Research Article
BibTex RIS Cite

Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel

Year 2022, Volume: 25 Issue: 4, 1769 - 1775, 16.12.2022
https://doi.org/10.2339/politeknik.996354

Abstract

Our study has been investigated nanofluids' heat transfer performance in a wavy microchannel using theoretical and computational fluid dynamics. Al2O3, CuO, Fe2O3, TiO2 and SiO2 have been used in the calculations as nanoparticles. Volumetric nanoparticle ratios in the nanofluid are 1%, 2%, 3% and 4%. Outlet temperatures, Nusselt number, thermal conductivity efficency and convective heat transfer coefficients of nanofluids at 100, 250, 500 and 1000 Reynolds numbers have been investigated. It observed that the heat transfer performance increased thanks to the increasing Reynolds number and the increasing percentage volumetric nanoparticle ratio.

References

  • [1] Kadam, S. T., & Kumar, R., ‘Twenty first century cooling solution: Microchannel heat sinks’, International Journal of Thermal Sciences, 85:73-92, (2014).
  • [2] Tuckerman, D. B., & Pease, R. F. W., ‘High-performance heat sinking for VLSI’, IEEE Electron device letters, 2(5): 126-129, (1981).
  • [3] Naqiuddin, N. H., Saw, L. H., Yew, M. C., Yusof, F., Ng, T. C., & Yew, M. K., ‘Overview of micro-channel design for high heat flux application’. Renewable and Sustainable Energy Reviews, 82: 901-914. (2018).
  • [4] Zhou, J., Cao, X., Zhang, N., Yuan, Y., Zhao, X., & Hardy, D., Micro-channel heat sink: a review. Journal of Thermal Science, 29(6): 1431- 1462, (2020).
  • [5] Kandlikar, S. G., & Grande, W. J., ‘Evolution of microchannel flow passages--thermohydraulic performance and fabrication technology’, Heat transfer engineering, 24(1): 3-17. (2003).
  • [6] Vinoth, R., & Kumar, D. S., ‘Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink’, International Communications in Heat and Mass Transfer, 87: 270-276, (2017).
  • [7] Tran, N., Chang, Y. J., & Wang, C. C., ‘Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of Al2O3 and TiO2’, International Journal of Heat and Mass Transfer, 117: 787-798, (2018).
  • [8] Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darhuber, A., & Harting, J., ‘Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink’, Applied Thermal Engineering, 36: 260-268, (2012).
  • [9] Azizi, Z., Alamdari, A., & Malayeri, M. R., ‘Convective heat transfer of Cu–water nanofluid in a cylindrical microchannel heat sink’, Energy Conversion and Management, 101: 515-524, (2015).
  • [10] Duangthongsuk, W., & Wongwises, S., ‘An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures’, Experimental Thermal and Fluid Science, 87: 30- 39, (2017).
  • [11] Yu, J., Kang, S. W., Jeong, R. G., & Banerjee, D., ‘Experimental validation of numerical predictions for forced convective heat transfer of nanofluids in a microchannel’, International Journal of Heat and Fluid Flow, 62: 203-212, (2016).
  • [12] Thansekhar, M. R., & Anbumeenakshi, C., ‘Experimental investigation of thermal performance of microchannel heat sink with nanofluids Al 2 O 3/Water and SiO 2/Water’, Experimental Techniques, 41(4): 399-406, (2017).
  • [13] Ansys R2 2018 Engineering Data Sources , Thermal Materials.
  • [14] Peyghambarzadeh, S. M., Hashemabadi, S. H., Naraki, M., & Vermahmoudi, Y., ‘Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator’, Applied Thermal Engineering, 52(1): 8-16, (2013) .
  • [15] https://www.azom.com/properties.aspx?ArticleID=1179, Date of Visiting: 13.09.2021.
  • [16] Maxwell, J. C., ‘A treatise on electricity and magnetism’, (Vol. 1). Clarendon press., (1873).
  • [17] Yu, W., & Choi, S. U. S., ‘The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model’, Journal of nanoparticle research, 5(1): 167-171, (2003).
  • [18] Wang, X., Xu, X., & Choi, S. U., ‘Thermal conductivity of nanoparticle-fluid mixture’, Journal of thermophysics and heat transfer, 13(4): 474-480, (1999).
  • [19] Xuan, Y., & Roetzel, W., ‘Conceptions for heat transfer correlation of nanofluids’, International Journal of heat and Mass transfer, 43(19): 3701-3707, (2000).
  • [20] Duangthongsuk, W., & Wongwises, S., ‘Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid’, International Communications in Heat and Mass Transfer, 35(10): 1320-1326, (2008).
  • [21] Masuda, H., Ebata, A., Teramae, K., Hishinuma N., ‘Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles’, Netsu Bussei, Volume 7, Issue (4):227-233, (1993).
  • [22] Lee, S., Choi, S. S., Li, S. A., Eastman, J. A., ‘Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles’ , Journal of Heat Transfer, Vol. 121, No. 2: 280-289, (1999).
  • [23] Maxwell, J. C., ‘A Treatise on Electricity and Magnetism’, 2nd ed., vol. 1, Clarendon Press, Oxford, U.K., (1881).
  • [24] Incropera, F. P., DeWitt D. P., ‘Fundamentals of Heat and Mass Transfer’, John Wiley, New York, (2002).
  • [25] Topuz, A., Engin, T., Özalp, A. A., Erdoğan, B., Mert, S., & Yeter, A., ‘Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel’, Journal of Thermal Analysis and Calorimetry, 131(3): 2843-2863, (2018).
  • [26] Putra, N., Septiadi, W. N., Julian, G., Maulana, A., & Irwansyah, R., ‘An experimental study on thermal performance of nano fluids in microchannel heat exchanger’, International Journal of Technology, 2: 167-177. (2013).
  • [27] Wu, X., Wu, H., & Cheng, P., ‘Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels.’ Journal of micromechanics and microengineering, 19(10): 105020. (2009) .

Dalgalı Mikrokanalda Nanoakışkanların Laminer Akışta Isı Transfer Performansının Sayısal Olarak İncelenmesi

Year 2022, Volume: 25 Issue: 4, 1769 - 1775, 16.12.2022
https://doi.org/10.2339/politeknik.996354

Abstract

Çalışmada, teorik analiz ve hesaplamalı akışkanlar dinamiği kullanılarak dalgalı mikrokanalda nanoakışkanların ısı transfer performansı araştırılmıştır. Al2O3, CuO, Fe2O3, TiO2 ve SiO2 nanopartikül olarak hesaplamalarda kullanılmıştır. Nanopartiküllerin nanoakışkan içerisindeki hacimsel oranı sırasıyla 1%, 2%, 3% ve 4% şeklindedir. Nanoakışkanların 100, 250, 500 ve 1000 Reynolds sayısında çıkış sıcaklıkları, Nusselt sayısı, termal iletkenlik verimliliği ve termal taşınım katsayıları incelenmiştir. Artan Reynolds sayısı ve artan hacimsel nanoparçacık oranı sayesinde ısı transfer performansının arttığı gözlemlenmiştir.

References

  • [1] Kadam, S. T., & Kumar, R., ‘Twenty first century cooling solution: Microchannel heat sinks’, International Journal of Thermal Sciences, 85:73-92, (2014).
  • [2] Tuckerman, D. B., & Pease, R. F. W., ‘High-performance heat sinking for VLSI’, IEEE Electron device letters, 2(5): 126-129, (1981).
  • [3] Naqiuddin, N. H., Saw, L. H., Yew, M. C., Yusof, F., Ng, T. C., & Yew, M. K., ‘Overview of micro-channel design for high heat flux application’. Renewable and Sustainable Energy Reviews, 82: 901-914. (2018).
  • [4] Zhou, J., Cao, X., Zhang, N., Yuan, Y., Zhao, X., & Hardy, D., Micro-channel heat sink: a review. Journal of Thermal Science, 29(6): 1431- 1462, (2020).
  • [5] Kandlikar, S. G., & Grande, W. J., ‘Evolution of microchannel flow passages--thermohydraulic performance and fabrication technology’, Heat transfer engineering, 24(1): 3-17. (2003).
  • [6] Vinoth, R., & Kumar, D. S., ‘Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink’, International Communications in Heat and Mass Transfer, 87: 270-276, (2017).
  • [7] Tran, N., Chang, Y. J., & Wang, C. C., ‘Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of Al2O3 and TiO2’, International Journal of Heat and Mass Transfer, 117: 787-798, (2018).
  • [8] Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darhuber, A., & Harting, J., ‘Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink’, Applied Thermal Engineering, 36: 260-268, (2012).
  • [9] Azizi, Z., Alamdari, A., & Malayeri, M. R., ‘Convective heat transfer of Cu–water nanofluid in a cylindrical microchannel heat sink’, Energy Conversion and Management, 101: 515-524, (2015).
  • [10] Duangthongsuk, W., & Wongwises, S., ‘An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures’, Experimental Thermal and Fluid Science, 87: 30- 39, (2017).
  • [11] Yu, J., Kang, S. W., Jeong, R. G., & Banerjee, D., ‘Experimental validation of numerical predictions for forced convective heat transfer of nanofluids in a microchannel’, International Journal of Heat and Fluid Flow, 62: 203-212, (2016).
  • [12] Thansekhar, M. R., & Anbumeenakshi, C., ‘Experimental investigation of thermal performance of microchannel heat sink with nanofluids Al 2 O 3/Water and SiO 2/Water’, Experimental Techniques, 41(4): 399-406, (2017).
  • [13] Ansys R2 2018 Engineering Data Sources , Thermal Materials.
  • [14] Peyghambarzadeh, S. M., Hashemabadi, S. H., Naraki, M., & Vermahmoudi, Y., ‘Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator’, Applied Thermal Engineering, 52(1): 8-16, (2013) .
  • [15] https://www.azom.com/properties.aspx?ArticleID=1179, Date of Visiting: 13.09.2021.
  • [16] Maxwell, J. C., ‘A treatise on electricity and magnetism’, (Vol. 1). Clarendon press., (1873).
  • [17] Yu, W., & Choi, S. U. S., ‘The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model’, Journal of nanoparticle research, 5(1): 167-171, (2003).
  • [18] Wang, X., Xu, X., & Choi, S. U., ‘Thermal conductivity of nanoparticle-fluid mixture’, Journal of thermophysics and heat transfer, 13(4): 474-480, (1999).
  • [19] Xuan, Y., & Roetzel, W., ‘Conceptions for heat transfer correlation of nanofluids’, International Journal of heat and Mass transfer, 43(19): 3701-3707, (2000).
  • [20] Duangthongsuk, W., & Wongwises, S., ‘Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid’, International Communications in Heat and Mass Transfer, 35(10): 1320-1326, (2008).
  • [21] Masuda, H., Ebata, A., Teramae, K., Hishinuma N., ‘Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles’, Netsu Bussei, Volume 7, Issue (4):227-233, (1993).
  • [22] Lee, S., Choi, S. S., Li, S. A., Eastman, J. A., ‘Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles’ , Journal of Heat Transfer, Vol. 121, No. 2: 280-289, (1999).
  • [23] Maxwell, J. C., ‘A Treatise on Electricity and Magnetism’, 2nd ed., vol. 1, Clarendon Press, Oxford, U.K., (1881).
  • [24] Incropera, F. P., DeWitt D. P., ‘Fundamentals of Heat and Mass Transfer’, John Wiley, New York, (2002).
  • [25] Topuz, A., Engin, T., Özalp, A. A., Erdoğan, B., Mert, S., & Yeter, A., ‘Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel’, Journal of Thermal Analysis and Calorimetry, 131(3): 2843-2863, (2018).
  • [26] Putra, N., Septiadi, W. N., Julian, G., Maulana, A., & Irwansyah, R., ‘An experimental study on thermal performance of nano fluids in microchannel heat exchanger’, International Journal of Technology, 2: 167-177. (2013).
  • [27] Wu, X., Wu, H., & Cheng, P., ‘Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels.’ Journal of micromechanics and microengineering, 19(10): 105020. (2009) .
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mutlu Tarık Çakır 0000-0002-0107-594X

Deniz Aktürk 0000-0002-1058-1211

Publication Date December 16, 2022
Submission Date September 16, 2021
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Çakır, M. T., & Aktürk, D. (2022). Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel. Politeknik Dergisi, 25(4), 1769-1775. https://doi.org/10.2339/politeknik.996354
AMA Çakır MT, Aktürk D. Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel. Politeknik Dergisi. December 2022;25(4):1769-1775. doi:10.2339/politeknik.996354
Chicago Çakır, Mutlu Tarık, and Deniz Aktürk. “Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel”. Politeknik Dergisi 25, no. 4 (December 2022): 1769-75. https://doi.org/10.2339/politeknik.996354.
EndNote Çakır MT, Aktürk D (December 1, 2022) Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel. Politeknik Dergisi 25 4 1769–1775.
IEEE M. T. Çakır and D. Aktürk, “Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel”, Politeknik Dergisi, vol. 25, no. 4, pp. 1769–1775, 2022, doi: 10.2339/politeknik.996354.
ISNAD Çakır, Mutlu Tarık - Aktürk, Deniz. “Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel”. Politeknik Dergisi 25/4 (December 2022), 1769-1775. https://doi.org/10.2339/politeknik.996354.
JAMA Çakır MT, Aktürk D. Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel. Politeknik Dergisi. 2022;25:1769–1775.
MLA Çakır, Mutlu Tarık and Deniz Aktürk. “Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1769-75, doi:10.2339/politeknik.996354.
Vancouver Çakır MT, Aktürk D. Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel. Politeknik Dergisi. 2022;25(4):1769-75.