Research Article
BibTex RIS Cite

Pazu Kası Lifinin Dinamik Kuvvet Altındaki Gerilme-Gerinme Davranışı: Bir Ön Kol Bükme Egzersizi Analizi

Year 2022, Volume: 25 Issue: 4, 1777 - 1783, 16.12.2022
https://doi.org/10.2339/politeknik.1025328

Abstract

Dayanıklılık egzersizlerinin en önemli özelliklerinden biri setler arasında egzersiz ağırlığının artırılmasıdır. Kaslardaki kasılma-kuvvet ilişkisi sayesinde daha yüksek bir kasılma kuvveti elde edilerek kas gelişiminin artırılması amaçlanmaktadır. Önceki çalışmalarda genellikle maksimum yük altındaki kas davranışının incelendiği görülmüştür. Ancak egzersiz ağırlığının artırılması ile kas kasılması arasındaki ilişki tam olarak incelenmemiştir. Bu çalışmada iki farklı ağırlıkla (5kg ve 10kg) yapılan biceps curl egzersizi esnasında meydana gelen biceps brachii kas kuvveti hesaplanmıştır. Daha sonra bir sonlu elemanlar modeli oluşturularak egzersizler esnasında biceps brachii kas lifinde meydana gelen mekanik değişimler incelenmiştir. Sonuçlara bakıldığında egzersiz ağırlığı ile kas kuvveti arasında doğrusal bir ilişki olmadığı görülmüştür. Ağırlığın iki katına çıktığı (%100) durumda maksimum kas kuvveti ve deformasyonun sırasıyla %83.13 ve %84.92 oranında arttığı görülmüştür. Elde edilen sonuçlar egzersizler esnasında aşırı ağırlık artırmanın kas gelişimine beklenildiği kadar fayda sağlamayacağını göstermektedir.  

Supporting Institution

Sakarya Uygulamalı Bilimler Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2021-01-04-055

References

  • [1] Pandy M.G. and Barr R.E., “Biomechanics of the musculoskeletal system”, Standard Handbook of Biomedical Engineering & Design, (2004).
  • [2] Nordin M. and Frankel V., “Basic Biomechanics of the Musculoskeletal System”, Journal of Pediatric Orthopaedics, 11(788), (1991).
  • [3] Huxley A.F., “Muscular contraction”, The Journal of Physiology, 243:1–43, (1974).
  • [4] Huxley H.E., “The Mechanism of Muscular Contraction”, Science, 164:1356–1366, (1969).
  • [5] Hatze H., “A myocybernetic control model of skeletal muscle”, Biological Cybernetics, 25:103–119, (1977).
  • [6] Riek S., Chapman A.E. and Milner T., “A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury”, Clinical Biomechanics, 14:477–483, (1999).
  • [7] Stojanovic B., Kojic M., Rosic M., Tsui C.P. and Tang C.Y., “An extension of Hill's three-component model to include different fibre types in finite element modelling of muscle”, International Journal for Numerical Methods in Engineering, 71:801–817, (2007).
  • [8] Tang C.Y., Tsui C.P., Stojanovic B. and Kojic M., “Finite element modelling of skeletal muscles coupled with fatigue”, International Journal of Mechanical Sciences, 49:1179–1191, (2007).
  • [9] Wittek A., Kajzer J. and Haug E., “Hill-type Muscle Model for Analysis of Mechanical Effect of Muscle Tension on the Human Body Response in a Car Collision Using an Explicit Finite Element Code”, JSME International Journal Series A Solid Mechanics and Material Engineering, 43:8–18, (2000).
  • [10] Siebert T., Stutzig N. and Rode C., “A hill-type muscle model expansion accounting for effects of varying transverse muscle load”, Journal of Biomechanics, 66:57–62, (2018).
  • [11] Coskun Z., Celik T. and Kisioglu Y., “Comparision of the Stress Distribution Between High- Heeled and Flat Shoes on The First Metatarsal Bone”, Journal of Polytechnic, 24(3):1303–1308, (2021).
  • [12] Hall W.S., “Boundary element method”, In The boundary element method, Springer, Dordrecht, (1994).
  • [13] Teran J., Blemker S., Hing V.N.T. and Fedkiw R., “Finite volume methods for the simulation of skeletal muscle”, Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (2003).
  • [14] Kojic M., Mijailovic S. and Zdravkovic N., “Modelling of muscle behaviour by the finite element method using Hill's three-element model”, International Journal for Numerical Methods in Engineering, 43:941–953, (1998).
  • [15] Oomens C.W., Maenhout M., van Oijen C.H., Drost M.R. and Baaijens F.P., “Finite element modelling of contracting skeletal muscle”, Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 358:1453–1460, (2003).
  • [16] Yucesoy C.A., Koopman B.H.F.J.M., Huijing P.A. and Grootenboer H.J., “Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model”, Journal of Biomechanics, 35:1253–1262, (2002).
  • [17] Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L. and Rosen J.M., “An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures”, IEEE Transactions on Biomedical Engineering, 37(8): 757–767, (1990).
  • [18] Chao E.Y., Lynch J.D. and Vanderploeg M.J., “Simulation and animation of musculoskeletal joint system”, Journal of Biomechanical Engineering, 115(4B): 562–568, (1993).
  • [19] Johansson T., Meier P. and Blickhan R., “A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles”, Journal of Theoretical Biology, 206:131–149, (2000).
  • [20] Bayraktar H.H., Morgan E.F., Niebur G.L., Morris G.E., Wong E.K. and Keaveny T.M., “Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue”, Journal of Biomechanics, 37(1): 27–35, (2004).
  • [21] Bourne B.C. and van der Meulen M.C., “Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation”, Journal of Biomechanics, 37(5): 613–621, (2004).
  • [22] Teran J., Sifakis E., Blemker S.S., Ng-Thow-Hing V., Lau C. and Fedkiw R., “Creating and Simulating Skeletal Muscle from the Visible Human Data Set”, IEEE Transactions on Visualization and Computer Graphics, 11:317–328, (2005).
  • [23] Blemker S.S., Pinsky P.M., and Delp S.L., “A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii”, Journal of biomechanics, 38(4): 657–665, (2005).
  • [24] Lu Y.T., Zhu H.X., Richmond S. and Middleton J., “A visco-hyperelastic model for skeletal muscle tissue under high strain rates”, Journal of Biomechanics, 43:2629–2632, (2010).
  • [25] Silva M.T., Pereira A.F. and Martins J.M., “An efficient muscle fatigue model for forward and inverse dynamic analysis of human movements”, Procedia IUTAM, 2:262–274, (2011).
  • [26] Żuk M., Syczewska M. and Pezowicz C., “Influence of Uncertainty in Selected Musculoskeletal Model Parameters on Muscle Forces Estimated in Inverse Dynamics-Based Static Optimization and Hybrid Approach”, Journal of Biomechanical Engineering, (2018).
  • [27] Kuravi R., Leichsenring K., Böl M. and Ehret A.E., “3D finite element models from serial section histology of skeletal muscle tissue – The role of micro-architecture on mechanical behaviour”, Journal of the Mechanical Behavior of Biomedical Materials, 113:104109, (2021).
  • [28] Winter D.A., “Biomechanics and motor control of human movement”, John Wiley & Sons, Canada, (2009).
  • [29] Winters J.M. and Woo S.L.Y., “Multiple muscle systems: biomechanics and movement organization”, Springer-Verlag, New York, (2011).
  • [30] Slaughter W.S., “The linearized theory of elasticity”, Springer-Verlag, New York, (2002).
  • [31] Nolte K., Krüger P.E. and Schalk Els P., “Three dimensional musculoskeletal modelling of the seated biceps curl resistance training exercise”, Sports biomechanics, 10(02): 146–160, (2011).

Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise

Year 2022, Volume: 25 Issue: 4, 1777 - 1783, 16.12.2022
https://doi.org/10.2339/politeknik.1025328

Abstract

One of the most important features of endurance training was to increase the weight of the dumbbells between sets. According to the relationship of the contractile force in the muscles, the porpuse was to increase muscle growth by gaining more contractile force. Previous studies had generally examined muscle behavior under maximum force. However, the relationship between increased dumbbell weight and muscle contraction was not fully investigated. The aim of this study was to investigate the mechanical behaviors resulting from the application of dynamic forces that occur during the dumbbell curl exercise on muscle fibers. In this study, biceps brachii muscle force during biceps curl exercise performed with two different weights (5kg and 10kg) was calculated. Then, a finite element model was developed and mechanical behaviors in the biceps muscle fiber during exercise were investigated. It was achieved that there was no linear correlation between dumbbell weight and muscle force. It was observed that when dumbbell weights were doubled (100%), the maximum muscle force and deformation increased by 83.13% and 84.92%, respectively. The results showed that increasing excessive weight during exercises will not be as beneficial for muscle development as expected.

Project Number

2021-01-04-055

References

  • [1] Pandy M.G. and Barr R.E., “Biomechanics of the musculoskeletal system”, Standard Handbook of Biomedical Engineering & Design, (2004).
  • [2] Nordin M. and Frankel V., “Basic Biomechanics of the Musculoskeletal System”, Journal of Pediatric Orthopaedics, 11(788), (1991).
  • [3] Huxley A.F., “Muscular contraction”, The Journal of Physiology, 243:1–43, (1974).
  • [4] Huxley H.E., “The Mechanism of Muscular Contraction”, Science, 164:1356–1366, (1969).
  • [5] Hatze H., “A myocybernetic control model of skeletal muscle”, Biological Cybernetics, 25:103–119, (1977).
  • [6] Riek S., Chapman A.E. and Milner T., “A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury”, Clinical Biomechanics, 14:477–483, (1999).
  • [7] Stojanovic B., Kojic M., Rosic M., Tsui C.P. and Tang C.Y., “An extension of Hill's three-component model to include different fibre types in finite element modelling of muscle”, International Journal for Numerical Methods in Engineering, 71:801–817, (2007).
  • [8] Tang C.Y., Tsui C.P., Stojanovic B. and Kojic M., “Finite element modelling of skeletal muscles coupled with fatigue”, International Journal of Mechanical Sciences, 49:1179–1191, (2007).
  • [9] Wittek A., Kajzer J. and Haug E., “Hill-type Muscle Model for Analysis of Mechanical Effect of Muscle Tension on the Human Body Response in a Car Collision Using an Explicit Finite Element Code”, JSME International Journal Series A Solid Mechanics and Material Engineering, 43:8–18, (2000).
  • [10] Siebert T., Stutzig N. and Rode C., “A hill-type muscle model expansion accounting for effects of varying transverse muscle load”, Journal of Biomechanics, 66:57–62, (2018).
  • [11] Coskun Z., Celik T. and Kisioglu Y., “Comparision of the Stress Distribution Between High- Heeled and Flat Shoes on The First Metatarsal Bone”, Journal of Polytechnic, 24(3):1303–1308, (2021).
  • [12] Hall W.S., “Boundary element method”, In The boundary element method, Springer, Dordrecht, (1994).
  • [13] Teran J., Blemker S., Hing V.N.T. and Fedkiw R., “Finite volume methods for the simulation of skeletal muscle”, Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, (2003).
  • [14] Kojic M., Mijailovic S. and Zdravkovic N., “Modelling of muscle behaviour by the finite element method using Hill's three-element model”, International Journal for Numerical Methods in Engineering, 43:941–953, (1998).
  • [15] Oomens C.W., Maenhout M., van Oijen C.H., Drost M.R. and Baaijens F.P., “Finite element modelling of contracting skeletal muscle”, Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 358:1453–1460, (2003).
  • [16] Yucesoy C.A., Koopman B.H.F.J.M., Huijing P.A. and Grootenboer H.J., “Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model”, Journal of Biomechanics, 35:1253–1262, (2002).
  • [17] Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L. and Rosen J.M., “An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures”, IEEE Transactions on Biomedical Engineering, 37(8): 757–767, (1990).
  • [18] Chao E.Y., Lynch J.D. and Vanderploeg M.J., “Simulation and animation of musculoskeletal joint system”, Journal of Biomechanical Engineering, 115(4B): 562–568, (1993).
  • [19] Johansson T., Meier P. and Blickhan R., “A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles”, Journal of Theoretical Biology, 206:131–149, (2000).
  • [20] Bayraktar H.H., Morgan E.F., Niebur G.L., Morris G.E., Wong E.K. and Keaveny T.M., “Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue”, Journal of Biomechanics, 37(1): 27–35, (2004).
  • [21] Bourne B.C. and van der Meulen M.C., “Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation”, Journal of Biomechanics, 37(5): 613–621, (2004).
  • [22] Teran J., Sifakis E., Blemker S.S., Ng-Thow-Hing V., Lau C. and Fedkiw R., “Creating and Simulating Skeletal Muscle from the Visible Human Data Set”, IEEE Transactions on Visualization and Computer Graphics, 11:317–328, (2005).
  • [23] Blemker S.S., Pinsky P.M., and Delp S.L., “A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii”, Journal of biomechanics, 38(4): 657–665, (2005).
  • [24] Lu Y.T., Zhu H.X., Richmond S. and Middleton J., “A visco-hyperelastic model for skeletal muscle tissue under high strain rates”, Journal of Biomechanics, 43:2629–2632, (2010).
  • [25] Silva M.T., Pereira A.F. and Martins J.M., “An efficient muscle fatigue model for forward and inverse dynamic analysis of human movements”, Procedia IUTAM, 2:262–274, (2011).
  • [26] Żuk M., Syczewska M. and Pezowicz C., “Influence of Uncertainty in Selected Musculoskeletal Model Parameters on Muscle Forces Estimated in Inverse Dynamics-Based Static Optimization and Hybrid Approach”, Journal of Biomechanical Engineering, (2018).
  • [27] Kuravi R., Leichsenring K., Böl M. and Ehret A.E., “3D finite element models from serial section histology of skeletal muscle tissue – The role of micro-architecture on mechanical behaviour”, Journal of the Mechanical Behavior of Biomedical Materials, 113:104109, (2021).
  • [28] Winter D.A., “Biomechanics and motor control of human movement”, John Wiley & Sons, Canada, (2009).
  • [29] Winters J.M. and Woo S.L.Y., “Multiple muscle systems: biomechanics and movement organization”, Springer-Verlag, New York, (2011).
  • [30] Slaughter W.S., “The linearized theory of elasticity”, Springer-Verlag, New York, (2002).
  • [31] Nolte K., Krüger P.E. and Schalk Els P., “Three dimensional musculoskeletal modelling of the seated biceps curl resistance training exercise”, Sports biomechanics, 10(02): 146–160, (2011).
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Hamid Asadi Dereshgi 0000-0002-8500-6625

Kasım Serbest 0000-0002-0064-4020

Büşra Balık 0000-0001-7388-6605

Sema Nur Sahın 0000-0003-3549-7646

Project Number 2021-01-04-055
Publication Date December 16, 2022
Submission Date November 18, 2021
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Asadi Dereshgi, H., Serbest, K., Balık, B., Sahın, S. N. (2022). Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise. Politeknik Dergisi, 25(4), 1777-1783. https://doi.org/10.2339/politeknik.1025328
AMA Asadi Dereshgi H, Serbest K, Balık B, Sahın SN. Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise. Politeknik Dergisi. December 2022;25(4):1777-1783. doi:10.2339/politeknik.1025328
Chicago Asadi Dereshgi, Hamid, Kasım Serbest, Büşra Balık, and Sema Nur Sahın. “Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise”. Politeknik Dergisi 25, no. 4 (December 2022): 1777-83. https://doi.org/10.2339/politeknik.1025328.
EndNote Asadi Dereshgi H, Serbest K, Balık B, Sahın SN (December 1, 2022) Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise. Politeknik Dergisi 25 4 1777–1783.
IEEE H. Asadi Dereshgi, K. Serbest, B. Balık, and S. N. Sahın, “Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise”, Politeknik Dergisi, vol. 25, no. 4, pp. 1777–1783, 2022, doi: 10.2339/politeknik.1025328.
ISNAD Asadi Dereshgi, Hamid et al. “Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise”. Politeknik Dergisi 25/4 (December 2022), 1777-1783. https://doi.org/10.2339/politeknik.1025328.
JAMA Asadi Dereshgi H, Serbest K, Balık B, Sahın SN. Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise. Politeknik Dergisi. 2022;25:1777–1783.
MLA Asadi Dereshgi, Hamid et al. “Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1777-83, doi:10.2339/politeknik.1025328.
Vancouver Asadi Dereshgi H, Serbest K, Balık B, Sahın SN. Stress-Strain Response of Muscle Fibers in Biceps Brachii under Dynamic Force: An Analysis of Biceps Curl Exercise. Politeknik Dergisi. 2022;25(4):1777-83.