Research Article
BibTex RIS Cite

The Experimental Study of Dust Effect on Solar Panel Efficiency

Year 2022, Volume: 25 Issue: 4, 1429 - 1434, 16.12.2022
https://doi.org/10.2339/politeknik.903989

Abstract

This study shows the dust effect on solar panel efficiency based on experimental measurements. Sieve analysis has been performed to investigate the effect on the efficiency of the panel. Dust particles have been divided into different sizes such as (-75), (+75/-105), (+105/-250), (+250/-450). In addition, each piece weighed 20 g, uniformly sprinkled onto a 40-Watt SUNNY polycrystalline panel. In order to obtain the output voltages of the PV panel used a data acquisition card. Additionally, a photodiode sensor has been used in order to obtain the light reflection data from the panel to the outside while there had covered different diameters of dust particles on the panel. The data set consisting of electrical parameters have been used to compered both experimental study and Artificial Neural Network (ANN) output. There were 5 different data sets with the clean PV panel in this study (randomly selected data from it used as %40 training - %60 test) and the clean panel data have been used twice in the training and test part of the ANN. In this study, it has been observed that the ANN method can be used to estimate panel efficiency due to the linearity (The R-value was gotten nearly equal to 1 and it shows that there is a linear relationship between outputs and targets.) if the appropriate transfer function is selected. Also, this study shows that as the particle diameter covering the panel gets smaller, the output voltage of the panel decreases linearly.

References

  • [1] Yan, Y., Zhang, H., Zheng, J., Liang, Y., “Optimal Design of Energy System Based on the Forecasting Data with Particle Swarm Optimization. Adv. Stat. Model. Forecast. Fault Detect.” Renew. Energy Syst. 1–14, (2020).
  • [2] https://iea-pvps.org/trends_reports/trends-in-pvapplications-2020/ “Trends in Photovoltaic Applications” (2020).
  • [3] Sajjad, U., Amer, M., Ali, H.M., Dahiya, A., Abbas, N., “Cost effective cooling of photovoltaic modules to improve efficiency. Case Stud.” Therm. Eng. 14, 100420, ( 2019.).
  • [4] Yamaguchi, M., Lee, K.H., Araki, K., Kojima, N., Ohshita, Y., “Analysis for efficiency potential of crystalline Si solar cells.” J. Mater. Res. 33: 2621–2626, (2018).
  • [5] Chaichan, M.T., Kazem, H.A., “Environmental Conditions and Its Effect on PV Performance, Generating Electricity Using Photovoltaic Solar Plants in Iraq.” Springer, 83-129, (2018).
  • [6] Al-Waeli, A.H.A., Sopian, K., Kazem, H.A., Chaichan, M.T., “Photovoltaic/Thermal (PV/T) systems: Status and future prospects.” Renew. Sustain. Energy Rev. 77, 109–130, (2017).
  • [7] Koch, S., Weber, T., Sobottka, C., Fladung, A., Clemens, P., Berghold, J., “Outdoor Electroluminescence Imaging of Crystalline Photovoltaic Modules: Comparative Study between Manual Ground-Level Inspections and Drone-Based Aerial Surveys.” 32nd Eur. Photovolt. Sol. Energy Conf. Exhib. 53, 1736–1740, (2016).
  • [8] Chaichan, M.T., Kazem, H.A., “Experimental evaluation of dust composition impact on photovoltaic performance in Iraq. Energy Sources”, Part A Recover. Util. Environ. Eff. 00, 1–22, (2020).
  • [9] Rolston, N., Printz, A.D., Dupont, S.R., Voroshazi, E., Dauskardt, R.H., “Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells.” Sol. Energy Mater. Sol. Cells 170, 239–245, (2017).
  • [10] Kim, T.H., Park, N.C., Kim, D.H., “The effect of moisture on the degradation mechanism of multi-crystalline silicon photovoltaic module.” Microelectron. Reliab. 53, 1823–1827, ( 2013).
  • [11] Kazem, H.A., Chaichan, M.T., “Experimental analysis of the effect of dust’s physical properties on photovoltaic modules in Northern Oman.” Sol. Energy 139, 68–80, (2016).
  • [12] Sarver, T., Al-Qaraghuli, A., Kazmerski, L.L., “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches.” Renew. Sustain. Energy Rev. 22, 698–733, (2013).
  • [13] Adinoyi, M.J., Said, S.A.M., “Effect of dust accumulation on the power outputs of solar photovoltaic modules.” Renew. Energy 60, 633–636, (2013).
  • [14] Mani, M., Pillai, R., “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations.” Renew. Sustain. Energy Rev. 14, 3124–3131, (2010).
  • [15] Salimi, H., Mirabdolah Lavasani, A., Ahmadi-Danesh-Ashtiani, H., Fazaeli, R., “Effect of dust concentration, wind speed, and relative humidity on the performance of photovoltaic panels in Tehran.” Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–11, ( 2019).
  • [16] Al Hanai, T., Hashim, R.B., El Chaar, L., Lamont, L.A., “Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system.” Renew. Energy 36, 2615–2622, (2011).
  • [17] Iew, E. V, “Performance Evaluation Of Cdte Pv Modules Under Natural Outdoor Conditions In Kuwait” 5th World Conference on Photovoltaic Energy Conversion 3468–3470, (2010).
  • [18] Kalogirou, S.A., Agathokleous, R., Panayiotou, G., “On-site PV characterization and the effect of soiling on their performance.” Energy 51, 439–446, (2013).
  • [19] https://docs.google.com/present/view?id=dfhw d9z_0gtk9bsgc, “Getting the Most Energy Out of Googl’s Solar Panels.”, ( 2009).
  • [20] Mohamed, A.O., Hasan, A., “Effect of Dust Accumulation on Performance of Photovoltaic Solar Modules in Sahara Environment.” J. Basic. Appl. Sci. Res 2, 11030–11036, (2012).
  • [21] Salim, et al., “PV power-study of system options and optimization” In EC Photovoltaic Solar Conference. 8. pp. 688–692, (1988).
  • [22] Rahman, M.M., Islam, M.A., Karim, A.H.M.Z., Ronee, A.H., “Effects of Natural Dust on the Performance of PV Panels in Bangladesh.” Int. J. Mod. Educ. Comput. Sci. 4, 26–32, (2012).
  • [23] Sanusi, Y.K., “The performance of amorphous silicon PV system under Harmattan dust conditions in a tropical area. Pacific” J. Sci. Technol. 13, 168–175, (2012).

Tozlanmanın solar panel verimlilikleri üzerine deneysel çalışma

Year 2022, Volume: 25 Issue: 4, 1429 - 1434, 16.12.2022
https://doi.org/10.2339/politeknik.903989

Abstract

Bu çalışma, deneysel ölçümlere dayalı olarak güneş paneli verimliliği üzerindeki toz etkisini göstermektedir. Panelin verimine etkisini araştırmak için elek analizi gerçekleştirilmiştir. Toz partikülleri (-75), (+75/-105), (+1105/-250), (+250/-450) gibi farklı boyutlara ayrılmış ve her bir toz parçacıkları 20 g olarak ayarlanmıştır. Toz parçacıkları, 40-Watt'lık bir SUNNY polikristal panel üzerine homojen bir şekilde dağıtılmıştır. PV panelinin çıkış voltajını elde etmek için veri toplama kartı kullanılmıştır. Ayrıca panel üzerinde farklı çaplarda toz parçacıkları kaplanmışken, panel yüzeyinden yansıyan ışıkların toplanması için fotodiyot sensör kullanılmıştır. Elektriksel parametrelerden oluşan veri seti hem deneysel çalışma hem de Yapay Sinir Ağı (YSA) çıktısının karşılaştırılması için kullanılmıştır. Bu çalışmada temiz PV panel ile 5 farklı veri setinden yararlanılmış (veriler rastgele % 40 eğitim -% 60 test olarak kullanılmıştır) ve temiz panel verileri YSA'nın eğitim ve test kısmında iki kez kullanılmıştır. Ayrıca çalışmamızda YSA metodu kullanılarak, uygun transfer fonksiyonu seçildiği takdirde panel verimliliğini tahmin edilebilecceği gözlemlenmiştir (veriler doğrusal olmasından dolayı R değeri 1'e yakın çıkmış, çıktılar ile hedefler arasında doğrusal bir ilişki olduğunu görülmüştür). Ayrıca bu çalışmada, paneli kaplayan toz parçacıklarının çapı küçüldükçe, panelin çıkış voltajının doğrusal olarak azaldığını görülmektedir.

References

  • [1] Yan, Y., Zhang, H., Zheng, J., Liang, Y., “Optimal Design of Energy System Based on the Forecasting Data with Particle Swarm Optimization. Adv. Stat. Model. Forecast. Fault Detect.” Renew. Energy Syst. 1–14, (2020).
  • [2] https://iea-pvps.org/trends_reports/trends-in-pvapplications-2020/ “Trends in Photovoltaic Applications” (2020).
  • [3] Sajjad, U., Amer, M., Ali, H.M., Dahiya, A., Abbas, N., “Cost effective cooling of photovoltaic modules to improve efficiency. Case Stud.” Therm. Eng. 14, 100420, ( 2019.).
  • [4] Yamaguchi, M., Lee, K.H., Araki, K., Kojima, N., Ohshita, Y., “Analysis for efficiency potential of crystalline Si solar cells.” J. Mater. Res. 33: 2621–2626, (2018).
  • [5] Chaichan, M.T., Kazem, H.A., “Environmental Conditions and Its Effect on PV Performance, Generating Electricity Using Photovoltaic Solar Plants in Iraq.” Springer, 83-129, (2018).
  • [6] Al-Waeli, A.H.A., Sopian, K., Kazem, H.A., Chaichan, M.T., “Photovoltaic/Thermal (PV/T) systems: Status and future prospects.” Renew. Sustain. Energy Rev. 77, 109–130, (2017).
  • [7] Koch, S., Weber, T., Sobottka, C., Fladung, A., Clemens, P., Berghold, J., “Outdoor Electroluminescence Imaging of Crystalline Photovoltaic Modules: Comparative Study between Manual Ground-Level Inspections and Drone-Based Aerial Surveys.” 32nd Eur. Photovolt. Sol. Energy Conf. Exhib. 53, 1736–1740, (2016).
  • [8] Chaichan, M.T., Kazem, H.A., “Experimental evaluation of dust composition impact on photovoltaic performance in Iraq. Energy Sources”, Part A Recover. Util. Environ. Eff. 00, 1–22, (2020).
  • [9] Rolston, N., Printz, A.D., Dupont, S.R., Voroshazi, E., Dauskardt, R.H., “Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells.” Sol. Energy Mater. Sol. Cells 170, 239–245, (2017).
  • [10] Kim, T.H., Park, N.C., Kim, D.H., “The effect of moisture on the degradation mechanism of multi-crystalline silicon photovoltaic module.” Microelectron. Reliab. 53, 1823–1827, ( 2013).
  • [11] Kazem, H.A., Chaichan, M.T., “Experimental analysis of the effect of dust’s physical properties on photovoltaic modules in Northern Oman.” Sol. Energy 139, 68–80, (2016).
  • [12] Sarver, T., Al-Qaraghuli, A., Kazmerski, L.L., “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches.” Renew. Sustain. Energy Rev. 22, 698–733, (2013).
  • [13] Adinoyi, M.J., Said, S.A.M., “Effect of dust accumulation on the power outputs of solar photovoltaic modules.” Renew. Energy 60, 633–636, (2013).
  • [14] Mani, M., Pillai, R., “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations.” Renew. Sustain. Energy Rev. 14, 3124–3131, (2010).
  • [15] Salimi, H., Mirabdolah Lavasani, A., Ahmadi-Danesh-Ashtiani, H., Fazaeli, R., “Effect of dust concentration, wind speed, and relative humidity on the performance of photovoltaic panels in Tehran.” Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–11, ( 2019).
  • [16] Al Hanai, T., Hashim, R.B., El Chaar, L., Lamont, L.A., “Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system.” Renew. Energy 36, 2615–2622, (2011).
  • [17] Iew, E. V, “Performance Evaluation Of Cdte Pv Modules Under Natural Outdoor Conditions In Kuwait” 5th World Conference on Photovoltaic Energy Conversion 3468–3470, (2010).
  • [18] Kalogirou, S.A., Agathokleous, R., Panayiotou, G., “On-site PV characterization and the effect of soiling on their performance.” Energy 51, 439–446, (2013).
  • [19] https://docs.google.com/present/view?id=dfhw d9z_0gtk9bsgc, “Getting the Most Energy Out of Googl’s Solar Panels.”, ( 2009).
  • [20] Mohamed, A.O., Hasan, A., “Effect of Dust Accumulation on Performance of Photovoltaic Solar Modules in Sahara Environment.” J. Basic. Appl. Sci. Res 2, 11030–11036, (2012).
  • [21] Salim, et al., “PV power-study of system options and optimization” In EC Photovoltaic Solar Conference. 8. pp. 688–692, (1988).
  • [22] Rahman, M.M., Islam, M.A., Karim, A.H.M.Z., Ronee, A.H., “Effects of Natural Dust on the Performance of PV Panels in Bangladesh.” Int. J. Mod. Educ. Comput. Sci. 4, 26–32, (2012).
  • [23] Sanusi, Y.K., “The performance of amorphous silicon PV system under Harmattan dust conditions in a tropical area. Pacific” J. Sci. Technol. 13, 168–175, (2012).
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Atıl Emre Coşgun 0000-0002-4889-300X

Hasan Demir 0000-0001-5424-7242

Publication Date December 16, 2022
Submission Date March 26, 2021
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Coşgun, A. E., & Demir, H. (2022). The Experimental Study of Dust Effect on Solar Panel Efficiency. Politeknik Dergisi, 25(4), 1429-1434. https://doi.org/10.2339/politeknik.903989
AMA Coşgun AE, Demir H. The Experimental Study of Dust Effect on Solar Panel Efficiency. Politeknik Dergisi. December 2022;25(4):1429-1434. doi:10.2339/politeknik.903989
Chicago Coşgun, Atıl Emre, and Hasan Demir. “The Experimental Study of Dust Effect on Solar Panel Efficiency”. Politeknik Dergisi 25, no. 4 (December 2022): 1429-34. https://doi.org/10.2339/politeknik.903989.
EndNote Coşgun AE, Demir H (December 1, 2022) The Experimental Study of Dust Effect on Solar Panel Efficiency. Politeknik Dergisi 25 4 1429–1434.
IEEE A. E. Coşgun and H. Demir, “The Experimental Study of Dust Effect on Solar Panel Efficiency”, Politeknik Dergisi, vol. 25, no. 4, pp. 1429–1434, 2022, doi: 10.2339/politeknik.903989.
ISNAD Coşgun, Atıl Emre - Demir, Hasan. “The Experimental Study of Dust Effect on Solar Panel Efficiency”. Politeknik Dergisi 25/4 (December 2022), 1429-1434. https://doi.org/10.2339/politeknik.903989.
JAMA Coşgun AE, Demir H. The Experimental Study of Dust Effect on Solar Panel Efficiency. Politeknik Dergisi. 2022;25:1429–1434.
MLA Coşgun, Atıl Emre and Hasan Demir. “The Experimental Study of Dust Effect on Solar Panel Efficiency”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1429-34, doi:10.2339/politeknik.903989.
Vancouver Coşgun AE, Demir H. The Experimental Study of Dust Effect on Solar Panel Efficiency. Politeknik Dergisi. 2022;25(4):1429-34.