Research Article
BibTex RIS Cite

Design of a Bi-directional Flyback Converter for Electric Vehicle Battery Active Balancing Systems

Year 2022, Volume: 25 Issue: 4, 1487 - 1494, 16.12.2022
https://doi.org/10.2339/politeknik.912393

Abstract

The battery balancing systems are essential for balanced charging and discharging the battery cells. Lifecyle, efficiency and safety of battery packs can be increased by balancing systems. Battery balancing systems are divided into two group as passive and active. In passive balancing systems the amount of charge causing imbalance between cells is discharged by a resistor while in active balancing sytems imbalance between the cells is eliminated by transferring energy from high state of charge cell to low one. Increasing number of cells is led to complexity of balancing systems. Converter based balancing systems present a feasible solution to battery packs with a large number of cells. In this study, a bidirectional flyback converter in order to use in battery active balancing systems has been developed. Simulation and test results revealed that the developed bidirectional flyback converter is suitable for battery active balancing systems. The highest efficiencies were obtained as 67.84% at 32.5% duty cycle at charge test and 66.02% at 50% duty cycle at discharge test.

References

  • [1] Sarıkurt T. and Balıkçı A., “Tam elektrikli araçlar için özgün bir enerji yönetim sistemi uygulaması”, Journal of the Faculty of Engineering and Architecture of Gazi University 2: 323–333, (2017).
  • [2] Daowd M., Omar N., Bossche P., and Van Mierlo J., “Passive and active battery balancing comparison based on MATLAB simulation,” IEEE Vehicle Power and Propulsion Conference, Chicago-USA, 1–7, (2011).
  • [3] Tian L., Hong M., He Z., and Gao M., “Active Battery Balancing Circuit Based on Optimized Flyback Convertor for Large Lithium-ion Battery Packs,” IEEE 4th International Conference on Control Science and Systems Engineering, Wuhan-China, 212–216, (2018).
  • [4] Wang Y., Wei X., Fang Q., and Zheng B., “Bi-Directional Equalization System for Li-Ion Battery Pack Based on Fly-back Transformer,” World Congress Experience, Shangai-China,(2018).
  • [5] Bagul Y., Ingale M., Wani K., and Patil S., “Development of Battery Management System for Hybrid Electric Two Wheeler,” World Congress Experience, Shangai-China, (2018).
  • [6] Nafiz S. and Alcı M. and Yıldız M.N., “Şarj Dengeleme Sistemleri İçin Çift Yönlü Flyback Devresi Tasarımı.”, Otomatik Kontrol Ulusal Toplantısı, Malatya, 472-476, (2013).
  • [7] Salem T.E., Tipton W., Porschet D., “Fabrication and Practical Considerations of a Flyback Transformer for Use in High Pulsed-Power Applications,” Proceeding Thirty-Eighth Southeast. Symp., Cookeville-TN-USA, 406-409, (2006).
  • [8] Lin Y., Hsieh Y., Wang J., Lin J., Chiu H. and Lin K., “Modular Battery Balancing Circuit Based on Bidirectional Flyback Converter,” Asian Conference on Energy, Power and Transportation Electrification., Singapore, 1-4, (2016).
  • [9] Mohammed A.A., and Nafie S.M., “Flyback converter design for low power application,” in 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering, Khartoum-Sudan, 447–450, (2015).
  • [10] Dindar. S. and İres. İ., “Investigation of Output Voltages Depending On Load In Multi Output Flyback Converter,” Politeknik, 21: 693–700, (2018).
  • [11] Algül S., “Yüksek Güçlü Flyback Dönüştürücü,” Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2008).
  • [12] Coruh N., Urgun S., and Erfidan T., “Design and implementation of flyback converters,” IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 1189–1193, (2010).
  • [13] Taneri M.C., Genc N., and Mamizadeh A., “Analyzing and Comparing of Variable and Constant Switching Frequency Flyback DC-DC Converter,” 4th International Conference on Power Electronics and their Applications, Elazığ,1–5,(2019).
  • [14] Köseni H. and Yıldız A.B., “Geri dönüşlü DC-DC dönüştürücünün genelleştirilmiş düğüm denklemleri ile analizi,” Politeknik, 22:1, 179–184, (2019).
  • [15] Martin M.B., “A Design of 3.3W Closed Loop Flyback Converter with 3.3V, 1A Output for Low Voltage Applications,” IEEE 8th Conference on Systems, Process and Control, Melaka- Malaysia, 86–90, (2020).
  • [16] Das G., De M., and Mandal K.K., “Design of Flyback Converter by Using an Ideal Switch and a MOSFET Switch,” IEEE Electron Devices Kolkata Conference, Kolkata- India, 110–114, (2018).
  • [17] Fırat F.. Yaren T., Süel V., “Gerçek Zamanlı FLYBACK Dönüştürücü Tasarımı ve Kontrolü,” Otomatik Kontrol Ulus. Toplantısı, İstanbul, (2017).
  • [18] T. Ho, M. Chen, C. Lin, and C. Chang, “The design of a flyback converter based on simulation,” in 2011 International Conference on Electronics, Communications and Control, Ningbo- China, 3996–3999, (2011).
  • [19] G. Chu, H. Wen, L. Jiang, Y. Hu, and X. Li, “Bidirectional flyback based isolated-port submodule differential power processing optimizer for photovoltaic applications,” Sol. Energy, 158: 929–940, (2017).
  • [20] Dixon H., “Magnetics Design Handbook”, Texas Instruments Incorporated (2011).
  • [21] Picard J., “Under the hood of flyback SMPS design,” Texas Instruments Power Supply Des. Semin., (2010).
  • [22] Conway T., “An Isolated Active Balancing and Monitoring System for Lithium Ion Battery Stacks Utilizing a Single Transformer Per Cell” in IEEE Transactions on Power Electronics, 36:3727-3734, (2021).
  • [23] Stefanov D. D., Todorova T.P. and Valchev V.C., "A Flyback Converter Based System for an Active Charge Balancing of Li-Ion Battery Packs," 2018 IEEE XXVII International Scientific Conference Electronics, Sozopol-Bulgaria, 1-4, (2018).

Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı

Year 2022, Volume: 25 Issue: 4, 1487 - 1494, 16.12.2022
https://doi.org/10.2339/politeknik.912393

Abstract

Batarya dengeleme sistemleri batarya hücrelerinin dengeli şarj ve deşarjı için gereklidir. Batarya paketlerinin ömrü, verimliliği ve güvenliği dengeleme sistemleri ile artırılabilir. Batarya dengeleme sistemleri pasif ve aktif olarak ikiye ayrılır. Pasif dengeleme sistemlerinde, hücreler arasında dengesizliğe neden olan yük miktarı bir dirençle boşaltılırken, aktif dengeleme sistemlerinde hücreler arası dengesizlik, enerjinin yüksek şarjlı hücreden düşük olana aktarılmasıyla ortadan kaldırılır. Artan hücre sayısı, dengeleme sistemlerinin karmaşıklığına yol açmaktadır. Dönüştürücü tabanlı dengeleme sistemleri, çok sayıda hücreye sahip batarya paketleri için uygun bir çözüm sunar. Bu çalışmada, batarya aktif dengeleme sistemlerinde kullanılmak üzere çift yönlü bir flyback dönüştürücü geliştirilmiştir. Simülasyon ve test sonuçları, geliştirilen çift yönlü flyback dönüştürücünün batarya aktif dengeleme sistemleri için uygun olduğunu ortaya koymuştur. Hücre şarj yönü testinde en yüksek verim %32,5 görev döngüsünde %67,84 olarak ve hücre deşarj yönü testinde %50 görev döngüsünde %66,02 olarak elde edilmiştir.

References

  • [1] Sarıkurt T. and Balıkçı A., “Tam elektrikli araçlar için özgün bir enerji yönetim sistemi uygulaması”, Journal of the Faculty of Engineering and Architecture of Gazi University 2: 323–333, (2017).
  • [2] Daowd M., Omar N., Bossche P., and Van Mierlo J., “Passive and active battery balancing comparison based on MATLAB simulation,” IEEE Vehicle Power and Propulsion Conference, Chicago-USA, 1–7, (2011).
  • [3] Tian L., Hong M., He Z., and Gao M., “Active Battery Balancing Circuit Based on Optimized Flyback Convertor for Large Lithium-ion Battery Packs,” IEEE 4th International Conference on Control Science and Systems Engineering, Wuhan-China, 212–216, (2018).
  • [4] Wang Y., Wei X., Fang Q., and Zheng B., “Bi-Directional Equalization System for Li-Ion Battery Pack Based on Fly-back Transformer,” World Congress Experience, Shangai-China,(2018).
  • [5] Bagul Y., Ingale M., Wani K., and Patil S., “Development of Battery Management System for Hybrid Electric Two Wheeler,” World Congress Experience, Shangai-China, (2018).
  • [6] Nafiz S. and Alcı M. and Yıldız M.N., “Şarj Dengeleme Sistemleri İçin Çift Yönlü Flyback Devresi Tasarımı.”, Otomatik Kontrol Ulusal Toplantısı, Malatya, 472-476, (2013).
  • [7] Salem T.E., Tipton W., Porschet D., “Fabrication and Practical Considerations of a Flyback Transformer for Use in High Pulsed-Power Applications,” Proceeding Thirty-Eighth Southeast. Symp., Cookeville-TN-USA, 406-409, (2006).
  • [8] Lin Y., Hsieh Y., Wang J., Lin J., Chiu H. and Lin K., “Modular Battery Balancing Circuit Based on Bidirectional Flyback Converter,” Asian Conference on Energy, Power and Transportation Electrification., Singapore, 1-4, (2016).
  • [9] Mohammed A.A., and Nafie S.M., “Flyback converter design for low power application,” in 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering, Khartoum-Sudan, 447–450, (2015).
  • [10] Dindar. S. and İres. İ., “Investigation of Output Voltages Depending On Load In Multi Output Flyback Converter,” Politeknik, 21: 693–700, (2018).
  • [11] Algül S., “Yüksek Güçlü Flyback Dönüştürücü,” Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, (2008).
  • [12] Coruh N., Urgun S., and Erfidan T., “Design and implementation of flyback converters,” IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 1189–1193, (2010).
  • [13] Taneri M.C., Genc N., and Mamizadeh A., “Analyzing and Comparing of Variable and Constant Switching Frequency Flyback DC-DC Converter,” 4th International Conference on Power Electronics and their Applications, Elazığ,1–5,(2019).
  • [14] Köseni H. and Yıldız A.B., “Geri dönüşlü DC-DC dönüştürücünün genelleştirilmiş düğüm denklemleri ile analizi,” Politeknik, 22:1, 179–184, (2019).
  • [15] Martin M.B., “A Design of 3.3W Closed Loop Flyback Converter with 3.3V, 1A Output for Low Voltage Applications,” IEEE 8th Conference on Systems, Process and Control, Melaka- Malaysia, 86–90, (2020).
  • [16] Das G., De M., and Mandal K.K., “Design of Flyback Converter by Using an Ideal Switch and a MOSFET Switch,” IEEE Electron Devices Kolkata Conference, Kolkata- India, 110–114, (2018).
  • [17] Fırat F.. Yaren T., Süel V., “Gerçek Zamanlı FLYBACK Dönüştürücü Tasarımı ve Kontrolü,” Otomatik Kontrol Ulus. Toplantısı, İstanbul, (2017).
  • [18] T. Ho, M. Chen, C. Lin, and C. Chang, “The design of a flyback converter based on simulation,” in 2011 International Conference on Electronics, Communications and Control, Ningbo- China, 3996–3999, (2011).
  • [19] G. Chu, H. Wen, L. Jiang, Y. Hu, and X. Li, “Bidirectional flyback based isolated-port submodule differential power processing optimizer for photovoltaic applications,” Sol. Energy, 158: 929–940, (2017).
  • [20] Dixon H., “Magnetics Design Handbook”, Texas Instruments Incorporated (2011).
  • [21] Picard J., “Under the hood of flyback SMPS design,” Texas Instruments Power Supply Des. Semin., (2010).
  • [22] Conway T., “An Isolated Active Balancing and Monitoring System for Lithium Ion Battery Stacks Utilizing a Single Transformer Per Cell” in IEEE Transactions on Power Electronics, 36:3727-3734, (2021).
  • [23] Stefanov D. D., Todorova T.P. and Valchev V.C., "A Flyback Converter Based System for an Active Charge Balancing of Li-Ion Battery Packs," 2018 IEEE XXVII International Scientific Conference Electronics, Sozopol-Bulgaria, 1-4, (2018).
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Fatih Şahin 0000-0002-4423-6619

Elif Kılınç 0000-0002-7317-7048

Publication Date December 16, 2022
Submission Date April 9, 2021
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Şahin, F., & Kılınç, E. (2022). Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı. Politeknik Dergisi, 25(4), 1487-1494. https://doi.org/10.2339/politeknik.912393
AMA Şahin F, Kılınç E. Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı. Politeknik Dergisi. December 2022;25(4):1487-1494. doi:10.2339/politeknik.912393
Chicago Şahin, Fatih, and Elif Kılınç. “Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı”. Politeknik Dergisi 25, no. 4 (December 2022): 1487-94. https://doi.org/10.2339/politeknik.912393.
EndNote Şahin F, Kılınç E (December 1, 2022) Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı. Politeknik Dergisi 25 4 1487–1494.
IEEE F. Şahin and E. Kılınç, “Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı”, Politeknik Dergisi, vol. 25, no. 4, pp. 1487–1494, 2022, doi: 10.2339/politeknik.912393.
ISNAD Şahin, Fatih - Kılınç, Elif. “Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı”. Politeknik Dergisi 25/4 (December 2022), 1487-1494. https://doi.org/10.2339/politeknik.912393.
JAMA Şahin F, Kılınç E. Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı. Politeknik Dergisi. 2022;25:1487–1494.
MLA Şahin, Fatih and Elif Kılınç. “Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1487-94, doi:10.2339/politeknik.912393.
Vancouver Şahin F, Kılınç E. Elektrikli Araç Batarya Aktif Dengeleme Sistemleri için Çift Yönlü Flyback Dönüştürücü Tasarımı. Politeknik Dergisi. 2022;25(4):1487-94.

Cited By