Research Article
BibTex RIS Cite

Hot corrosion behavior of CoCrFeNiAl HEA produced by powder metallurgy in NaCl molten salt

Year 2022, Volume: 25 Issue: 3, 1243 - 1249, 01.10.2022
https://doi.org/10.2339/politeknik.948461

Abstract

The present work reports the hot corrosion behavior of equimolar CoCrFeNiAl high entropy alloy (HEA) produced by powder metallurgy. The hot corrosion behavior of the HEA was characterized in severe conditions involving NaCl molten salt environment and cyclic mode. The mass gain of CoCrFeNiAl HEA after being hot corroded at 850°C for 120 h was about 2.2 mg/cm2. After 120 h of hot corrosion at 850°C, XRD analysis result revealed that the constituent phases of the scale formed on CoCrFeNiAl HEA were Al2O3, Fe2O3, Cr2O3, NiO and NiCr2O4. The corrosion scale mainly consisted of Cr2O3, and underneath this layer was dominated by a discontinuous thin layer of Al2O3. The role of NaCl on the hot corrosion mechanism was also discussed.

References

  • [1] Yang S., Zhang Y., Yan X., Zhou H., Pi J. and Zhu D., ‘‘Deformation twins and interface characteristics of nano-Al2O3 reinforced Al0.4FeCrCo1.5NiTi0.3 high entropy alloy composites’’, Materials Chemistry and Physics, 210: 240-244, (2018).
  • [2] Avila-Rubio M.A., Baldenebro-Lopez J.A., Soto-Rojo R., Ceballos-Mendivil L.G., Carreño-Gallardo., Garza-Montes-de-Oca N.F. and Baldenebro-Lopez F.J., ‘‘Effect of Mo and Ti on the microstructure and microhardness in AlCoFeNiMoTi high entropy alloys prepared by mechanical alloying and conventional sintering’’, Advanced Powder Technology, 31:1693-1701, (2020).
  • [3] Ren J., Mahajan C., Liu L., Follette D., Chen W. and Mukherjee S., ‘‘Corrosion Behavior of Selectively Laser Melted CoCrFeMnNi High Entropy Alloy’’, Metals, 9: 1-12, (2019).
  • [4] Jia B., Liu X., Wang H., Wu Y. and Lu Z., ‘‘Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion’’, Science China Technological Sciences, 61: 179-183, (2018).
  • [5] Choua H-P., Changa Y-S., Chenb S-K. and Yeh J-W., ‘‘Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys’’, Materials Science and Engineering B, 163: 184-189, (2009).
  • [6] Zhao R.-F., Ren B., Cai B., Liu Z.-X., Zhang G.-P. and Zhang J.-J., ‘‘Corrosion behavior of CoxCrCuFeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution’’, Results in Physics, 15: 102667, (2019).
  • [7] Wang Y., Zhang M., Jin J., Gong P. and Wang X., ‘‘Oxidation behavior of CoCrFeMnNi high entropy alloy after plastic deformation’’, Corrosion Science, 163 108285, (2020).
  • [8] Garlapati M.M., Vaidya M., Karati A., Mishra S., Bhattacharya R. and Murty B.S., ‘‘Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures’’, Advanced Powder Technology, 31: 1985-1993, (2020).
  • [9] Ji W., Fu Z., Wang W., Wang H., Zhang J., Wang Y. and Zhang F., ‘‘Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy’’, Journal of Alloys and Compounds, 589 61-66, (2014).
  • [10] Melia M.A., Carroll J.D., Whetten S.R., Esmaeely S.N., Locke (Warner) J., White E., Anderson I., Chandross M., Michael J.R., Argibay N., Schindelholz E.J. and Kustas A.B., ‘‘Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy’’, Additive Manufacturing, 29: 100833, (2019).
  • [11] Qiu X.W., ‘‘Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy’’, Journal of Alloys and Compounds, 555: 246-249, (2013).
  • [12] Garip Y., ‘‘Investigation of isothermal oxidation performance of TiAl alloys sintered by different processing methods’’, Intermetallics, 127: 106985, (2020).
  • [13] Garip Y., Garip Z. and Ozdemir O., ‘‘Prediction modeling of Type-I hot corrosion performance of Ti-Al-Mo-X (X=Cr, Mn) alloys in (Na, K)2SO4 molten salt mixture environment at 900°C’’, Journal of Alloys and Compounds, 843: 156010, (2020).
  • [14] Garip Y. and Ozdemir O., ‘‘Comparative study of the oxidation and hot corrosion behaviors of TiAl-Cr intermetallic alloy produced by electric current activated sintering’’, Journal of Alloys and Compounds, 780: 364-377, (2019).
  • [15] Garip Y. and Ozdemir O., ‘‘A study of the cycle oxidation behavior of the Cr/Mn/Mo alloyed Ti-48Al-based intermetallics prepared by ECAS’’, Journal of Alloys and Compounds, 818: 152818, (2020).
  • [16] Garip Y. and Ozdemir O., ‘‘Corrosion behavior of the resistance sintered TiAl based intermetallics induced by two different molten salt mixture’’, Corrosion Science, 174: 108819, (2020).
  • [17] Orru` R., Licheri R.,. Locci A.M., Cincotti A. and Cao G., ‘‘Consolidation/synthesis of materials by electric current activated/assisted sintering’’, Materials Science and Engineering R, 63: 127-287, (2009).
  • [18] Tong C.J., Chen Y.L., Chen S.K., Yeh J.W., Shun T.T., Tsau C.H., Lin S.J. and Chang S.Y., ‘‘Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements’’, Metallurgical And Materials Transactions A, 36A: 881-893, (2005).
  • [19] Praveen S., Murty B.S. and Kottada R.S., ‘‘Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys’’, Materials Science and Engineering A, 534: 83-89, (2012).
  • [20] Sidhu T.S., Agrawal R.D. and Prakash S., ‘‘Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings-a review’’, Surface and Coatings Technology, 198: 441-446, (2005).
  • [21] Mohanty B.P. and Shores D.A., ‘‘Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part I: Experimental studies’’, Corrosion Science, 46: 2893-2907, (2004).
  • [22] Qiao Y., Kong J. and Guo X., ‘‘Hot corrosion phenomena of Nb-Ti-Si based alloy and its silicide coating induced by different corrosive environments at 900 °C’’, Ceramics International, 44: 7978-7990, (2018).

Toz metalurjisi ile üretilen CoCrFeNiAl YEA'nın NaCl erimiş tuz içindeki sıcak korozyon davranışı

Year 2022, Volume: 25 Issue: 3, 1243 - 1249, 01.10.2022
https://doi.org/10.2339/politeknik.948461

Abstract

Mevcut çalışma, toz metalurjisi ile üretilen eşmolar CoCrFeNiAl yüksek entropili alaşımının (YEA) sıcak korozyon davranışını ele almaktadır. YEA’nın sıcak korozyon davranışı, NaCl erimiş tuz ortamı ve döngüsel modu içeren zorlu koşullarda karakterize edilmiştir. CoCrFeNiAl YEA’nın 850°C’de 120 saat sıcak korozyona maruz kalmasının ardından kütle kazancı yaklaşık 2.2 mg/cm2 idi. 850°C’de 120 saat sıcak korozyon sonrasında, XRD analiz sonucu CoCrFeNiAl YEA üzerinde oluşan skalayı oluşturan fazların Al2O3, Fe2O3, Cr2O3, NiO ve NiCr2O4 olduğunu göstermiştir. Korozyon skalası esas olarak Cr2O3’ten oluşuyordu ve bu tabakanın altında, süreksiz ince bir Al2O3, tabakası baskındı. Ayrıca NaCl’nin sıcak korozyon mekanizması üzerindeki rolü de tartışılmıştır.

References

  • [1] Yang S., Zhang Y., Yan X., Zhou H., Pi J. and Zhu D., ‘‘Deformation twins and interface characteristics of nano-Al2O3 reinforced Al0.4FeCrCo1.5NiTi0.3 high entropy alloy composites’’, Materials Chemistry and Physics, 210: 240-244, (2018).
  • [2] Avila-Rubio M.A., Baldenebro-Lopez J.A., Soto-Rojo R., Ceballos-Mendivil L.G., Carreño-Gallardo., Garza-Montes-de-Oca N.F. and Baldenebro-Lopez F.J., ‘‘Effect of Mo and Ti on the microstructure and microhardness in AlCoFeNiMoTi high entropy alloys prepared by mechanical alloying and conventional sintering’’, Advanced Powder Technology, 31:1693-1701, (2020).
  • [3] Ren J., Mahajan C., Liu L., Follette D., Chen W. and Mukherjee S., ‘‘Corrosion Behavior of Selectively Laser Melted CoCrFeMnNi High Entropy Alloy’’, Metals, 9: 1-12, (2019).
  • [4] Jia B., Liu X., Wang H., Wu Y. and Lu Z., ‘‘Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion’’, Science China Technological Sciences, 61: 179-183, (2018).
  • [5] Choua H-P., Changa Y-S., Chenb S-K. and Yeh J-W., ‘‘Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys’’, Materials Science and Engineering B, 163: 184-189, (2009).
  • [6] Zhao R.-F., Ren B., Cai B., Liu Z.-X., Zhang G.-P. and Zhang J.-J., ‘‘Corrosion behavior of CoxCrCuFeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution’’, Results in Physics, 15: 102667, (2019).
  • [7] Wang Y., Zhang M., Jin J., Gong P. and Wang X., ‘‘Oxidation behavior of CoCrFeMnNi high entropy alloy after plastic deformation’’, Corrosion Science, 163 108285, (2020).
  • [8] Garlapati M.M., Vaidya M., Karati A., Mishra S., Bhattacharya R. and Murty B.S., ‘‘Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures’’, Advanced Powder Technology, 31: 1985-1993, (2020).
  • [9] Ji W., Fu Z., Wang W., Wang H., Zhang J., Wang Y. and Zhang F., ‘‘Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy’’, Journal of Alloys and Compounds, 589 61-66, (2014).
  • [10] Melia M.A., Carroll J.D., Whetten S.R., Esmaeely S.N., Locke (Warner) J., White E., Anderson I., Chandross M., Michael J.R., Argibay N., Schindelholz E.J. and Kustas A.B., ‘‘Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy’’, Additive Manufacturing, 29: 100833, (2019).
  • [11] Qiu X.W., ‘‘Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy’’, Journal of Alloys and Compounds, 555: 246-249, (2013).
  • [12] Garip Y., ‘‘Investigation of isothermal oxidation performance of TiAl alloys sintered by different processing methods’’, Intermetallics, 127: 106985, (2020).
  • [13] Garip Y., Garip Z. and Ozdemir O., ‘‘Prediction modeling of Type-I hot corrosion performance of Ti-Al-Mo-X (X=Cr, Mn) alloys in (Na, K)2SO4 molten salt mixture environment at 900°C’’, Journal of Alloys and Compounds, 843: 156010, (2020).
  • [14] Garip Y. and Ozdemir O., ‘‘Comparative study of the oxidation and hot corrosion behaviors of TiAl-Cr intermetallic alloy produced by electric current activated sintering’’, Journal of Alloys and Compounds, 780: 364-377, (2019).
  • [15] Garip Y. and Ozdemir O., ‘‘A study of the cycle oxidation behavior of the Cr/Mn/Mo alloyed Ti-48Al-based intermetallics prepared by ECAS’’, Journal of Alloys and Compounds, 818: 152818, (2020).
  • [16] Garip Y. and Ozdemir O., ‘‘Corrosion behavior of the resistance sintered TiAl based intermetallics induced by two different molten salt mixture’’, Corrosion Science, 174: 108819, (2020).
  • [17] Orru` R., Licheri R.,. Locci A.M., Cincotti A. and Cao G., ‘‘Consolidation/synthesis of materials by electric current activated/assisted sintering’’, Materials Science and Engineering R, 63: 127-287, (2009).
  • [18] Tong C.J., Chen Y.L., Chen S.K., Yeh J.W., Shun T.T., Tsau C.H., Lin S.J. and Chang S.Y., ‘‘Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements’’, Metallurgical And Materials Transactions A, 36A: 881-893, (2005).
  • [19] Praveen S., Murty B.S. and Kottada R.S., ‘‘Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys’’, Materials Science and Engineering A, 534: 83-89, (2012).
  • [20] Sidhu T.S., Agrawal R.D. and Prakash S., ‘‘Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings-a review’’, Surface and Coatings Technology, 198: 441-446, (2005).
  • [21] Mohanty B.P. and Shores D.A., ‘‘Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part I: Experimental studies’’, Corrosion Science, 46: 2893-2907, (2004).
  • [22] Qiao Y., Kong J. and Guo X., ‘‘Hot corrosion phenomena of Nb-Ti-Si based alloy and its silicide coating induced by different corrosive environments at 900 °C’’, Ceramics International, 44: 7978-7990, (2018).
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Yiğit Garip 0000-0001-6731-5507

Publication Date October 1, 2022
Submission Date June 5, 2021
Published in Issue Year 2022 Volume: 25 Issue: 3

Cite

APA Garip, Y. (2022). Hot corrosion behavior of CoCrFeNiAl HEA produced by powder metallurgy in NaCl molten salt. Politeknik Dergisi, 25(3), 1243-1249. https://doi.org/10.2339/politeknik.948461
AMA Garip Y. Hot corrosion behavior of CoCrFeNiAl HEA produced by powder metallurgy in NaCl molten salt. Politeknik Dergisi. October 2022;25(3):1243-1249. doi:10.2339/politeknik.948461
Chicago Garip, Yiğit. “Hot Corrosion Behavior of CoCrFeNiAl HEA Produced by Powder Metallurgy in NaCl Molten Salt”. Politeknik Dergisi 25, no. 3 (October 2022): 1243-49. https://doi.org/10.2339/politeknik.948461.
EndNote Garip Y (October 1, 2022) Hot corrosion behavior of CoCrFeNiAl HEA produced by powder metallurgy in NaCl molten salt. Politeknik Dergisi 25 3 1243–1249.
IEEE Y. Garip, “Hot corrosion behavior of CoCrFeNiAl HEA produced by powder metallurgy in NaCl molten salt”, Politeknik Dergisi, vol. 25, no. 3, pp. 1243–1249, 2022, doi: 10.2339/politeknik.948461.
ISNAD Garip, Yiğit. “Hot Corrosion Behavior of CoCrFeNiAl HEA Produced by Powder Metallurgy in NaCl Molten Salt”. Politeknik Dergisi 25/3 (October 2022), 1243-1249. https://doi.org/10.2339/politeknik.948461.
JAMA Garip Y. Hot corrosion behavior of CoCrFeNiAl HEA produced by powder metallurgy in NaCl molten salt. Politeknik Dergisi. 2022;25:1243–1249.
MLA Garip, Yiğit. “Hot Corrosion Behavior of CoCrFeNiAl HEA Produced by Powder Metallurgy in NaCl Molten Salt”. Politeknik Dergisi, vol. 25, no. 3, 2022, pp. 1243-9, doi:10.2339/politeknik.948461.
Vancouver Garip Y. Hot corrosion behavior of CoCrFeNiAl HEA produced by powder metallurgy in NaCl molten salt. Politeknik Dergisi. 2022;25(3):1243-9.