Development of AZO TCOs with ALD for HEMT and HJSC Solar Cell Applications
Year 2023,
Volume: 26 Issue: 1, 209 - 214, 27.03.2023
Deniz Tugrul
,
Hüseyin Çakmak
,
Ekmel Özbay
,
Bilge İmer
Abstract
Transparent Conductive Oxide (TCO) films are widely used in optoelectronic devices, such as solar cells, LEDs, and Lasers. Utilization of these contacts directly affects the device efficiencies. Purpose of this study is to produce and optimize properties of Aluminum doped Zinc Oxide (AZO) using a vapor phase technique, Atomic Layer Deposition (ALD) for (n+) a-Si:H surface of silicon Heterojunction Solar Cells (HJSCs) and High Electron Mobility Transistor (HEMT) applications. This study is focused on the effect of the deposition temperature and aluminum atomic concentration on structural, electrical and optical properties of ALD grown AZO ohmic contact films. The results show that as-deposited films have 80-90% transmittance in the visible spectra, low resistance (2.04x10-3 ohm.cm) and mobility value of 5.25 cm2/V.s.
References
- [1] Novák P., “Possibilities of Increasing the Usability of Sputtered AZO Films as a Transparent Electrode”, Physica Status Solidi (A), 216(7): 1–10, (2019).
- [2] Sharma S., Shriwastava S., Kumar S., Bhatt K., and Tripathi C.C., “Alternative transparent conducting electrode materials for flexible optoelectronic devices”, Opto-Electronics Review, 26(3): 223–235, (2018).
- [3] Deen D. A., Storm D. F., Katzer D. S., Meyer D. J., and Binari S. C., “Dependence of ohmic contact resistance on barrier thickness of AlN/GaN HEMT structures” Solid-State Electronics, 54(6): 613–615,
(2010).
- [4] Mat Desa M. K., Sapeai S., Azhari A. W., Sopian K., Sulaiman M. Y., Amin N., and Zaidi S. H., “Silicon back contact solar cell configuration: A pathway towards higher efficiency”, Renewable and
Sustainable Energy Reviews, 60: 1516–1532, (2016).
- [5] Dullweber T., and Schmidt J., “Industrial Silicon Solar Cells Applying the Passivated Emitter and Rear Cell (PERC) Concept-A Review”, IEEE Journal of Photovoltaics, 6(5): 1366–1381, (2016).
- [6] Korte L., Conrad E., Angermann H., Stangl R., and Schmidt M., “Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization” Solar Energy Materials and Solar Cells, 93(6–7):
905–910, (2009).
- [7] Khan F., Baek S. H., Singh,S. N., Singh P. K., and Kim J. H., “Effective passivation of silicon surface by AZO films: Application in bifacial solar cells” Solar Energy, 97: 474–483, (2013).
- [8] Cai S. J., Li R., Chen Y. L., Wong L., Wu,W. G., Thomas S. G., and Wang K. L., “High performance AlGaN/GaN HEMT with improved ohmic contacts” Electronics Letters, 34(24): 2354–2356, (1998).
- [9] Zeng F., An J.X., Zhou G., Li W.,Wang H., Duan T., Jlang L., and Yu H. “A comprehensive review of recent progress on GaN high electron mobility transistors: Devices, fabrication and reliability”,
Electronics (Switzerland), 7(12): 377, (2018).
- [10] Nirmal A., “Handbook for III-V High Electron Mobility Transistor Technologies (Vol.3)”, CRC Press, New York, (2019).
- [11] Feng Q., Li L. M., Hao Y., Ni J. Y., and Zhang J. C., “The improvement of ohmic contact of Ti/Al/Ni/Auto AlGaN/GaN HEMT by multi-step annealing method”, Solid-State Electronics, 53(9): 955–958,
(2009).
- [12] Soltani A., BenMoussa A., Touati S., Hoël V., De Jaeger J. C., Laureyns J., Cordier Y, Marhic C., Djouadi M.A., and Dua, C., “Development and analysis of low resistance ohmic contact to n-AlGaN/GaN
HEMT”, Diamond and Related Materials, 16(2): 262–266, (2007).
- [13] Deen D. A., Storm D. F., Katzer D. S., Meyer D. J., and Binari S. C., “Dependence of ohmic contact resistance on barrier thickness of AlN/GaN HEMT structures”, Solid-State Electronics, 54(6): 613–615,
(2010).
- [14] Piazza M., Dua C., Oualli M., Morvan E., Carisetti D., and Wyczisk F., “Degradation of TiAlNiAu as ohmic contact metal for GaN HEMTs “, Microelectronics Reliability, 49(9–11): 1222–1225 (2009).
- [15] Leone S., Brueckner P., Kirste L., Doering P., Fuchs T., Mueller S., Prescher M., Quay R., and Ambacher O., “Optimization of Metal-Organic Chemical Vapor Deposition Regrown n-GaN”, Physica Status
Solidi (B) Basic Research, 257(3): , 1900436 (2020).
- [16] Yu H., McCarthy L., Keller S., Denbaars S., Speck J., and Mishra U., “Ion implanted AlGaN-GaN HEMTs with nonalloyed Ohmic contacts”, IEEE Electron Device Letters, 26 (5): 283-285, (2005).
- [17] Banerjee P., Lee W., Bae K., Lee S.B., and Rubloff G.W. “Structural , electrical , and optical properties of atomic layer deposition Al- doped ZnO films”, Journal of Apllied Physics, 108: 043504 (2010).
- [18] Luka G, Krajewski TA, Witkowski BS, Wisz G., Virt I.S., Guziewicz E., and Godlewski M., “Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications”,
Journal of Materials Science: Materials in Electronics, 22:1810-1815 (2010).
AlGaN/GaN Temelli YEMT ve Heteroeklem Güneş Hücreleri Için ALD Yöntemi ile Alüminyum Katkılı Çinko Oksit(AZO) Geliştirme
Year 2023,
Volume: 26 Issue: 1, 209 - 214, 27.03.2023
Deniz Tugrul
,
Hüseyin Çakmak
,
Ekmel Özbay
,
Bilge İmer
Abstract
Transparan İletken Oksit (TCO) ince filmler günümüzde güneş pilleri, LED’ler, lazerler gibi optoelektronik cihazlarda sıklıkla kullanılmaktadır. Bu kontakların kullanımı cihazların verimliliğini doğrudam etkilemektedir. Bu çalışmanın amacı heteroeklemli güneş hücrelerinin (HJSCs) (n+) a-Si:H yüzünde ve yüksek elektron hareketliliği olan tranzistörlerde (HEMT) kullanmak üzere atomik katman kaplama (ALD) tekniği kullanarak alüminyum katkılı çinko oksit (AZO) üretmek ve optimize etmektir. Bu çalışmada büyütme sıcaklığı ve alüminyum katkılama oranının ALD’de büyütülmüş AZO’nun yapısal, elektriksel ve optik özelliklerine etkisi çalışılmıştır.Sonuçlar göstermiştir ki filmler görünür bölgede %80-90 arasında ışık geçirgenliğine, düşük elektriksel rezistansa (2.04x10-3 ohm.cm) ve 5.25 cm2/V.s değerinde mobiliteye sahiptir.
References
- [1] Novák P., “Possibilities of Increasing the Usability of Sputtered AZO Films as a Transparent Electrode”, Physica Status Solidi (A), 216(7): 1–10, (2019).
- [2] Sharma S., Shriwastava S., Kumar S., Bhatt K., and Tripathi C.C., “Alternative transparent conducting electrode materials for flexible optoelectronic devices”, Opto-Electronics Review, 26(3): 223–235, (2018).
- [3] Deen D. A., Storm D. F., Katzer D. S., Meyer D. J., and Binari S. C., “Dependence of ohmic contact resistance on barrier thickness of AlN/GaN HEMT structures” Solid-State Electronics, 54(6): 613–615,
(2010).
- [4] Mat Desa M. K., Sapeai S., Azhari A. W., Sopian K., Sulaiman M. Y., Amin N., and Zaidi S. H., “Silicon back contact solar cell configuration: A pathway towards higher efficiency”, Renewable and
Sustainable Energy Reviews, 60: 1516–1532, (2016).
- [5] Dullweber T., and Schmidt J., “Industrial Silicon Solar Cells Applying the Passivated Emitter and Rear Cell (PERC) Concept-A Review”, IEEE Journal of Photovoltaics, 6(5): 1366–1381, (2016).
- [6] Korte L., Conrad E., Angermann H., Stangl R., and Schmidt M., “Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization” Solar Energy Materials and Solar Cells, 93(6–7):
905–910, (2009).
- [7] Khan F., Baek S. H., Singh,S. N., Singh P. K., and Kim J. H., “Effective passivation of silicon surface by AZO films: Application in bifacial solar cells” Solar Energy, 97: 474–483, (2013).
- [8] Cai S. J., Li R., Chen Y. L., Wong L., Wu,W. G., Thomas S. G., and Wang K. L., “High performance AlGaN/GaN HEMT with improved ohmic contacts” Electronics Letters, 34(24): 2354–2356, (1998).
- [9] Zeng F., An J.X., Zhou G., Li W.,Wang H., Duan T., Jlang L., and Yu H. “A comprehensive review of recent progress on GaN high electron mobility transistors: Devices, fabrication and reliability”,
Electronics (Switzerland), 7(12): 377, (2018).
- [10] Nirmal A., “Handbook for III-V High Electron Mobility Transistor Technologies (Vol.3)”, CRC Press, New York, (2019).
- [11] Feng Q., Li L. M., Hao Y., Ni J. Y., and Zhang J. C., “The improvement of ohmic contact of Ti/Al/Ni/Auto AlGaN/GaN HEMT by multi-step annealing method”, Solid-State Electronics, 53(9): 955–958,
(2009).
- [12] Soltani A., BenMoussa A., Touati S., Hoël V., De Jaeger J. C., Laureyns J., Cordier Y, Marhic C., Djouadi M.A., and Dua, C., “Development and analysis of low resistance ohmic contact to n-AlGaN/GaN
HEMT”, Diamond and Related Materials, 16(2): 262–266, (2007).
- [13] Deen D. A., Storm D. F., Katzer D. S., Meyer D. J., and Binari S. C., “Dependence of ohmic contact resistance on barrier thickness of AlN/GaN HEMT structures”, Solid-State Electronics, 54(6): 613–615,
(2010).
- [14] Piazza M., Dua C., Oualli M., Morvan E., Carisetti D., and Wyczisk F., “Degradation of TiAlNiAu as ohmic contact metal for GaN HEMTs “, Microelectronics Reliability, 49(9–11): 1222–1225 (2009).
- [15] Leone S., Brueckner P., Kirste L., Doering P., Fuchs T., Mueller S., Prescher M., Quay R., and Ambacher O., “Optimization of Metal-Organic Chemical Vapor Deposition Regrown n-GaN”, Physica Status
Solidi (B) Basic Research, 257(3): , 1900436 (2020).
- [16] Yu H., McCarthy L., Keller S., Denbaars S., Speck J., and Mishra U., “Ion implanted AlGaN-GaN HEMTs with nonalloyed Ohmic contacts”, IEEE Electron Device Letters, 26 (5): 283-285, (2005).
- [17] Banerjee P., Lee W., Bae K., Lee S.B., and Rubloff G.W. “Structural , electrical , and optical properties of atomic layer deposition Al- doped ZnO films”, Journal of Apllied Physics, 108: 043504 (2010).
- [18] Luka G, Krajewski TA, Witkowski BS, Wisz G., Virt I.S., Guziewicz E., and Godlewski M., “Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications”,
Journal of Materials Science: Materials in Electronics, 22:1810-1815 (2010).