Research Article
BibTex RIS Cite

Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models

Year 2022, Volume: 25 Issue: 4, 1447 - 1462, 16.12.2022
https://doi.org/10.2339/politeknik.930774

Abstract

Stress-strain and moment-curvature behavior of the reinforced concrete (RC) square columns have been analytically investigated according to different confined concrete models. The effect of transverse reinforcement diameter, transverse reinforcement spacing and concrete grade on the behavior of RC column models were investigated. For different confined concrete models, the confinement effectiveness coefficient, effective lateral confining stress, confined concrete compressive strength, strain at maximum concrete stress and ultimate concrete compressive strain values were calculated. In the second part, a parametric investigation was carried out for examining the effects of different design parameters on the moment-curvature relationships. Analytical moment-curvature relationships were obtained for RC cross-sections by using the TBEC (2018), Mander model (1988), Saatcioglu and Ravzi (1992) confined concrete models. The effects of the design parameters on the RC square column behavior were evaluated in terms of moment capacity and the curvature of the cross-section. In RC column models, stress-strain and moment-curvature relationships are obtained and compared according to different parameters. Confined concrete strength and the ultimate moment values obtained from the Mander model were higher than the Saatcioglu and Ravzi model when the transverse reinforcement close to the minimum spacing values. The results obtained from the Mander model and TBEC (2018) are close to each other.

Supporting Institution

-

Project Number

-

Thanks

The authors thank the reviewers who evaluated the article for their time and valuable comments and suggestions.

References

  • [1] Ucar T., Merter O. and Duzgun M., “Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey”, Computers and Concrete, 16(3), 467-485, (2015).
  • [2] Yuksel S.B. and Foroughi S., “Analytical Investigation of Confined and Unconfined Concrete Strength of RC Columns”, Konya Journal of Engineering Sciences, 7(3), 612-631, (2019).
  • [3] Foroughi S. and Yuksel S.B., “Investigation of the Moment-Curvature Relationship for RC Square Columns”, Turkish Journal of Engineering (TUJE), 4(1), 36-46, (2020).
  • [4] Foroughi S., Jamal R. and Yüksel S.B., “Effect of Confining Reinforcement and Axial Load Level on Curvature Ductility and Effective Stiffness of Reinforced Concrete Columns”, El-Cezerî Journal of Science and Engineering, 7(3), 1309-1319, (2020).
  • [5] Foroughi S. and Yüksel S.B., “Analytical investigation of curvature ductility of reinforced concrete columns”, Uludağ University Journal of The Faculty of Engineering, 25(1), 27-38, (2020).
  • [6] Yüksel S.B. and Foroughi S., “Analysis of Bending Moment-Curvature and the Damage Limits of Reinforced Concrete Circular Columns”, Avrupa Bilim ve Teknoloji Dergisi, (19), 891-903, (2020).
  • [7] Olivia M. and Mandal P., “Curvature Ductility Factor of Rectangular Sections RC Beams”, Journal of Civil Engineering, 16(1), 1-13, (2005).
  • [8] Ćurić I., Radić J. and Franetović M., “Determination of the Bending Moment-Curvature Relationship for RC Hollow Section Bridge Columns”, Tehnicki Vjesnik - Technical Gazette, 23(3), 907-915, (2016).
  • [9] Dok G., Ozturk H. and Demir A., “Determining Moment-Curvature Relationship of RC Columns”, The Eurasia Proceedings of Science, Technology, Engineering and Mathematics, 1, 52-58, (2017).
  • [10] Bedirhanoglu I. and Ilki A., “Theoretical Moment-Curvature Relationships for RC Members and Comparison with Experimental Data”, Sixth International Congress on Advances in Civil Engineering, 6-8 October Bogazici University, Istanbul, Turkey, pp. 231-240, (2004).
  • [11] Jun J. and Hui W., “The Relationship between Moment and Curvature and the Elastic-Plastic Seismic Response Analysis of High Pier Section”, the Open Mechanical Engineering Journal, 9, 892-899, (2015).
  • [12] Milašinovic´ D.D., Goleš D. and Ceh A., “Rheological-Dynamical Continuum Damage Model Applied to Research of the Rotational Capacity of a Reinforced Concrete Beams”, Periodica Polytechnica Civil Engineering, 60(4), 661-667, (2016).
  • [13] Milasinovic D.D. and Goles D., “Geometric Nonlinear Analysis of Reinforced Concrete Folded Plate Structures by the Harmonic Coupled Finite Strip Method”, Periodica Polytechnica Civil Engineering, 58(3), 173–185, (2014).
  • [14] Haytham F., Isleem H.F., Wang, D. and Wang, Z., “No AccessAxial stress–strain model for square concrete columns internally confined with GFRP hoops”, Magazine of Concrete Research, 70(20), 1064-1079, (2018).
  • [15] Dong C.X., Kwan A.K.H. and Ho J.C.M., “Effects of confining stiffness and rupture strain on performance of FRP confined concrete”, Engineering Structures, 97, 1-14, (2015).
  • [16] Binici B., “An analytical model for stress–strain behavior of confined concrete”, Engineering Structures, 27(7), 1040-1051, (2005).
  • [17] Colajanni P., Papia M. and Spinella N., “Stress-Strain Law for Confined Concrete with Hardening or Softening Behavior”, Hindawi Publishing Corporation, Advances in Civil Engineering, Volume 2013, Article ID 804904, 11,(2013).
  • [18] TBEC, Turkish Building Earthquake Code, Specification for Buildings to be Built in Seismic Zones, Ministry of Public Works and Settlement Government of the Republic of Turkey, (2018).
  • [19] Mander J.B., Priestley M.J.N. and Park R., “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering, ASCE, 114 (8), 1804–26, (1988).
  • [20] Saatcioglu M. and Ravzi S.R., “Strength and ductility of confined concrete”, Journal of Structural Engineering, 118(6), 1590-1607, (1992).
  • [21] SAP2000, Structural Software for Analysis and Design, Computers and Structures, Inc, USA.
  • [22] Won D.H., Han T.H., Kim S., Lee J.H. and Kang Y.J., “Confining Effect of Concrete in Double-Skinned Composite Tubular Columns”, Computers and Concrete, 14(5), 613-633, (2014).
  • [23] Song Z. and Lu Y., “Numerical Simulation of Concrete Confined by Transverse Reinforcement”, Computers and Concrete, 8(1), 23-41, (2011).
  • [24] Nematzadeh M. and Haghinejad A., “Analysis of Actively-Confined Concrete Columns Using Prestressed Steel Tubes”, Computers and Concrete, 19(5), 477-488, (2017).
  • [25] Popovics S., “A numerical approach to the complete stress-strain curves for concrete”, Cement and Concrete Research, 3(5), 583-599, (1973).
  • [26] ACI318., “Building code requationuirements for RC and commentary”, American Concrete Institute Committee, ISBN: 978-0-87031-930-3. (2014).

Farklı Sarılı Beton Modelleri için Betonarme Kolonların Doğrusal Olmayan Davranışlarının İncelenmesi

Year 2022, Volume: 25 Issue: 4, 1447 - 1462, 16.12.2022
https://doi.org/10.2339/politeknik.930774

Abstract

Betonarme kare kolonların farklı sargılı beton modellerine göre gerilme-şekil değiştirme ve moment-eğrilik davranışı analitik olarak incelenmiştir. Enine donatı oranı ve beton sınıfının betonarme kolon modellerinin davranışına etkisi incelenmiştir. Farklı sargılı beton modelleri için sargı etkinlik katsayısı, etkili yanal basınç gerilmesi, sargılı beton basınç dayanımı, maksimum beton gerilmesinde birim kısalma ve sargılı betondaki maksimum basınç birim şekil değiştirme değerleri hesaplanmıştır. İkinci bölümde, farklı tasarım parametrelerinin moment-eğrilik ilişkileri üzerindeki etkilerinin incelenmesi için parametrik bir araştırma yapılmıştır. TBDY (2018), Mander modeli (1988), Saatcioğlu ve Ravzi (1992) sargılı beton modelleri kullanılarak betonarme kesitlerde analitik moment-eğrilik ilişkileri elde edilmiştir. Parametrelerin betonarme kare kolon davranışı üzerindeki etkileri, enine kesitin eğrilik ve moment kapasitesi açısından değerlendirilmiştir. Betonarme kolon modellerinde, gerilme-şekil değiştirme ve moment-eğrilik ilişkileri elde edilmiş ve farklı parametrelere göre karşılaştırılmıştır. Mander modelinden elde edilen sargılı beton basınç dayanımı ve nihai moment değerleri, enine donatı minimum aralık değerlerine yakın olduğunda Saatçioğlu ve Ravzi modeline göre daha yüksektir. Mander modelinden ve TBDY (2018) ile elde edilen sonuçlar birbirine yakındır.

Project Number

-

References

  • [1] Ucar T., Merter O. and Duzgun M., “Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey”, Computers and Concrete, 16(3), 467-485, (2015).
  • [2] Yuksel S.B. and Foroughi S., “Analytical Investigation of Confined and Unconfined Concrete Strength of RC Columns”, Konya Journal of Engineering Sciences, 7(3), 612-631, (2019).
  • [3] Foroughi S. and Yuksel S.B., “Investigation of the Moment-Curvature Relationship for RC Square Columns”, Turkish Journal of Engineering (TUJE), 4(1), 36-46, (2020).
  • [4] Foroughi S., Jamal R. and Yüksel S.B., “Effect of Confining Reinforcement and Axial Load Level on Curvature Ductility and Effective Stiffness of Reinforced Concrete Columns”, El-Cezerî Journal of Science and Engineering, 7(3), 1309-1319, (2020).
  • [5] Foroughi S. and Yüksel S.B., “Analytical investigation of curvature ductility of reinforced concrete columns”, Uludağ University Journal of The Faculty of Engineering, 25(1), 27-38, (2020).
  • [6] Yüksel S.B. and Foroughi S., “Analysis of Bending Moment-Curvature and the Damage Limits of Reinforced Concrete Circular Columns”, Avrupa Bilim ve Teknoloji Dergisi, (19), 891-903, (2020).
  • [7] Olivia M. and Mandal P., “Curvature Ductility Factor of Rectangular Sections RC Beams”, Journal of Civil Engineering, 16(1), 1-13, (2005).
  • [8] Ćurić I., Radić J. and Franetović M., “Determination of the Bending Moment-Curvature Relationship for RC Hollow Section Bridge Columns”, Tehnicki Vjesnik - Technical Gazette, 23(3), 907-915, (2016).
  • [9] Dok G., Ozturk H. and Demir A., “Determining Moment-Curvature Relationship of RC Columns”, The Eurasia Proceedings of Science, Technology, Engineering and Mathematics, 1, 52-58, (2017).
  • [10] Bedirhanoglu I. and Ilki A., “Theoretical Moment-Curvature Relationships for RC Members and Comparison with Experimental Data”, Sixth International Congress on Advances in Civil Engineering, 6-8 October Bogazici University, Istanbul, Turkey, pp. 231-240, (2004).
  • [11] Jun J. and Hui W., “The Relationship between Moment and Curvature and the Elastic-Plastic Seismic Response Analysis of High Pier Section”, the Open Mechanical Engineering Journal, 9, 892-899, (2015).
  • [12] Milašinovic´ D.D., Goleš D. and Ceh A., “Rheological-Dynamical Continuum Damage Model Applied to Research of the Rotational Capacity of a Reinforced Concrete Beams”, Periodica Polytechnica Civil Engineering, 60(4), 661-667, (2016).
  • [13] Milasinovic D.D. and Goles D., “Geometric Nonlinear Analysis of Reinforced Concrete Folded Plate Structures by the Harmonic Coupled Finite Strip Method”, Periodica Polytechnica Civil Engineering, 58(3), 173–185, (2014).
  • [14] Haytham F., Isleem H.F., Wang, D. and Wang, Z., “No AccessAxial stress–strain model for square concrete columns internally confined with GFRP hoops”, Magazine of Concrete Research, 70(20), 1064-1079, (2018).
  • [15] Dong C.X., Kwan A.K.H. and Ho J.C.M., “Effects of confining stiffness and rupture strain on performance of FRP confined concrete”, Engineering Structures, 97, 1-14, (2015).
  • [16] Binici B., “An analytical model for stress–strain behavior of confined concrete”, Engineering Structures, 27(7), 1040-1051, (2005).
  • [17] Colajanni P., Papia M. and Spinella N., “Stress-Strain Law for Confined Concrete with Hardening or Softening Behavior”, Hindawi Publishing Corporation, Advances in Civil Engineering, Volume 2013, Article ID 804904, 11,(2013).
  • [18] TBEC, Turkish Building Earthquake Code, Specification for Buildings to be Built in Seismic Zones, Ministry of Public Works and Settlement Government of the Republic of Turkey, (2018).
  • [19] Mander J.B., Priestley M.J.N. and Park R., “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering, ASCE, 114 (8), 1804–26, (1988).
  • [20] Saatcioglu M. and Ravzi S.R., “Strength and ductility of confined concrete”, Journal of Structural Engineering, 118(6), 1590-1607, (1992).
  • [21] SAP2000, Structural Software for Analysis and Design, Computers and Structures, Inc, USA.
  • [22] Won D.H., Han T.H., Kim S., Lee J.H. and Kang Y.J., “Confining Effect of Concrete in Double-Skinned Composite Tubular Columns”, Computers and Concrete, 14(5), 613-633, (2014).
  • [23] Song Z. and Lu Y., “Numerical Simulation of Concrete Confined by Transverse Reinforcement”, Computers and Concrete, 8(1), 23-41, (2011).
  • [24] Nematzadeh M. and Haghinejad A., “Analysis of Actively-Confined Concrete Columns Using Prestressed Steel Tubes”, Computers and Concrete, 19(5), 477-488, (2017).
  • [25] Popovics S., “A numerical approach to the complete stress-strain curves for concrete”, Cement and Concrete Research, 3(5), 583-599, (1973).
  • [26] ACI318., “Building code requationuirements for RC and commentary”, American Concrete Institute Committee, ISBN: 978-0-87031-930-3. (2014).
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Saeid Foroughi 0000-0002-7556-2118

Bahadır Yüksel 0000-0002-4175-1156

Project Number -
Publication Date December 16, 2022
Submission Date May 1, 2021
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Foroughi, S., & Yüksel, B. (2022). Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models. Politeknik Dergisi, 25(4), 1447-1462. https://doi.org/10.2339/politeknik.930774
AMA Foroughi S, Yüksel B. Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models. Politeknik Dergisi. December 2022;25(4):1447-1462. doi:10.2339/politeknik.930774
Chicago Foroughi, Saeid, and Bahadır Yüksel. “Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models”. Politeknik Dergisi 25, no. 4 (December 2022): 1447-62. https://doi.org/10.2339/politeknik.930774.
EndNote Foroughi S, Yüksel B (December 1, 2022) Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models. Politeknik Dergisi 25 4 1447–1462.
IEEE S. Foroughi and B. Yüksel, “Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models”, Politeknik Dergisi, vol. 25, no. 4, pp. 1447–1462, 2022, doi: 10.2339/politeknik.930774.
ISNAD Foroughi, Saeid - Yüksel, Bahadır. “Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models”. Politeknik Dergisi 25/4 (December 2022), 1447-1462. https://doi.org/10.2339/politeknik.930774.
JAMA Foroughi S, Yüksel B. Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models. Politeknik Dergisi. 2022;25:1447–1462.
MLA Foroughi, Saeid and Bahadır Yüksel. “Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1447-62, doi:10.2339/politeknik.930774.
Vancouver Foroughi S, Yüksel B. Investigation of Nonlinear Behavior of the Reinforced Concrete Columns for Different Confined Concrete Models. Politeknik Dergisi. 2022;25(4):1447-62.