Research Article
BibTex RIS Cite

LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi

Year 2022, Volume: 25 Issue: 4, 1575 - 1585, 16.12.2022
https://doi.org/10.2339/politeknik.798394

Abstract

Bu çalışma; poliolefin plastik sınıfında en fazla atık hacmine sahip olan düşük yoğunluklu polietilen (LDPE) ve ambalajlamada sıkça kullanılan alüminyum içerikli kompozitlerinin (C/LDPE), katma değerli ürünler elde etmek için pirolizi ve elde edilen ürünlerin karakterizasyonunu içermektedir. LDPE ve C/LDPE atıkları, kısa analiz, elementel analiz ve TGA ile incelenmiş; ardından farklı sıcaklık (400-600-800 ℃) ve ısıtma hızlarında (5-10-20 ℃/dk) sabit yataklı reaktörde piroliz edilmiştir. Sonrasında atıklar, zeolit katalizörlüğünde 600 °C sıcaklık ve 20 °C/dk ısıtma hızında piroliz edilerek, katalizörün sıvı ürün üzerindeki etkisi değerlendirilmiştir. Elde edilen sıvı ürünün vaks olarak değerlendirilme potansiyelini belirlemek için, sıvı ürünlerin ve temin edilen ticari vaksların GC-MS, FT-IR ve 1H-NMR analizleri yapılmıştır. Sonuçlara göre, atık C/LDPE’den elde edilen ürün ticari ‘heavy wax’ ile benzerlik göstermektedir.

Supporting Institution

Eskişehir Teknik Üniversitesi, TÜBİTAK

Project Number

19ADP167, 117Y041

References

  • [1] Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J., & Olazar, M., ‘Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor’, J. Anal. Appl. Pyrolysis, 94: 230-237, (2012).
  • [2] Rodríguez, E., Palos, R., Gutiérrez, A., Trueba, D., Arandes, J. M., & Bilbao, J., ‘Towards waste refinery: Co-feeding HDPE pyrolysis waxes with VGO into the catalytic cracking unit’, Energy Convers. Manage., 207, 112554, (2020).
  • [3] Mukherjee, A., Ruj, B., Gupta, P., & Sadhukhan, A. K., ‘A study on pyrolysis of plastic wastes for product recovery and analysis’ Urban Mining and Sustainable Waste Management, Springer, Singapore, (2020).
  • [4] PAGEV, Türkiye Plastik Sektör İzleme Raporu 2020/3 (2020).
  • [5] Sogancioglu, M., Yel, E., & Ahmetli, G., ‘Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars’ J. Cleaner Prod., 165, 369-381, (2017).
  • [6] Muralisrinivasan Subramanian, N., ‘Plastics waste management: processing and disposal’ Shawbury, Shrewsbury, Shropshire, UK: Smithers Rapra, (2016).
  • [7] Park, J. J., Park, K., Park, J. W., & Kim, D. C., "Characteristics of LDPE pyrolysis", Korean J. Chem. Eng.,19(4), 658, (2002).
  • [8] Sharuddin S.D.A., Abnisa F., Daud W., Aroua M.K., ‘A Review On Pyrolysis Of Plastic Wastes’, Energy Convers. Manage., 115, 308–326, (2016).
  • [9] Oliveux, G., Dandy, L. O., & Leeke, G. A., ‘Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties’ Prog. Mater Sci., 72, 61-99, (2015).
  • [10] Dewangan, A., Pradhan, D., & Singh, R. K., ‘Co-pyrolysis of sugarcane bagasse and low-density polyethylene: influence of plastic on pyrolysis product yield’ Fuel, 185, 508-516, (2016).
  • [11] Zattini, G., Leonardi, C., Mazzocchetti, L., Cavazzoni, M., Montanari, I., Tosi, C., ... & Giorgini, L., ‘Pyrolysis of Low-Density Polyethylene’ In International Conference on Sustainable Design and Manufacturing (pp. 480-490). Springer, Cham. (2017).
  • [12] Papuga, S. V., Gvero, P. M., & Vukić, L. M., ‘Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor’ Thermal science, 20(2), 731-741, (2016).
  • [13] Sharuddin S.D.A., Abnisa F., Daud W., Aroua M.K., ‘A Review On Pyrolysis Of Plastic Wastes’, Energy Convers. Manage., 115, 308–326, (2016).
  • [14] Gao, F., ‘Pyrolysis of Waste Plastics into Fuels’, Yayımlanmamış Doktora Tezi. Canterbury: University of Canterbury, Chemical and Process Engineering. (2010).
  • [15] Shah, S. H., Khan, Z. M., Raja, I. A., Mahmood, Q., Bhatti, Z. A., Khan, J., ... & Wu, D.,’ Low temperature conversion of plastic waste into light hydrocarbons’ J. Hazard. Mater., 179(1-3), 15-20, (2010).
  • [16] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S., ‘Catalytic pyrolysis of plastic waste: A review’, Process Saf. Environ. Prot., 102, 822-838, (2016).
  • [17] Jia, X., Qin, C., Friedberger, T., Guan, Z., & Huang, Z., ‘Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions’, Sci. Adv., 2(6), e1501591, (2016).
  • [18] Lasek, J., Hrycko, P., Wasielewski, R., Kopczyński, M., Bodora, K., Kaczmarzyk, G., & Adamczyk, M., ‘Combustion of micro wax from polyethylene pyrolysis’ Combust. Sci. Technol., 190(7), 1246-1258, (2018).
  • [19] Jixing, L. I., ‘Study on the conversion technology of waste polyethylene plastic to polyethylene wax’, Energy sources, 25(1), 77-82, (2003).
  • [20] Urbaniak, W., Wasiak, W., & Fall, J., ‘Waxes–products of thermal degradation of waste plastics–obtaining, capabilities, and application’, Archiwum Gospodarki Odpadami i Ochrony Środowiska, 6, 71-78, (2007).
  • [21] Dubdub, I., & Al-Yaari, M. ‘Pyrolysis of low density polyethylene: kinetic study using TGA data and ANN prediction’, Polym., 12(4), 891, (2020).
  • [22] Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., & Zheng, Z. ‘Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS’, J. Anal. Appl. Pyrolysis, 133, 185-197, (2018).
  • [23] Miskolczi, N., Bartha, L., & Deák, G. ‘Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks’ Polym. Degrad. Stab., 91(3), 517-526 (2006).
  • [24] Shah, J., Jan, M. R., Mabood, F., & Jabeen, F. ‘Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems’ Energy Convers. Manage., 51(12), 2791-2801, (2010).
  • [25] Li, C., Zhang, C., Gholizadeh, M., & Hu, X. ‘Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst’ J. Hazard. Mater., 399, 123075, (2020).
  • [26] Bagri, R., & Williams, P. T. ‘Catalytic pyrolysis of polyethylene’ J. Anal. Appl. Pyrolysis, 63(1), 29-41, (2002).
  • [27] Sharratt, P. N., Lin, Y. H., Garforth, A. A., & Dwyer, J. ‘Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor’ Ind. Eng. Chem. Results, 36(12), 5118-5124, (1997).
  • [28] Aguado, J., Sotelo, J. L., Serrano, D. P., & Calles, J. A. ‘Catalytic conversion of polyolefins into liquid fuels over MCM-41: comparison with ZSM-5 and amorphous SiO {sub 2}-Al {sub 2} O {sub 3}’ Energy Fuels, 11, (1997).
  • [29] Ding, W., Liang, J., & Anderson, L. L. ‘Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste’ Fuel Process. Technol., 51(1-2), 47-62, (1997).
  • [30] R. T. Morrison; R. N. ‘Boyd Organic Chemistry’, 6th ed, New Jersey: P. H., (1992).
  • [31] Sawyer, C. N. Çevre mühendisliği ve bilimi için kimya. Nobel, (2013).
  • [32] Lee, M., Identifying an Unknown Compound by Infrared Spectroscopy. Chemical Education Resources (TECH 710), (1997).
  • [33] Aguado, J., Serrano, D. P., & Escola, J. M. Catalytic upgrading of plastic wastes. Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels, 73-110, (2006).

Effects of Different Parameters on Pyrolytic Liquid Product of Waste LDPE and C/LDPE Packages

Year 2022, Volume: 25 Issue: 4, 1575 - 1585, 16.12.2022
https://doi.org/10.2339/politeknik.798394

Abstract

This study is about the thermal pyrolysis of low-density polyethylene (LDPE), which has the highest waste volume in the polyolefins plastic class, and aluminum-containing composites (C/LDPE), which are frequently used in packaging, to recover value-added products and then characterize the products obtained. LDPE and C/LDPE wastes were examined by proximate analysis, elemental analysis and TGA, and then pyrolyzed in a fixed bed reactor at different temperatures (400-600-800 ℃) and different heating rates (5-10-20 ℃/min). Afterwards, the wastes were pyrolyzed at 600 °C and 20 °C/min heating rate with zeolite catalysis and the effect of the catalyst on the liquid product was evaluated. GC-MS, FT-IR and 1H-NMR analyzes of the pyrolytic liquid products and commercial waxes were performed to determine the potential of the obtained liquid product to be used as a wax. According to the results, the product obtained from waste C/LDPE is similar to commercial heavy wax.

Project Number

19ADP167, 117Y041

References

  • [1] Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J., & Olazar, M., ‘Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor’, J. Anal. Appl. Pyrolysis, 94: 230-237, (2012).
  • [2] Rodríguez, E., Palos, R., Gutiérrez, A., Trueba, D., Arandes, J. M., & Bilbao, J., ‘Towards waste refinery: Co-feeding HDPE pyrolysis waxes with VGO into the catalytic cracking unit’, Energy Convers. Manage., 207, 112554, (2020).
  • [3] Mukherjee, A., Ruj, B., Gupta, P., & Sadhukhan, A. K., ‘A study on pyrolysis of plastic wastes for product recovery and analysis’ Urban Mining and Sustainable Waste Management, Springer, Singapore, (2020).
  • [4] PAGEV, Türkiye Plastik Sektör İzleme Raporu 2020/3 (2020).
  • [5] Sogancioglu, M., Yel, E., & Ahmetli, G., ‘Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars’ J. Cleaner Prod., 165, 369-381, (2017).
  • [6] Muralisrinivasan Subramanian, N., ‘Plastics waste management: processing and disposal’ Shawbury, Shrewsbury, Shropshire, UK: Smithers Rapra, (2016).
  • [7] Park, J. J., Park, K., Park, J. W., & Kim, D. C., "Characteristics of LDPE pyrolysis", Korean J. Chem. Eng.,19(4), 658, (2002).
  • [8] Sharuddin S.D.A., Abnisa F., Daud W., Aroua M.K., ‘A Review On Pyrolysis Of Plastic Wastes’, Energy Convers. Manage., 115, 308–326, (2016).
  • [9] Oliveux, G., Dandy, L. O., & Leeke, G. A., ‘Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties’ Prog. Mater Sci., 72, 61-99, (2015).
  • [10] Dewangan, A., Pradhan, D., & Singh, R. K., ‘Co-pyrolysis of sugarcane bagasse and low-density polyethylene: influence of plastic on pyrolysis product yield’ Fuel, 185, 508-516, (2016).
  • [11] Zattini, G., Leonardi, C., Mazzocchetti, L., Cavazzoni, M., Montanari, I., Tosi, C., ... & Giorgini, L., ‘Pyrolysis of Low-Density Polyethylene’ In International Conference on Sustainable Design and Manufacturing (pp. 480-490). Springer, Cham. (2017).
  • [12] Papuga, S. V., Gvero, P. M., & Vukić, L. M., ‘Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor’ Thermal science, 20(2), 731-741, (2016).
  • [13] Sharuddin S.D.A., Abnisa F., Daud W., Aroua M.K., ‘A Review On Pyrolysis Of Plastic Wastes’, Energy Convers. Manage., 115, 308–326, (2016).
  • [14] Gao, F., ‘Pyrolysis of Waste Plastics into Fuels’, Yayımlanmamış Doktora Tezi. Canterbury: University of Canterbury, Chemical and Process Engineering. (2010).
  • [15] Shah, S. H., Khan, Z. M., Raja, I. A., Mahmood, Q., Bhatti, Z. A., Khan, J., ... & Wu, D.,’ Low temperature conversion of plastic waste into light hydrocarbons’ J. Hazard. Mater., 179(1-3), 15-20, (2010).
  • [16] Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S., ‘Catalytic pyrolysis of plastic waste: A review’, Process Saf. Environ. Prot., 102, 822-838, (2016).
  • [17] Jia, X., Qin, C., Friedberger, T., Guan, Z., & Huang, Z., ‘Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions’, Sci. Adv., 2(6), e1501591, (2016).
  • [18] Lasek, J., Hrycko, P., Wasielewski, R., Kopczyński, M., Bodora, K., Kaczmarzyk, G., & Adamczyk, M., ‘Combustion of micro wax from polyethylene pyrolysis’ Combust. Sci. Technol., 190(7), 1246-1258, (2018).
  • [19] Jixing, L. I., ‘Study on the conversion technology of waste polyethylene plastic to polyethylene wax’, Energy sources, 25(1), 77-82, (2003).
  • [20] Urbaniak, W., Wasiak, W., & Fall, J., ‘Waxes–products of thermal degradation of waste plastics–obtaining, capabilities, and application’, Archiwum Gospodarki Odpadami i Ochrony Środowiska, 6, 71-78, (2007).
  • [21] Dubdub, I., & Al-Yaari, M. ‘Pyrolysis of low density polyethylene: kinetic study using TGA data and ANN prediction’, Polym., 12(4), 891, (2020).
  • [22] Zheng, Y., Tao, L., Yang, X., Huang, Y., Liu, C., & Zheng, Z. ‘Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS’, J. Anal. Appl. Pyrolysis, 133, 185-197, (2018).
  • [23] Miskolczi, N., Bartha, L., & Deák, G. ‘Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks’ Polym. Degrad. Stab., 91(3), 517-526 (2006).
  • [24] Shah, J., Jan, M. R., Mabood, F., & Jabeen, F. ‘Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems’ Energy Convers. Manage., 51(12), 2791-2801, (2010).
  • [25] Li, C., Zhang, C., Gholizadeh, M., & Hu, X. ‘Different reaction behaviours of light or heavy density polyethylene during the pyrolysis with biochar as the catalyst’ J. Hazard. Mater., 399, 123075, (2020).
  • [26] Bagri, R., & Williams, P. T. ‘Catalytic pyrolysis of polyethylene’ J. Anal. Appl. Pyrolysis, 63(1), 29-41, (2002).
  • [27] Sharratt, P. N., Lin, Y. H., Garforth, A. A., & Dwyer, J. ‘Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor’ Ind. Eng. Chem. Results, 36(12), 5118-5124, (1997).
  • [28] Aguado, J., Sotelo, J. L., Serrano, D. P., & Calles, J. A. ‘Catalytic conversion of polyolefins into liquid fuels over MCM-41: comparison with ZSM-5 and amorphous SiO {sub 2}-Al {sub 2} O {sub 3}’ Energy Fuels, 11, (1997).
  • [29] Ding, W., Liang, J., & Anderson, L. L. ‘Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste’ Fuel Process. Technol., 51(1-2), 47-62, (1997).
  • [30] R. T. Morrison; R. N. ‘Boyd Organic Chemistry’, 6th ed, New Jersey: P. H., (1992).
  • [31] Sawyer, C. N. Çevre mühendisliği ve bilimi için kimya. Nobel, (2013).
  • [32] Lee, M., Identifying an Unknown Compound by Infrared Spectroscopy. Chemical Education Resources (TECH 710), (1997).
  • [33] Aguado, J., Serrano, D. P., & Escola, J. M. Catalytic upgrading of plastic wastes. Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels, 73-110, (2006).
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ece Yapıcı 0000-0002-7502-4862

Hasret Akgün 0000-0002-2232-0713

Aysun Özkan 0000-0003-1036-7570

Zerrin Günkaya 0000-0002-7553-9129

Mufide Banar 0000-0003-2795-6208

Project Number 19ADP167, 117Y041
Publication Date December 16, 2022
Submission Date September 28, 2020
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Yapıcı, E., Akgün, H., Özkan, A., Günkaya, Z., et al. (2022). LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi, 25(4), 1575-1585. https://doi.org/10.2339/politeknik.798394
AMA Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi. December 2022;25(4):1575-1585. doi:10.2339/politeknik.798394
Chicago Yapıcı, Ece, Hasret Akgün, Aysun Özkan, Zerrin Günkaya, and Mufide Banar. “LDPE Ve C/LDPE Ambalaj Atıklarının Pirolizi Ve Farklı Parametrelerin Sıvı Ürüne Etkisi”. Politeknik Dergisi 25, no. 4 (December 2022): 1575-85. https://doi.org/10.2339/politeknik.798394.
EndNote Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M (December 1, 2022) LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi 25 4 1575–1585.
IEEE E. Yapıcı, H. Akgün, A. Özkan, Z. Günkaya, and M. Banar, “LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi”, Politeknik Dergisi, vol. 25, no. 4, pp. 1575–1585, 2022, doi: 10.2339/politeknik.798394.
ISNAD Yapıcı, Ece et al. “LDPE Ve C/LDPE Ambalaj Atıklarının Pirolizi Ve Farklı Parametrelerin Sıvı Ürüne Etkisi”. Politeknik Dergisi 25/4 (December 2022), 1575-1585. https://doi.org/10.2339/politeknik.798394.
JAMA Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi. 2022;25:1575–1585.
MLA Yapıcı, Ece et al. “LDPE Ve C/LDPE Ambalaj Atıklarının Pirolizi Ve Farklı Parametrelerin Sıvı Ürüne Etkisi”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1575-8, doi:10.2339/politeknik.798394.
Vancouver Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. LDPE ve C/LDPE Ambalaj Atıklarının Pirolizi ve Farklı Parametrelerin Sıvı Ürüne Etkisi. Politeknik Dergisi. 2022;25(4):1575-8.