Research Article
BibTex RIS Cite

NACA 6409 ve Eppler 423 Kanat Profillerinin Sayısal Analizi

Year 2023, Volume: 26 Issue: 1, 39 - 47, 27.03.2023
https://doi.org/10.2339/politeknik.959517

Abstract

Bu çalışma, düşük Reynolds sayılarında yüksek taşıma sağlayan yaygın olarak kullanılan iki kanat profilini, ticari kod ANSYS Fluent 19 ile çeşitli türbülans modelleri kullanarak sayısal olarak incelemeyi amaçlamaktadır. Eppler 423 kanat profilini sayısal olarak analiz etmektir. Eppler 423 kanat profili, yüksek taşıma kabiliyeti nedeniyle rüzgâr türbini kanatlarında, çapraz akış fanlarında, planörlerin ana kanatlarında, sportif uçuşlar ve yarışmalar için tasarlanmış radyo kontrollü uçaklarda yaygın kullanılan bir profildir. NACA 6409 kanat profili, serbest uçuş model uçaklarda kullanılır. Literatür taramasında k-ω SST, k-kl-ω ve 𝛾-𝑅𝑒𝜃 geçiş modellerinin sürükleme poler bölgesinin Cl-Cd tahminlerinde, geçiş bölgesi akış rejiminde ve laminer ayrılma noktasında iyi bir tahmin yeteneğine sahip olduğu görülmüştür. Çalışmada RANS modellere ek olarak laminer model de incelenmiştir. Sayısal çözümlerin doğruluğunu ve hassasiyetini sağlamak için kafes duyarlılık çalışması ve yakın duvar modeli kullanılmıştır. Akış yönü vektörü ayrışması tekniği, sadece tek bir ağ kullanarak tüm hücum açılarını simüle etme avantajını sağlamak için kullanılmıştır. Taşıma katsayısı eğrileri ve kutup şemaları, -4 derece hücum açısından başlanarak stol hücum açısına kadar oluşturulmuştur. Deneysel veriler, XFoil analiz verileri ve nümerik analiz verileri en iyi süzülme oranı- (Cl/Cd)maks ve minimum çöküş- (Cl1.5/Cd)maks kriterleri açısından değerlendirilmiştir. Beklendiği gibi, yüksek hücum açısında, üst yüzeydeki geçiş rampası ileri doğru hareket eder ve üst yüzeydeki basınç gradyanı negatif hale gelmiştir. Sonuçlar, ince ağın diğer ağ boyutlarına göre daha iyi sonuçlar verdiği; γ-Reθ SST modelinin diğer türbülans modellerine göre geçiş olayını modellemede daha başarılı olduğunu göstermiştir.

References

  • [1] Selig, M.S., Guglielmo, J.J.,“High-lift low Reynolds number airfoil design”, Journal of Aircraft, 34(1):72-79, (1997).
  • [2] Ma, R., Liu, P.,“Numerical simulation of low-Reynolds-number and high-lift airfoil S1223”. In Proceedings of the World Congress on Engineering, London, U.K., 2:1-3, (2009).
  • [3] Rahimi, H., Medjroubi, W., Stoevesandt, B., Peinke, J.,“2d numerical investigation of the laminar and turbulent flow over different airfoils using OpenFOAM”. Journal of Physics: Conference Series, IOP Publishing, Oldenburg, Germany, 555(1): 012070, (2014).
  • [4] Winslow, J., Otsuka, H., Govindarajan, B., Chopra, I.,“Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (104–105)”, Journal of Aircraft, 55(3):1050-1061, (2018).
  • [5] Morgado, J., Vizinho, R., Silvestre, M.A.R., Páscoa, J.C.,“XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils”, Aerospace Science and Technology, 52:207-214, (2016).
  • [6] Coder, J.G., Maughmer, M.D.,“Comparisons of theoretical methods for predicting airfoil aerodynamic characteristics”, Journal of Aircraft, 51(1):183-191, (2014).
  • [7] Collison, M.J., Harley, P.X., di Cugno, D.,“Experimental and Numerical Investigation of Transition Effects on a Low Reynolds Number Airfoil”, In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition: V02BT41A008-V02BT41A008, American Society of Mechanical Engineers Digital Collections, U.S., 1-11, (2017).
  • [8] Abobaker, M., Petrovic, Z., Fotev, V., Toumi, N., Ivanovic, I.,“Aerodynamic characteristics of low Reynolds number airfoils”, Technical Gazette, 24(1):111-118, (2017).
  • [9] Chen, W., Bernal, L.,“Design and performance of low Reynolds number airfoils for solar-powered flight”, In 46th AIAA Aerospace Sciences Meeting And Exhibit, Reno, Nevada, U.S.,316, (2008).
  • [10] Sørensen, N.N., “Airfoil computations using the γ-Reθ model”, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, Roskilde, Denmark, 7-18 (2009).
  • [11] Aftab, S.M.A., Rafie, A.M., Razak, N.A., Ahmad, K.A.,“Turbulence model selection for low reynolds number flows”, PloS One, 11(4): e0153755, (2016).
  • [12] Sarlak, H., Nishino, T., Sørensen, J.N.,“URANS simulations of separated flow with stall cells over an NREL S826 airfoil”, In AIP Conference Proceedings,1738(1): 030039, AIP Publishing, Rhodes, Greece, (2016).
  • [13] Ahmed, M.R., Narayan, S., Zullah, M.A., Lee, Y.H.,“Experimental and numerical studies on a low Reynolds number airfoil for wind turbine blades”, Journal of Fluid Science and Technology, 6(3):357- 371, (2011).
  • [14] Burdett, T., Gregg, J., Van Treuren, K.,“An examination of the effect of Reynolds number on airfoil performance”, In ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, 2203-2213, (2011).
  • [15] Bai, Y., Sun, D., Lin, J., Kennedy, D., Williams, F.,“Numerical aerodynamic simulations of a NACA airfoil using CFD with block-iterative coupling and turbulence modelling”, International Journal of Computational Fluid Dynamics, 26(2):119-132, (2012).
  • [16] Murayama, M., Lei, Z., Mukai, J., Yamamoto, K.,“CFD validation for high-lift devices: Three-element airfoil”, Transactions of the Japan Society for Aeronautical and Space Sciences, 49(163):40-48, (2006). .
  • [17] Dong, H., Xia, T., Chen, L., Liu, S., Cui, Y. D., Khoo, B. C., & Zhao, A. (2019). Study on flow separation and transition of the airfoil in low Reynolds number. Physics of Fluids, 31(10), 103601
  • [18] Tanürün,, H. E., İsmail, A. T. A., CANLI, M. E., & Adem, A. C. I. R. (2020). Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi. Politeknik Dergisi, 23(2), 371-381.
  • [19] Tanürün, H. E., & Adem, A. C. I. R. (2019). Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi. Politeknik Dergisi, 22(1), 185-195.
  • [20] Tanürün,, H. E., AKIN, A. G., & Adem, A. C. I. R. Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi, 1-1.
  • [21] Langtry, R.B., Menter, F.R.,“Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes”, AIAA Journal, 47(12):2894-2906, (2009).
  • [22] Menter, F.R., Langtry, R., Völker, S.,“Transition modelling for general purpose CFD codes”, Flow, Turbulence and Combustion, 77(1-4):277-303, (2006).
  • [23] Schlichting, H., Gersten, K., Boundary-layer theory 9th ed. , Springer–Verlag, Heidelberg,304-319 (2016).

Numerical Analysis of NACA 6409 and Eppler 423 Airfoils

Year 2023, Volume: 26 Issue: 1, 39 - 47, 27.03.2023
https://doi.org/10.2339/politeknik.959517

Abstract

The present study aims to numerically examine two commonly used airfoils that provide high lift at low Reynolds numbers, using various turbulence models with the commercial code ANSYS Fluent 19. Eppler 423 airfoil is widely used in wind turbine blades, wings of gliders and R/C airplanes designed for sport flying and competitions thanks to high lift capability. NACA 6409 airfoil is seen in free-flight model planes. In literature review, it has been found that k-ω SST, k-kl-ω and 𝛾-𝑅𝑒𝜃 transition models have a good prediction in Cl-Cd estimation of drag bucket region, transition flow regime, and laminar separation point. In addition to RANS models, laminar model was also investigated. In order to ensure the accuracy and precision of numerical investigations; the grid sensitivity study and near wall model were used. The method of decomposition of flow direction vector procedure has been used to provide the advantage of simulating all angle of attacks using only a single mesh. The lift coefficient curves and polar diagrams were formed from the angle of attack of -4 degree up to the stall. Experimental data, XFoil analysis data and numerical analysis data were evaluated in terms of best glide ratio-(Cl/Cd)max and minimum sink-(Cl1.5/Cd)max criteria. As expected, at high angle of attack, the transition ramp on the upper surface moves forward and the pressure gradient became more adverse. The results showed that fine mesh gives better results than other mesh sizes and transitional γ-Reθ SST model was successful in modelling the transition event than other turbulence models.

References

  • [1] Selig, M.S., Guglielmo, J.J.,“High-lift low Reynolds number airfoil design”, Journal of Aircraft, 34(1):72-79, (1997).
  • [2] Ma, R., Liu, P.,“Numerical simulation of low-Reynolds-number and high-lift airfoil S1223”. In Proceedings of the World Congress on Engineering, London, U.K., 2:1-3, (2009).
  • [3] Rahimi, H., Medjroubi, W., Stoevesandt, B., Peinke, J.,“2d numerical investigation of the laminar and turbulent flow over different airfoils using OpenFOAM”. Journal of Physics: Conference Series, IOP Publishing, Oldenburg, Germany, 555(1): 012070, (2014).
  • [4] Winslow, J., Otsuka, H., Govindarajan, B., Chopra, I.,“Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (104–105)”, Journal of Aircraft, 55(3):1050-1061, (2018).
  • [5] Morgado, J., Vizinho, R., Silvestre, M.A.R., Páscoa, J.C.,“XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils”, Aerospace Science and Technology, 52:207-214, (2016).
  • [6] Coder, J.G., Maughmer, M.D.,“Comparisons of theoretical methods for predicting airfoil aerodynamic characteristics”, Journal of Aircraft, 51(1):183-191, (2014).
  • [7] Collison, M.J., Harley, P.X., di Cugno, D.,“Experimental and Numerical Investigation of Transition Effects on a Low Reynolds Number Airfoil”, In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition: V02BT41A008-V02BT41A008, American Society of Mechanical Engineers Digital Collections, U.S., 1-11, (2017).
  • [8] Abobaker, M., Petrovic, Z., Fotev, V., Toumi, N., Ivanovic, I.,“Aerodynamic characteristics of low Reynolds number airfoils”, Technical Gazette, 24(1):111-118, (2017).
  • [9] Chen, W., Bernal, L.,“Design and performance of low Reynolds number airfoils for solar-powered flight”, In 46th AIAA Aerospace Sciences Meeting And Exhibit, Reno, Nevada, U.S.,316, (2008).
  • [10] Sørensen, N.N., “Airfoil computations using the γ-Reθ model”, Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, Roskilde, Denmark, 7-18 (2009).
  • [11] Aftab, S.M.A., Rafie, A.M., Razak, N.A., Ahmad, K.A.,“Turbulence model selection for low reynolds number flows”, PloS One, 11(4): e0153755, (2016).
  • [12] Sarlak, H., Nishino, T., Sørensen, J.N.,“URANS simulations of separated flow with stall cells over an NREL S826 airfoil”, In AIP Conference Proceedings,1738(1): 030039, AIP Publishing, Rhodes, Greece, (2016).
  • [13] Ahmed, M.R., Narayan, S., Zullah, M.A., Lee, Y.H.,“Experimental and numerical studies on a low Reynolds number airfoil for wind turbine blades”, Journal of Fluid Science and Technology, 6(3):357- 371, (2011).
  • [14] Burdett, T., Gregg, J., Van Treuren, K.,“An examination of the effect of Reynolds number on airfoil performance”, In ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, 2203-2213, (2011).
  • [15] Bai, Y., Sun, D., Lin, J., Kennedy, D., Williams, F.,“Numerical aerodynamic simulations of a NACA airfoil using CFD with block-iterative coupling and turbulence modelling”, International Journal of Computational Fluid Dynamics, 26(2):119-132, (2012).
  • [16] Murayama, M., Lei, Z., Mukai, J., Yamamoto, K.,“CFD validation for high-lift devices: Three-element airfoil”, Transactions of the Japan Society for Aeronautical and Space Sciences, 49(163):40-48, (2006). .
  • [17] Dong, H., Xia, T., Chen, L., Liu, S., Cui, Y. D., Khoo, B. C., & Zhao, A. (2019). Study on flow separation and transition of the airfoil in low Reynolds number. Physics of Fluids, 31(10), 103601
  • [18] Tanürün,, H. E., İsmail, A. T. A., CANLI, M. E., & Adem, A. C. I. R. (2020). Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi. Politeknik Dergisi, 23(2), 371-381.
  • [19] Tanürün, H. E., & Adem, A. C. I. R. (2019). Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi. Politeknik Dergisi, 22(1), 185-195.
  • [20] Tanürün,, H. E., AKIN, A. G., & Adem, A. C. I. R. Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi, 1-1.
  • [21] Langtry, R.B., Menter, F.R.,“Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes”, AIAA Journal, 47(12):2894-2906, (2009).
  • [22] Menter, F.R., Langtry, R., Völker, S.,“Transition modelling for general purpose CFD codes”, Flow, Turbulence and Combustion, 77(1-4):277-303, (2006).
  • [23] Schlichting, H., Gersten, K., Boundary-layer theory 9th ed. , Springer–Verlag, Heidelberg,304-319 (2016).
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Seyhun Durmuş 0000-0002-1409-7355

Aytekin Ulutaş 0000-0002-5230-7122

Publication Date March 27, 2023
Submission Date June 29, 2021
Published in Issue Year 2023 Volume: 26 Issue: 1

Cite

APA Durmuş, S., & Ulutaş, A. (2023). Numerical Analysis of NACA 6409 and Eppler 423 Airfoils. Politeknik Dergisi, 26(1), 39-47. https://doi.org/10.2339/politeknik.959517
AMA Durmuş S, Ulutaş A. Numerical Analysis of NACA 6409 and Eppler 423 Airfoils. Politeknik Dergisi. March 2023;26(1):39-47. doi:10.2339/politeknik.959517
Chicago Durmuş, Seyhun, and Aytekin Ulutaş. “Numerical Analysis of NACA 6409 and Eppler 423 Airfoils”. Politeknik Dergisi 26, no. 1 (March 2023): 39-47. https://doi.org/10.2339/politeknik.959517.
EndNote Durmuş S, Ulutaş A (March 1, 2023) Numerical Analysis of NACA 6409 and Eppler 423 Airfoils. Politeknik Dergisi 26 1 39–47.
IEEE S. Durmuş and A. Ulutaş, “Numerical Analysis of NACA 6409 and Eppler 423 Airfoils”, Politeknik Dergisi, vol. 26, no. 1, pp. 39–47, 2023, doi: 10.2339/politeknik.959517.
ISNAD Durmuş, Seyhun - Ulutaş, Aytekin. “Numerical Analysis of NACA 6409 and Eppler 423 Airfoils”. Politeknik Dergisi 26/1 (March 2023), 39-47. https://doi.org/10.2339/politeknik.959517.
JAMA Durmuş S, Ulutaş A. Numerical Analysis of NACA 6409 and Eppler 423 Airfoils. Politeknik Dergisi. 2023;26:39–47.
MLA Durmuş, Seyhun and Aytekin Ulutaş. “Numerical Analysis of NACA 6409 and Eppler 423 Airfoils”. Politeknik Dergisi, vol. 26, no. 1, 2023, pp. 39-47, doi:10.2339/politeknik.959517.
Vancouver Durmuş S, Ulutaş A. Numerical Analysis of NACA 6409 and Eppler 423 Airfoils. Politeknik Dergisi. 2023;26(1):39-47.