Research Article
BibTex RIS Cite

Açık Kaynak Kodlu SU2 Yazılımı Kullanılarak 155 mm Mühimmat İçin Gerçek ve Simülasyon Aerodinamik Katsayılarının Karşılaştırılması

Year 2022, Volume: 25 Issue: 4, 1835 - 1845, 16.12.2022
https://doi.org/10.2339/politeknik.1133519

Abstract

Bu çalışmada, 155 mm'lik bir mühimmat mermisinin hareket yörüngesi boyunca meydana gelen yoğunluk, enerji, basınç, sıcaklık değişimleri ve sürükleme katsayıları Stanford University Unstructured (SU2) hesaplamalı akış dinamiği yazılımı ile simüle edilmiştir. Simülasyonlarda Navier-Stokes (N-S) akış çözücüsünün operasyonel olarak basitleştirilmiş varyasyonları olan Reynolds-Averaged Navier-Stokes (RANS) denklemleri kullanılmıştır. Hıza dayalı Reynolds sayısı, mevcut simülasyonda 0,7 ila 2,8 arasındaki Mach (M) sayısına göre 1,65x107 ila 6,5x107 arasındaydı. Sürükleme katsayıları 0.7 M'den 2.8 M'ye kadar her Mach 0.3 artışı için ayrı ayrı elde edilmiştir. Mühimmatın geometrik çizimleri için Free Computer-Aided Design (FreeCAD) programı, ağ işlemleri için Geometry Description, Meshing, Solving, and Post-Processing (GMSH) yazılımı ve sıkıştırılabilir sonlu hacim oluşturmak için Shear Stress Transport (SST) türbülans modeli kullanılmıştır. Ayrıca, hücum açısı olarak 0 derece kullanılmıştır. Simülasyonlardan elde edilen aerodinamik katsayı yüzde değişimlerinin tahmini için R2 değerine göre geçerliliği en yüksek olan üstel denklemler oluşturulmuştur. Ayrıca hesaplanan sürükleme katsayıları gerçek değerler ile karşılaştırılmış ve aralarında iyi bir uyum olduğu gözlemlenmiştir.

References

  • [1] Buzan B, Sen G. “The Impact of Military Research and Development Priorities on the Evolution of the Civil Economy in Capitalist States,” Rev Int Stud., 1990;16(4):321-339.
  • [2] Jan TS, Jan CG. “Development of Weapon Systems in Developing Countries: A Case Study of Long Range Strategies in Taiwan,” The Journal of the Operational Research Society, 2000;51(9);1041- 1050. DOI:10.1057/palgrave.jors.2601002
  • [3] Demir KA. “Challenges Of Weapon Systems Software Development,” Journal of Naval Science and Engineering, 2009;5(3):104-116.
  • [4] Bellais R. “Technology and the defense industry: real threats, bad habits, or new (market) opportunities?, ” Journal of Innovation Economics & Management, 2013;59-78.
  • [5] Economon TD, Palacios F, Copeland SR, Lukaczyk TW, Alonso JJ. “Su2: an open-source suite for multi-physics simulation and design,” AIAAJ, 2015.
  • [6] Economon TD, Mudigere D, Bansal G, Heinecke A, Palacios F, Park J, Smelyanskiy M, Alonso JJ, Dubey P. “Performance optimizations for scalable implicit RANS calculations with SU2,” Comput Fluids, 2016;129;146-158.
  • [7] Guan J, Yi W. “Modeling of Dual-Spinning Projectile with Canard and Trajectory Filtering,” Int J Aerospace Eng., 2018; Article ID 1795158.
  • [8] Suvanjumrat C. “Comparison of turbulence models for flow past NACA0015 airfoil using OpenFOAM,” Eng J-Canada, 2017;21(3):207-221.
  • [9] Patel K, Patel S, Patel U, Ahuja AP, “CFD analysis of an Aerofoil,” International Journal of Engineering Research, 2014;3(33):2319-68902347.
  • [10] Shen J, Fan S, Ji Y, Zhu Q, Duan J. “Aerodynamics analysis of a hypersonic electromagnetic gun launched Projectile,” Defence Technology, 2020;16:753-761.
  • [11] Weinatch P. “Prediction of projectile performance, stability and free flight motion using computational fluid dynamics,” Army Research Laboratory, 2003; ARL-TR-3015.
  • [12] Tomasz M, Magier M. “Experimental and numerical analysis of supersonic mortar projectiles,” 30th International Symposium On Ballistics Long Beach, Ca, September 11-15, 2017.
  • [13] Fonte-Boa R, Borges J, Chaves J. “Analysis of external ballistics for a projectile of caliber 155 mm,” Proelium, 2017;7:227-241.
  • [14] Silton SI. “Navier–Stokes Computations for a Spinning Projectile from Subsonic to Supersonic Speeds,” J Spacecraft Rockets, 2005;42(2).
  • [15] Rafeie M, Teymourtash AR. “Aerodynamic and dynamic analyses of three common 4.5 mm-caliber pellets in a transonic flow,” Scı Iran, 2016;23(4):1767-1776.
  • [16] Dali MA, Jaramaz S, Jerković D, Djurdjevac D. “Increasing the Range of Contemporary Artillery Projectiles,” Teh Vjesn, 2019; 26(4):960-969.
  • [17] Economon TD, Palacios F, Alonso JJ, Bansal G, Mudigere D. “Towards high-performance optimizations of the unstructured open-source SU2, Aerospace,” American Institute of Aeronautics and Astronautics, 2015.
  • [18] Gal-Chen T, Somerville RCJ. “On the Use of a Coordinate Transformation for the Solution of the Navier-Stokes Equations,” J COMPUT PHYS, 1975; 17(2):209-228.
  • [19] Menter FR, Kuntz M, Langtry R. “Ten Years of Industrial Experience with the SST Turbulence Model,” Turbulence, Heat and Mass Transfer, 4. 2003.
  • [20] https://www.cfd-online.com/Wiki/Favre averaged _Navier-Stokes_equations Access date:04.01.2021
  • [21] Sadraey M. Aircraft Performance Analysis. VDM Verlag Dr. Müller; 2011
  • [22] https://www.standfairoperations.com/products/special-weapons-and-ammunitions/heavy-arms-ammunition/gun-howitzer-ammunition/155-mm-mke-mod-274-heer-ammunition/
  • [23] Access date:04.01.2021
  • [24] https://www.standfairoperations.com/products/special-weapons-and-ammunitions/heavy-arms-ammunition/gun-howitzer-ammunition/155-mm-mke-mod-274-heer-ammunition/ Access date:04.01.2021.
  • [25] Ko A, Chang K, Sheen DJ, Lee CH, Park Y, Park WS. “Prediction and Analysis of the Aerodynamic Characteristics of a Spinning Projectile Based on Computational Fluid Dynamics,” Int J Aerospace Eng, 2020; Article ID 6043721. DOI:10.1155/2020/6043721
  • [26] Becker JV. “The High Speed Frontier: Case Histories of Four NACA Programs,” 1920-1950 (NASA History Series Book 445), National Aeronautics and Space Administration, 2012; chapter 2, ASIN : B0090SICLW.
  • [27] Tiryaki E. “Calculation of aerodynamic coefficients, stability properties and trajectory of spin-stabilized projectiles,” Ankara University, Graduate School of Natural and Applied Sciences, Master Thesis, 2009.

Comparison of Real and Simulation Aerodynamic Coefficients for 155 mm Ammunition Using Open-Source Code SU2 Software

Year 2022, Volume: 25 Issue: 4, 1835 - 1845, 16.12.2022
https://doi.org/10.2339/politeknik.1133519

Abstract

In this study, density, energy, pressure, temperature changes, and drag coefficients occurring during the trajectory of movement for a 155 mm ammunition shell were simulated with the computational flow dynamics software Stanford University Unstructured (SU2). Reynolds-Averaged Navier-Stokes (RANS) equations, which are operationally simplified variations of the Navier-Stokes (N-S) flow solver, were used in the simulations. The Reynolds number based on the velocity was between 1.65x107 to 6.5x107 according to the Mach (M) number between 0.7 to 2.8 in the present simulation. The drag coefficients from 0.7 M to 2.8 M were obtained separately for each Mach 0.3 increase. The Free Computer-Aided Design (FreeCAD) program was used for geometrical drawings of the ammunition, the Geometry Description, Meshing, Solving, and Post-Processing (GMSH) software for mesh operations, and the Shear Stress Transport (SST) turbulence model to create a compressible finite volume. As well, 0 degrees was used as the angle of attack. For estimation of the aerodynamic coefficient percentage changes obtained from the simulations, exponential equations with the highest validity based on the R2 value were created. In addition, the calculated drag coefficients were compared with the actual values and a good fit was observed between them.

References

  • [1] Buzan B, Sen G. “The Impact of Military Research and Development Priorities on the Evolution of the Civil Economy in Capitalist States,” Rev Int Stud., 1990;16(4):321-339.
  • [2] Jan TS, Jan CG. “Development of Weapon Systems in Developing Countries: A Case Study of Long Range Strategies in Taiwan,” The Journal of the Operational Research Society, 2000;51(9);1041- 1050. DOI:10.1057/palgrave.jors.2601002
  • [3] Demir KA. “Challenges Of Weapon Systems Software Development,” Journal of Naval Science and Engineering, 2009;5(3):104-116.
  • [4] Bellais R. “Technology and the defense industry: real threats, bad habits, or new (market) opportunities?, ” Journal of Innovation Economics & Management, 2013;59-78.
  • [5] Economon TD, Palacios F, Copeland SR, Lukaczyk TW, Alonso JJ. “Su2: an open-source suite for multi-physics simulation and design,” AIAAJ, 2015.
  • [6] Economon TD, Mudigere D, Bansal G, Heinecke A, Palacios F, Park J, Smelyanskiy M, Alonso JJ, Dubey P. “Performance optimizations for scalable implicit RANS calculations with SU2,” Comput Fluids, 2016;129;146-158.
  • [7] Guan J, Yi W. “Modeling of Dual-Spinning Projectile with Canard and Trajectory Filtering,” Int J Aerospace Eng., 2018; Article ID 1795158.
  • [8] Suvanjumrat C. “Comparison of turbulence models for flow past NACA0015 airfoil using OpenFOAM,” Eng J-Canada, 2017;21(3):207-221.
  • [9] Patel K, Patel S, Patel U, Ahuja AP, “CFD analysis of an Aerofoil,” International Journal of Engineering Research, 2014;3(33):2319-68902347.
  • [10] Shen J, Fan S, Ji Y, Zhu Q, Duan J. “Aerodynamics analysis of a hypersonic electromagnetic gun launched Projectile,” Defence Technology, 2020;16:753-761.
  • [11] Weinatch P. “Prediction of projectile performance, stability and free flight motion using computational fluid dynamics,” Army Research Laboratory, 2003; ARL-TR-3015.
  • [12] Tomasz M, Magier M. “Experimental and numerical analysis of supersonic mortar projectiles,” 30th International Symposium On Ballistics Long Beach, Ca, September 11-15, 2017.
  • [13] Fonte-Boa R, Borges J, Chaves J. “Analysis of external ballistics for a projectile of caliber 155 mm,” Proelium, 2017;7:227-241.
  • [14] Silton SI. “Navier–Stokes Computations for a Spinning Projectile from Subsonic to Supersonic Speeds,” J Spacecraft Rockets, 2005;42(2).
  • [15] Rafeie M, Teymourtash AR. “Aerodynamic and dynamic analyses of three common 4.5 mm-caliber pellets in a transonic flow,” Scı Iran, 2016;23(4):1767-1776.
  • [16] Dali MA, Jaramaz S, Jerković D, Djurdjevac D. “Increasing the Range of Contemporary Artillery Projectiles,” Teh Vjesn, 2019; 26(4):960-969.
  • [17] Economon TD, Palacios F, Alonso JJ, Bansal G, Mudigere D. “Towards high-performance optimizations of the unstructured open-source SU2, Aerospace,” American Institute of Aeronautics and Astronautics, 2015.
  • [18] Gal-Chen T, Somerville RCJ. “On the Use of a Coordinate Transformation for the Solution of the Navier-Stokes Equations,” J COMPUT PHYS, 1975; 17(2):209-228.
  • [19] Menter FR, Kuntz M, Langtry R. “Ten Years of Industrial Experience with the SST Turbulence Model,” Turbulence, Heat and Mass Transfer, 4. 2003.
  • [20] https://www.cfd-online.com/Wiki/Favre averaged _Navier-Stokes_equations Access date:04.01.2021
  • [21] Sadraey M. Aircraft Performance Analysis. VDM Verlag Dr. Müller; 2011
  • [22] https://www.standfairoperations.com/products/special-weapons-and-ammunitions/heavy-arms-ammunition/gun-howitzer-ammunition/155-mm-mke-mod-274-heer-ammunition/
  • [23] Access date:04.01.2021
  • [24] https://www.standfairoperations.com/products/special-weapons-and-ammunitions/heavy-arms-ammunition/gun-howitzer-ammunition/155-mm-mke-mod-274-heer-ammunition/ Access date:04.01.2021.
  • [25] Ko A, Chang K, Sheen DJ, Lee CH, Park Y, Park WS. “Prediction and Analysis of the Aerodynamic Characteristics of a Spinning Projectile Based on Computational Fluid Dynamics,” Int J Aerospace Eng, 2020; Article ID 6043721. DOI:10.1155/2020/6043721
  • [26] Becker JV. “The High Speed Frontier: Case Histories of Four NACA Programs,” 1920-1950 (NASA History Series Book 445), National Aeronautics and Space Administration, 2012; chapter 2, ASIN : B0090SICLW.
  • [27] Tiryaki E. “Calculation of aerodynamic coefficients, stability properties and trajectory of spin-stabilized projectiles,” Ankara University, Graduate School of Natural and Applied Sciences, Master Thesis, 2009.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ahmet Ali Seretkaya 0000-0002-9884-445X

Can Çalışkan 0000-0002-6338-2718

Süleyman Neşeli 0000-0003-1553-581X

Publication Date December 16, 2022
Submission Date June 21, 2022
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Seretkaya, A. A., Çalışkan, C., & Neşeli, S. (2022). Comparison of Real and Simulation Aerodynamic Coefficients for 155 mm Ammunition Using Open-Source Code SU2 Software. Politeknik Dergisi, 25(4), 1835-1845. https://doi.org/10.2339/politeknik.1133519
AMA Seretkaya AA, Çalışkan C, Neşeli S. Comparison of Real and Simulation Aerodynamic Coefficients for 155 mm Ammunition Using Open-Source Code SU2 Software. Politeknik Dergisi. December 2022;25(4):1835-1845. doi:10.2339/politeknik.1133519
Chicago Seretkaya, Ahmet Ali, Can Çalışkan, and Süleyman Neşeli. “Comparison of Real and Simulation Aerodynamic Coefficients for 155 Mm Ammunition Using Open-Source Code SU2 Software”. Politeknik Dergisi 25, no. 4 (December 2022): 1835-45. https://doi.org/10.2339/politeknik.1133519.
EndNote Seretkaya AA, Çalışkan C, Neşeli S (December 1, 2022) Comparison of Real and Simulation Aerodynamic Coefficients for 155 mm Ammunition Using Open-Source Code SU2 Software. Politeknik Dergisi 25 4 1835–1845.
IEEE A. A. Seretkaya, C. Çalışkan, and S. Neşeli, “Comparison of Real and Simulation Aerodynamic Coefficients for 155 mm Ammunition Using Open-Source Code SU2 Software”, Politeknik Dergisi, vol. 25, no. 4, pp. 1835–1845, 2022, doi: 10.2339/politeknik.1133519.
ISNAD Seretkaya, Ahmet Ali et al. “Comparison of Real and Simulation Aerodynamic Coefficients for 155 Mm Ammunition Using Open-Source Code SU2 Software”. Politeknik Dergisi 25/4 (December 2022), 1835-1845. https://doi.org/10.2339/politeknik.1133519.
JAMA Seretkaya AA, Çalışkan C, Neşeli S. Comparison of Real and Simulation Aerodynamic Coefficients for 155 mm Ammunition Using Open-Source Code SU2 Software. Politeknik Dergisi. 2022;25:1835–1845.
MLA Seretkaya, Ahmet Ali et al. “Comparison of Real and Simulation Aerodynamic Coefficients for 155 Mm Ammunition Using Open-Source Code SU2 Software”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1835-4, doi:10.2339/politeknik.1133519.
Vancouver Seretkaya AA, Çalışkan C, Neşeli S. Comparison of Real and Simulation Aerodynamic Coefficients for 155 mm Ammunition Using Open-Source Code SU2 Software. Politeknik Dergisi. 2022;25(4):1835-4.