Biped Robot", 2nd International Conference on Control, Instrumentation and Automation (ICCIA), Shiraz, Iran, 1012–1017 (2011).
  • [22] Onn, N., Hussein, M., Howe, C., Tang, H., Zain, M. Z., Mohamad, M., and Ying, L. W., "Motion Control of Seven-Link Human Bipedal Model", 14th International Conference on Robotics, Control and Manufacturing Technology(ROCOM’14), 15–22 (2014).
  • [23] Paparisabet, M. A., Dehghani, R., and Ahmadi, A. R., "Knee and torso kinematics in generation of optimum gait pattern based on human-like motion for a seven-link biped robot", Multibody System Dynamics, 47 (2): 117–136 (2019).
  • [24] Pai, Y. C. and Iqbal, K., "Simulated movement termination for balance recovery: Can movement strategies be sought to maintain stability in the presence of slipping or forced sliding?", Journal Of Biomechanics, 32 (8): 779–786 (1999).
  • [25] Pai, Y. C., Maki, B. E., Iqbal, K., McIlroy, W. E., and Perry, S. D., "Thresholds for step initiation induced by support-surface translation: A dynamic center-of-mass model provides much better prediction than a static model", Journal Of Biomechanics, 33 (3): 387–392 (2000).
  • [26] Pai, Y. C. and Patton, J., "Center of mass velocity-position predictions for balance control", Journal Of Biomechanics, 30 (4): 347–354 (1997).
  • [27] Mu, X. and Wu, Q., "Development of a complete dynamic model of a planar five-link biped and sliding mode control of its locomotion during the double support phase", International Journal Of Control, 77 (8): 789–799 (2004).
  • [28] Ha, S., Han, Y., and Hahn, H., "Adaptive gait pattern generation of biped robot based on human’s gait pattern analysis", International Journal Of Mechanical Systems Science And Engineering, 1 (2): 80–85 (2007).
  • [29] Hemami, H. and Farnsworth, R. L., "Postural and Gait Stability of a Planar Five Link Biped by Simulation", IEEE Transactions On Automatic Control, 22 (3): 452–458 (1977).
  • [30] Miller, D. I. ; Nelson, R. C., "Biomechanics of Sport", Lea And Febiger, Philadelphia, (1973).
  • [31] Plagenhoef, S., "The Patterns of Human Motion", Prentice-Hall, Englewood Clifis, N.J, (1971).

İki Bacaklı Yürüyüşün Ters Dinamiği : Basınç Merkezinin Bir Ani Dönme Merkezi Olduğu Varsayımı

Year 2022, Volume: 25 Issue: 3, 1123 - 1132, 01.10.2022
https://doi.org/10.2339/politeknik.901642

Abstract

Bu çalışmada, gerçek insan, iki ayaklı yürüyen robotlar ve dış iskelet sistemlerinin yürüyüş analizlerinde kullanılabilecek, 2 boyutlu alternatif bir dinamik model önerilmiştir. Modelin boyutları ve kinematik verileri, antropometrik veriler ve gerçek insan yürüyüşünün kinematik verileri esas alınarak belirlenmiştir. 7 uzuvlu model; gövde, iki adet üst bacak (uyluk), iki adet alt bacak (baldır) ve iki adet ayak uzuvlarından oluşmaktadır. Hareket, sagital düzlemde ve tek ayak destek fazında incelenmiştir. Sağ ayağın, sabit bir nokta etrafında dönmesinden farklı olarak, ayak basınç merkezi (COP) etrafında dairesel hareket yaptığı kabul edilmiştir. Basınç merkezi (COP) ile ayak başparmağı ucu arasındaki kısım, yatay olarak yerde hareketsiz bulunan pasif bir uzuv gibi değerlendirilmiştir. Bu kısmın dinamik analize etkisi ihmal edilmiştir. Lagrange denklemleri ile hareket denklemleri elde edilmiştir. Winter [1] tarafından yapılmış klinik yürüyüş deneylerinde elde edilen kinematik veriler kullanılarak, her bir uzvun hareketi için gerekli net mafsal torkları belirlenmiş ve grafikler üzerinde deneysel sonuçlarla karşılaştırılmıştır. Karşılaştırmalar neticesinde, analitik ve deneysel sonuçlardan elde edilen eğrilerin önemli oranda örtüştüğü görülmüştür.

References

  • [1] Winter, D. A., "Biomechanics and Motor Control of Human Movement", 4. Ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, (2009).
  • [2] Ito, D., Murakami, T., and Ohnishi, K., "An Approach to Generation of Smooth Walking Pattern for Biped Robot", International Workshop on Advanced Motion Control, AMC, Maribor, Slovenia, 98–103 (2002).
  • [3] Chen, B., Ma, H., Qin, L. Y., Gao, F., Chan, K. M., Law, S. W., Qin, L., and Liao, W. H., "Recent developments and challenges of lower extremity exoskeletons", Journal Of Orthopaedic Translation, 5: 26–37 (2016).
  • [4] Viteckova, S., Kutilek, P., and Jirina, M., "Wearable lower limb robotics: A review", Biocybernetics And Biomedical Engineering, 33 (2): 96–105 (2013).
  • [5] Bakırcıoğlu, V. and Kalyoncu, M., "A literature review on walking strategies of legged robots", Journal Of Polytechnic, 23 (4): 961–986 (2019).
  • [6] Oh, S. N., Kim, K. Il, and Lim, S., "Motion Control of Biped Robots Using a Single-Chip Drive", IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2461–2465 (2003).
  • [7] Chevallereau, C., Bessonnet, G., Abba, G., and Aoustin, Y., "Bipedal Robots : Modeling, Design and Walking Synthesis", ISTE, London, UK, (2009).
  • [8] Dollar, A. M. and Herr, H., "Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art", IEEE Transactions On Robotics, 24 (1): 144–158 (2008).
  • [9] Ji, Z. and Manna, Y., "Synthesis of a pattern generation mechanism for gait rehabilitation", Journal Of Medical Devices, Transactions Of The ASME, 2 (3): (2008).
  • [10] Dillmann, R., Albiez, J., Gaßmann, B., Kerscher, T., and Zöllner, M., "Biologically inspired walking machines: Design, control and perception", Philosophical Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 365 (1850): 133–151 (2007).
  • [11] Pfeiffer, F. and Inoue, H., "Walking: Technology and biology", Philosophical Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 365 (1850): 3–9 (2007).
  • [12] Kirtley, C., "Clinical Gait Analysis: Theory and Practice.", 1. Ed., Elsevier Churchill Livingstone, London, 316 (2006).
  • [13] Popovic, M. B., Goswami, A., and Herr, H., "Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications", The International Journal Of Robotics Research, 24 (12): 1013–1032 (2005).
  • [14] Jung, W. C. and Lee, J. K., "Treadmill-to-overground mapping of marker trajectory for treadmill-based continuous gait analysis", Sensors, 21 (3): 1–13 (2021).
  • [15] Nagymáté, G. and Kiss, R. M., "Affordable gait analysis using augmented reality markers", PLoS ONE, 14 (2): (2019).
  • [16] Haque, M. R., Imtiaz, M. H., Kwak, S. T., Sazonov, E., Chang, Y. H., and Shen, X., "A lightweight exoskeleton-based portable gait data collection system†", Sensors, 21 (3): 1–17 (2021).
  • [17] Cruse, H., Kindermann, T., Schumm, M., Dean, J., and Schmitz, J., "Walknet - A biologically inspired network to control six-legged walking", Neural Networks, 11 (7–8): 1435–1447 (1998).
  • [18] Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Aral, H., Koyachi, N., and Tanie, K., "Planning walking patterns for a biped robot", IEEE Transactions On Robotics And Automation, 17 (3): 280–289 (2001).
  • [19] Zoss, A. and Kazerooni, H., "Design of an electrically actuated lower extremity exoskeleton", Advanced Robotics, 20 (9): 967–988 (2006).
  • [20] Tzafestas, S., Raibert, M., and Tzafestas, C., "Robust sliding-mode control applied to a 5-link biped robot", Journal Of Intelligent And Robotic Systems: Theory And Applications, 15 (1): 67–133 (1996).
  • [21] Pournazhdi, A. B., Mirzaei, M., and Ghiasi, A. R., "Dynamic Modeling and Sliding Mode Control for Fast Walking of Seven-Link Biped Robot", 2nd International Conference on Control, Instrumentation and Automation (ICCIA), Shiraz, Iran, 1012–1017 (2011).
  • [22] Onn, N., Hussein, M., Howe, C., Tang, H., Zain, M. Z., Mohamad, M., and Ying, L. W., "Motion Control of Seven-Link Human Bipedal Model", 14th International Conference on Robotics, Control and Manufacturing Technology(ROCOM’14), 15–22 (2014).
  • [23] Paparisabet, M. A., Dehghani, R., and Ahmadi, A. R., "Knee and torso kinematics in generation of optimum gait pattern based on human-like motion for a seven-link biped robot", Multibody System Dynamics, 47 (2): 117–136 (2019).
  • [24] Pai, Y. C. and Iqbal, K., "Simulated movement termination for balance recovery: Can movement strategies be sought to maintain stability in the presence of slipping or forced sliding?", Journal Of Biomechanics, 32 (8): 779–786 (1999).
  • [25] Pai, Y. C., Maki, B. E., Iqbal, K., McIlroy, W. E., and Perry, S. D., "Thresholds for step initiation induced by support-surface translation: A dynamic center-of-mass model provides much better prediction than a static model", Journal Of Biomechanics, 33 (3): 387–392 (2000).
  • [26] Pai, Y. C. and Patton, J., "Center of mass velocity-position predictions for balance control", Journal Of Biomechanics, 30 (4): 347–354 (1997).
  • [27] Mu, X. and Wu, Q., "Development of a complete dynamic model of a planar five-link biped and sliding mode control of its locomotion during the double support phase", International Journal Of Control, 77 (8): 789–799 (2004).
  • [28] Ha, S., Han, Y., and Hahn, H., "Adaptive gait pattern generation of biped robot based on human’s gait pattern analysis", International Journal Of Mechanical Systems Science And Engineering, 1 (2): 80–85 (2007).
  • [29] Hemami, H. and Farnsworth, R. L., "Postural and Gait Stability of a Planar Five Link Biped by Simulation", IEEE Transactions On Automatic Control, 22 (3): 452–458 (1977).
  • [30] Miller, D. I. ; Nelson, R. C., "Biomechanics of Sport", Lea And Febiger, Philadelphia, (1973).
  • [31] Plagenhoef, S., "The Patterns of Human Motion", Prentice-Hall, Englewood Clifis, N.J, (1971).
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Fatih Cellek 0000-0002-9652-9931

Barış Kalaycıoğlu 0000-0002-1295-3816

Publication Date October 1, 2022
Submission Date March 23, 2021
Published in Issue Year 2022 Volume: 25 Issue: 3

Cite

APA Cellek, F., & Kalaycıoğlu, B. (2022). Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure as an Instantaneous Center of Rotation. Politeknik Dergisi, 25(3), 1123-1132. https://doi.org/10.2339/politeknik.901642
AMA Cellek F, Kalaycıoğlu B. Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure as an Instantaneous Center of Rotation. Politeknik Dergisi. October 2022;25(3):1123-1132. doi:10.2339/politeknik.901642
Chicago Cellek, Fatih, and Barış Kalaycıoğlu. “Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure As an Instantaneous Center of Rotation”. Politeknik Dergisi 25, no. 3 (October 2022): 1123-32. https://doi.org/10.2339/politeknik.901642.
EndNote Cellek F, Kalaycıoğlu B (October 1, 2022) Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure as an Instantaneous Center of Rotation. Politeknik Dergisi 25 3 1123–1132.
IEEE F. Cellek and B. Kalaycıoğlu, “Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure as an Instantaneous Center of Rotation”, Politeknik Dergisi, vol. 25, no. 3, pp. 1123–1132, 2022, doi: 10.2339/politeknik.901642.
ISNAD Cellek, Fatih - Kalaycıoğlu, Barış. “Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure As an Instantaneous Center of Rotation”. Politeknik Dergisi 25/3 (October 2022), 1123-1132. https://doi.org/10.2339/politeknik.901642.
JAMA Cellek F, Kalaycıoğlu B. Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure as an Instantaneous Center of Rotation. Politeknik Dergisi. 2022;25:1123–1132.
MLA Cellek, Fatih and Barış Kalaycıoğlu. “Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure As an Instantaneous Center of Rotation”. Politeknik Dergisi, vol. 25, no. 3, 2022, pp. 1123-32, doi:10.2339/politeknik.901642.
Vancouver Cellek F, Kalaycıoğlu B. Inverse Dynamics of Bipedal Gait: The Assumption of the Center of Pressure as an Instantaneous Center of Rotation. Politeknik Dergisi. 2022;25(3):1123-32.