Research Article
BibTex RIS Cite

Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi

Year 2023, Volume: 26 Issue: 1, 73 - 79, 27.03.2023
https://doi.org/10.2339/politeknik.950183

Abstract

Bu çalışmada kısa saplı ve uzun saplı kalça protezleri mekanik açıdan karşılaştırılmıştır. Protez ve kemikler bilgisayar ortamında modellenmiş ve protezlerin mekanik performansını incelemek amacıyla birleştirilmiştir. Sonuçların değerlendirilmesi için protez komponentleri ve çimentoda oluşan eş değer gerilme (von Mises) değerleri dikkate alınmıştır. Sonuç olarak, total kalça ameliyatlarında kısa saplı protez kullanımın implant hasar açısından daha avantajlı olduğu ve tasarımsal iyileştirmeler yaparak uzun saplı kalça protezinin yerini alma potansiyeline sahip olabileceği öngörülmüştür.

References

  • [1] Pruitt Lisa A., Ayyana M. Chakravartula. "Mechanics of biomaterials: fundamental principles for implant design." MRS Bulletin, 37(7): 698, (2012).
  • [2] Scott R.D., Turner R.H.. " Avoiding complications with long-stem total hip-replacement arthroplasty." The Journal of Bone & Joint Surgery, 57(5): 722, (1975):
  • [3] Ong K. L., Kurtz S. M., Manley M. T. Rushton, N., Mohammed N. A., Field, R. E " Biomechanics of the Birmingham hip resurfacing arthroplasty." The Journal of bone and joint surgery. British volume, 88 (8): 1110-1115, (2006).
  • [4] Field R. E., and Rushton N. " Proximal femoral surface strain gauge analysis of a new epiphyseal prosthesis. " Journal of biomedical engineering, 11(2): 123-129, (2019).
  • [5] Amstutz H. C Grigoris P , Dorey FJ. " Evolution and future of surface replacement of the hip. " Orthop Sci, 3(3): 169-186, (1998).
  • [6] M. O’Neill and P. E. Beaulé, “Metal-on-Metal Hip Resurfacing Arthroplasty”, Surgical Treatment of Hip Arthritis, W.B. Saunders, Philadelphia, (2009)
  • [7] Martelli S., Taddei F., Cristofolini L., Schileo E., Rushton N., and Viceconti M. " A new hip epiphyseal prosthesis: Design revision driven by a validated numerical procedure." Medical Engineering & Physics Bulletin, 33(10): 1203-1211, (2011).
  • [8] Cristofolini L., Juszczyk, M. Taddei, F. Field, R. E. Rushton, N., and Viceconti, M " Stress shielding and stress concentration of contemporary epiphyseal hip prostheses." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medic, 223(1): 27-44, (2009).
  • [9] Cristofolini, L. Juszczyk, M. Taddei, F. Field, R. E. Rushton N., and Viceconti M. “Assessment of femoral neck fracture risk for a novel proximal epiphyseal hip prosthesis”, Clinical Biomechanics, 26(6): 585–591, (2011).
  • [10] Taddei, F. Martelli, S. Gill, H. S. Cristofolini, L., and Viceconti, M “Finite Element Modeling of Resurfacing Hip Prosthesis: Estimation of Accuracy Through Experimental Validation”, Journal of Biomechanical Engineering, 13(2) (2012).
  • [11] Martelli, S. Taddei, F. Schileo, E. Cristofolini, L., Rushton N., and Viceconti M “Biomechanical robustness of a new proximal epiphyseal hip replacement to patient variability and surgical uncertainties: A FE study”, MRS Bull, 34(2): 161-171, (2012).
  • [12] Martelli S., Taddei F., Cristofolini L., Gill H. S., and Viceconti M “Extensive Risk Analysis of Mechanical Failure for an Epiphyseal Hip Prothesis: A Combined Numerical-Experimental Approach”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225(2): 126-140, (2010).
  • [13] Çelik T., Mutlu İ., Özkan A., and Kişioğlu Y “The effect of cement on hip stem fixation: a biomechanical study”, Australasian Physical & Engineering Sciences in Medicine,40(2): 698, (2017).
  • [14] Rh, J. Y. Hobatho, M. C., and Ashman, R. B.” Relations of mechanical properties to density and CT numbers in human bone.”, Medical engineering & physics, 37(7): 698-698, (1995)
  • [15] www.jnjmedicaldevices.com, ”corail-pinnacle”, (2021).
  • [16] Taddei F, N. Schileo E Helgason B, Cristofolini L, Viceconti, M. “The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements.”, Med Eng Phys,29(9): 973-979 , (2007).
  • [17] Ramaniraka N. A. Rakotomanana, L. R. Leyvraz P. F. “The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface”, J Bone Joint Surg Br,82(2): 297-303, (2000).
  • [18] Norman T. L., Shultz T., Noble, G. Gruen, T. A. and Blaha, J. D. “Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA)”, Journal of Biomechanics, 46(5): 946-955, (2012).
  • [19] Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda “ Hip contact forces and gait patterns from routine activities”, J. Biomech, 34: 859–871, (2001).
  • [20] Duda GN, Schneider E, Chao E.Y.S. “Internal forces and moments in the femur during walking”, J. Biomech, 30:. 933–941, (1997).
  • [21] Steffen R. T., Smith S. R., Urban J. P., McLardySmith, P., Beard D. J., Gill H. S., and Murray, D. W “The effect of hip resurfacing on oxygen concentration in the femoral head”, J. Bone Jt Surg. Br, 87(11): 1468–1474, (2005).
  • [22] McMinn D., Daniel J. “History and modern concepts in surface replacement”, Proc Instn Mech Engrs H J Eng Medicine, 220(2): 239-251, (2006).
  • [23] Schnurr C., Nessler J., Meyer, C. Schild, H.H. Koebke, J. Konig, D.P. “Is a valgus position of the femoral component in hip resurfacing protective against spontaneous fracture of the femoral neck?: a biomechanical study”, J Bone Joint Surg Br, 91: 545–551, (2009).
  • [24] Davis E.T., Olsen, M. Zdero, R. Waddell, J.P. Schemitsch, E.H. “Predictors of femoral neck fracture following hip resurfacing: a cadaveric study”, IMechE Conference: Engineers & Surgeons: Joined at the Hip," MRS Bulletin, London, 241–243, (2007).
  • [25] Bugbee WD, Culpepper WJ 2nd, Engh CA Jr, Engh CA Sr. “Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement”, J Bone Joint Surg Am, 79(7): 1007- 1012, (1997).
  • [26] Hu C.Y., Yoon, T.R “Recent updates for biomaterials used in total hip arthroplastyRecent updates for biomaterials used in total hip arthroplasty”, Biomater Res, 22(1): 33, (2018).
  • [27] Pérez-Moro, Olga S.Fernández-Cuadros, Marcos E.Neira-Borrajo, InmaculadaAranda-Izquierdo, EduvigisAlbaladejo-Florin, María J.Llopis-Miró, Rafael “Short and mid-term outcomes and functional results in metal-on-metal hip resurfacing arthroplasty at 5 years follow-up: the Spanish experience”, BMC Musculoskelet Disord , 20: 20, s. 20, (2019).
  • [28] Ford M.C, Hellman M., Kazarian G.S., Clohisy J.C., Nunley R.M., Barrack R.L. “Five to Ten-Year Results of the Birmingham Hip Resurfacing Implant in the U.S.: A Single Institution's Experience”, J Bone Joint Surg Am, 100(21): 1879-1887, (2018).
  • [29] Uemura K., Takao M., Hamada H., Sakai T., Ohzono K, Sugano N. “Long-term results of Birmingham hip resurfacing arthroplasty in Asian patients”, J Artif Organs, 21(1): 117-123, (2018).
  • [30] Çelik, T., Kişioğlu, Y. “Evaluation of new hip prosthesis design with finite element analysis”, Australasian physical & engineering sciences in medicine, 42(4), 1033-1038. (2019).
  • [31] A. Z. Senalp, O. Kayabasi, ve H. Kurtaran, “Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis,” Mater. Des., 28(5), 1577–1583, (2007).
  • [32] Bahraminasab, M., & Jahan, A. “Material selection for femoral component of total knee replacement using comprehensive VIKOR” Materials & Design, 32(8-9), 4471-4477, (2011).

Mechanıcal Evaluatıon Of Epıphyseal Prosthesıs As An Alternatıve To Conventıonal Total Hıp Replacement

Year 2023, Volume: 26 Issue: 1, 73 - 79, 27.03.2023
https://doi.org/10.2339/politeknik.950183

Abstract

In this study, short-stem and long-stem hip prostheses were compared mechanically. The prosthesis and bones are computer modeled and combined to examine the mechanical performance of prosthesis. For the evaluation of the results, the equivalent stress values in the prosthetic components and cement were taken into account. As a result, it has been predicted that the use of a short stem is more advantageous in terms of implant damage and may have the potential to replace long stem hip prosthesis by making design improvements in the total hip surgical operations.

References

  • [1] Pruitt Lisa A., Ayyana M. Chakravartula. "Mechanics of biomaterials: fundamental principles for implant design." MRS Bulletin, 37(7): 698, (2012).
  • [2] Scott R.D., Turner R.H.. " Avoiding complications with long-stem total hip-replacement arthroplasty." The Journal of Bone & Joint Surgery, 57(5): 722, (1975):
  • [3] Ong K. L., Kurtz S. M., Manley M. T. Rushton, N., Mohammed N. A., Field, R. E " Biomechanics of the Birmingham hip resurfacing arthroplasty." The Journal of bone and joint surgery. British volume, 88 (8): 1110-1115, (2006).
  • [4] Field R. E., and Rushton N. " Proximal femoral surface strain gauge analysis of a new epiphyseal prosthesis. " Journal of biomedical engineering, 11(2): 123-129, (2019).
  • [5] Amstutz H. C Grigoris P , Dorey FJ. " Evolution and future of surface replacement of the hip. " Orthop Sci, 3(3): 169-186, (1998).
  • [6] M. O’Neill and P. E. Beaulé, “Metal-on-Metal Hip Resurfacing Arthroplasty”, Surgical Treatment of Hip Arthritis, W.B. Saunders, Philadelphia, (2009)
  • [7] Martelli S., Taddei F., Cristofolini L., Schileo E., Rushton N., and Viceconti M. " A new hip epiphyseal prosthesis: Design revision driven by a validated numerical procedure." Medical Engineering & Physics Bulletin, 33(10): 1203-1211, (2011).
  • [8] Cristofolini L., Juszczyk, M. Taddei, F. Field, R. E. Rushton, N., and Viceconti, M " Stress shielding and stress concentration of contemporary epiphyseal hip prostheses." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medic, 223(1): 27-44, (2009).
  • [9] Cristofolini, L. Juszczyk, M. Taddei, F. Field, R. E. Rushton N., and Viceconti M. “Assessment of femoral neck fracture risk for a novel proximal epiphyseal hip prosthesis”, Clinical Biomechanics, 26(6): 585–591, (2011).
  • [10] Taddei, F. Martelli, S. Gill, H. S. Cristofolini, L., and Viceconti, M “Finite Element Modeling of Resurfacing Hip Prosthesis: Estimation of Accuracy Through Experimental Validation”, Journal of Biomechanical Engineering, 13(2) (2012).
  • [11] Martelli, S. Taddei, F. Schileo, E. Cristofolini, L., Rushton N., and Viceconti M “Biomechanical robustness of a new proximal epiphyseal hip replacement to patient variability and surgical uncertainties: A FE study”, MRS Bull, 34(2): 161-171, (2012).
  • [12] Martelli S., Taddei F., Cristofolini L., Gill H. S., and Viceconti M “Extensive Risk Analysis of Mechanical Failure for an Epiphyseal Hip Prothesis: A Combined Numerical-Experimental Approach”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225(2): 126-140, (2010).
  • [13] Çelik T., Mutlu İ., Özkan A., and Kişioğlu Y “The effect of cement on hip stem fixation: a biomechanical study”, Australasian Physical & Engineering Sciences in Medicine,40(2): 698, (2017).
  • [14] Rh, J. Y. Hobatho, M. C., and Ashman, R. B.” Relations of mechanical properties to density and CT numbers in human bone.”, Medical engineering & physics, 37(7): 698-698, (1995)
  • [15] www.jnjmedicaldevices.com, ”corail-pinnacle”, (2021).
  • [16] Taddei F, N. Schileo E Helgason B, Cristofolini L, Viceconti, M. “The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements.”, Med Eng Phys,29(9): 973-979 , (2007).
  • [17] Ramaniraka N. A. Rakotomanana, L. R. Leyvraz P. F. “The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface”, J Bone Joint Surg Br,82(2): 297-303, (2000).
  • [18] Norman T. L., Shultz T., Noble, G. Gruen, T. A. and Blaha, J. D. “Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA)”, Journal of Biomechanics, 46(5): 946-955, (2012).
  • [19] Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda “ Hip contact forces and gait patterns from routine activities”, J. Biomech, 34: 859–871, (2001).
  • [20] Duda GN, Schneider E, Chao E.Y.S. “Internal forces and moments in the femur during walking”, J. Biomech, 30:. 933–941, (1997).
  • [21] Steffen R. T., Smith S. R., Urban J. P., McLardySmith, P., Beard D. J., Gill H. S., and Murray, D. W “The effect of hip resurfacing on oxygen concentration in the femoral head”, J. Bone Jt Surg. Br, 87(11): 1468–1474, (2005).
  • [22] McMinn D., Daniel J. “History and modern concepts in surface replacement”, Proc Instn Mech Engrs H J Eng Medicine, 220(2): 239-251, (2006).
  • [23] Schnurr C., Nessler J., Meyer, C. Schild, H.H. Koebke, J. Konig, D.P. “Is a valgus position of the femoral component in hip resurfacing protective against spontaneous fracture of the femoral neck?: a biomechanical study”, J Bone Joint Surg Br, 91: 545–551, (2009).
  • [24] Davis E.T., Olsen, M. Zdero, R. Waddell, J.P. Schemitsch, E.H. “Predictors of femoral neck fracture following hip resurfacing: a cadaveric study”, IMechE Conference: Engineers & Surgeons: Joined at the Hip," MRS Bulletin, London, 241–243, (2007).
  • [25] Bugbee WD, Culpepper WJ 2nd, Engh CA Jr, Engh CA Sr. “Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement”, J Bone Joint Surg Am, 79(7): 1007- 1012, (1997).
  • [26] Hu C.Y., Yoon, T.R “Recent updates for biomaterials used in total hip arthroplastyRecent updates for biomaterials used in total hip arthroplasty”, Biomater Res, 22(1): 33, (2018).
  • [27] Pérez-Moro, Olga S.Fernández-Cuadros, Marcos E.Neira-Borrajo, InmaculadaAranda-Izquierdo, EduvigisAlbaladejo-Florin, María J.Llopis-Miró, Rafael “Short and mid-term outcomes and functional results in metal-on-metal hip resurfacing arthroplasty at 5 years follow-up: the Spanish experience”, BMC Musculoskelet Disord , 20: 20, s. 20, (2019).
  • [28] Ford M.C, Hellman M., Kazarian G.S., Clohisy J.C., Nunley R.M., Barrack R.L. “Five to Ten-Year Results of the Birmingham Hip Resurfacing Implant in the U.S.: A Single Institution's Experience”, J Bone Joint Surg Am, 100(21): 1879-1887, (2018).
  • [29] Uemura K., Takao M., Hamada H., Sakai T., Ohzono K, Sugano N. “Long-term results of Birmingham hip resurfacing arthroplasty in Asian patients”, J Artif Organs, 21(1): 117-123, (2018).
  • [30] Çelik, T., Kişioğlu, Y. “Evaluation of new hip prosthesis design with finite element analysis”, Australasian physical & engineering sciences in medicine, 42(4), 1033-1038. (2019).
  • [31] A. Z. Senalp, O. Kayabasi, ve H. Kurtaran, “Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis,” Mater. Des., 28(5), 1577–1583, (2007).
  • [32] Bahraminasab, M., & Jahan, A. “Material selection for femoral component of total knee replacement using comprehensive VIKOR” Materials & Design, 32(8-9), 4471-4477, (2011).
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

İbrahim Mutlu 0000-0003-3864-3725

Ayberk Dizdar 0000-0002-7835-0831

Publication Date March 27, 2023
Submission Date June 10, 2021
Published in Issue Year 2023 Volume: 26 Issue: 1

Cite

APA Mutlu, İ., & Dizdar, A. (2023). Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi. Politeknik Dergisi, 26(1), 73-79. https://doi.org/10.2339/politeknik.950183
AMA Mutlu İ, Dizdar A. Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi. Politeknik Dergisi. March 2023;26(1):73-79. doi:10.2339/politeknik.950183
Chicago Mutlu, İbrahim, and Ayberk Dizdar. “Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi”. Politeknik Dergisi 26, no. 1 (March 2023): 73-79. https://doi.org/10.2339/politeknik.950183.
EndNote Mutlu İ, Dizdar A (March 1, 2023) Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi. Politeknik Dergisi 26 1 73–79.
IEEE İ. Mutlu and A. Dizdar, “Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi”, Politeknik Dergisi, vol. 26, no. 1, pp. 73–79, 2023, doi: 10.2339/politeknik.950183.
ISNAD Mutlu, İbrahim - Dizdar, Ayberk. “Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi”. Politeknik Dergisi 26/1 (March 2023), 73-79. https://doi.org/10.2339/politeknik.950183.
JAMA Mutlu İ, Dizdar A. Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi. Politeknik Dergisi. 2023;26:73–79.
MLA Mutlu, İbrahim and Ayberk Dizdar. “Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi”. Politeknik Dergisi, vol. 26, no. 1, 2023, pp. 73-79, doi:10.2339/politeknik.950183.
Vancouver Mutlu İ, Dizdar A. Geleneksel Total Kalça Protezine Alternatif Epifiz Protezinin Mekanik Değerlendirmesi. Politeknik Dergisi. 2023;26(1):73-9.