Adsorption of Rhodamine B Dye From Aqueous Solution with Modified Active Carbon Made From Pine Cone
Year 2023,
Volume: 26 Issue: 1, 283 - 292, 27.03.2023
Meryem Gören
,
Hatice Begüm Murathan
,
Nihan Kaya
,
Atilla M. Murathan
Abstract
In this study, active carbon obtained by pyrolysis of pine cone was used as an adsorbent in the removal of Rhodamine B dye from aqueous solutions. The produced active carbon was modified with 4 different chemical catalysts (ZnCl2, H3PO4, H2SO4 ve KOH) and the effect of the activation process on the adsorption efficiency was investigated. Adsorption experiments were studied in a batch system and the effects of parameters such as initial dye concentration, contact time, pH and temperature on the adsorption process were investigated. Maximum dye removal was observed at pH=3.0. Rhodamine B adsorption decreased with increasing initial dye concentration. With increasing contact time, the removal efficiency of Rhodamine B increased and equilibrium was reached in about 30 minutes. The highest dye removal efficiency (49.71%) was obtained as a result of activation of activated carbon with KOH. Experimental results were examined in terms of their suitability to the Langmuir and Freundlich isotherm models. According to the correlation coefficients, the Langmuir isotherm model was found to be more suitable for the experimental data obtained in this study. The adsorption mechanism has been explained with the thermodynamic parameters calculated. Accordingly, the obtained positive ∆G values showed that the adsorption process was not spontaneous, and the positive ∆H and ∆S values showed that the adsorption process was endothermic and random.
References
- [1] Ding L., Zou B., Gao W., Liu Q., Wang Z., Guo Y., Wang X. and Liu Y., “Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activatd carbon”, Colloids and Surfaces A: Physicochem. Eng.Aspects, 446, 1-7, (2014).
- [2] Shah J., Jan M.R., Haq A. and Khan Y., “Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: Kinetics, equilibrium and thermodynamics studies”, Front. Chem. Sci. Eng., 7(4), 428-436, (2013).
- [3] Zamouche M., Sihhem A. and Mossaab B.L., “Removal of Rhodamine B from water by cedar cone: Effect of calcinations and chemical activation”, International Journal of Hydrogen Energy, 39(3), 1523-1531, (2014).
- [4] Liu K., Li H., Wang Y., Gou X. and Duan Y., “Adsorption and removal of Rhodamine B from aqueous solution by tannic acid functionalized graphene”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 477, 35-41, (2015).
- [5] Ilayaraja M., Krishnan N.P., Kannan R. S., “Adsorption of Rhodamine-B and Congo Red dye from aqueous solution using activated carbon: Kinetics, isotherms, and thermodynamics”, IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 5(5),79-89, (2013).
- [6] Motahari F., Mozdianfard M.R. and Salavati-Niasari M., “Synthesis and adsorption studies of nio nanoparticles in the presence of H2 acacen ligand for removing Rhodamine B in waste water treatment”, Process Safety and Environmental Protection, 93, 282-292, (2015).
- [7] Sihem A., Brahmia I. ve Bousbaa L., “Experimental study of removal of Rhodamine B by activated cereal by product”, Energy Procedia, 18, 1208-1219, (2012).
- [8] Ali M.E., Hoque M.E., Safdar Hossain S.K. and Biswas M.C., “Nanoadsorbents for wastewater treatment: Next generation biotechnological solution”, International Journal of Environmental Science and Technology, 17,4095-4132, (2020).
- [9] Ma J., Jia Y., Jing Y., Yao Y. and Sun J., “Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectoritecomposite”, Dyes and Pigments, 93,1441-1446, (2012).
- [10] Jain R., Mathur M., Sikarwar S. and Mittal A., “Removal of the hazardous dye Rhodamine B through photocatalytic and adsorption treatments”, J. Environ. Manage., 85(4), 956-964, (2007).
- [11] Hameed B.H., Ahmad A.L. and Latiff K.N.A., “Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust”, Dyes and Pigments, 75,143-149, (2007).
- [12] Adekola F.A., Ayodele S.B., Inyinbor A.A., “Activated active carbon prepared from plaintain peels: Characterization and Rhodamine B adsorption data set”, Chemical Data Collections, 19,100170, 2019.
- [13] Lacerda V.S., Lopez-Sotelo J.B., Correa-Guimaraes A., Hernandez-Navarro S., Sanchez-Bascones M., Navas-Gracia L.M., Martin-Ramos P. and Martin-Gil J., “Rhodamine B removal with activated carbons obtained from lignocellulosic waste”, Journal of Environmental Management, 155, 67-76, (2015).
- [14] Bhatnagar A., Hogland W., Marques M., Sillanpaa M., “An overview of the modification methods of activated carbon for its water treatment applications.”, Chem Eng J, 219, 499- 511, (2013).
- [15] Jia Y.F. and Thomas K.M., “Adsorption of cadmium ions on oxygen surface sites in activated carbon”, Langmuir,16(3), 1114-1122, (2000).
- [16] Raymundo-Pinero E., Cazorla-Amoros D. and Linares-Solano A., “The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres”, Carbon, 41(10),1925-1932, (2003).
- [17] Singh S., Parveen N. and Gupta H., “Adsorptive decontamination of Rhodamine-B from water using banana peel powder: A biosorbent”, Environmental Technology & Innovation, 12, 189-195, (2018).
- [18] Uçar B., “Tekstil atık sularındaki reaktif boyaların farklı katı atıklar kullanılarak adsorpsiyonla giderimi”, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Ankara, (2009).
- [19] Demiral İ. and Aydın Şamdan C., “Preparation and characterisation of activated carbon from pumpkin seed shell using H3PO4”, Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 17(1), 125-138, (2016).
- [20] Nirmala S., Pasupathy A., Raja T. and Raja M., “Removal of malachite green from aqueous solutions by adsorption using low cost adsorbent obtained from centella asiatica leaves”, International Journal of Research in Pharmacy and Chemistry, 6(4), 916-921, (2016).
- [21] Vanamudan A., Bandwala K. and Pamidimukkala P., “Adsorption property of Rhodamine 6G onto chitosan-G-(N-vinylpyrrolidone)/montmorillonite composite”, International Journal of Biological Macromolecules, 69, 506-513, (2014).
- [22] Adekola F.A., Ayodele S.B. and Inyinbor A.A., “Efficient Rhodamine B removal using acid- and alkaline-activated musa paradisiaca active carbon”, Pol. J. Environ. Stud., 28(5),3063-3070, (2019).
- [23] Balcı B. ve Erkurt F.E., “Bir nano adsorbent ile reaktif black 39 boyar maddesinin distile sudan ve sentetik atıksudan giderimi”, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(1), 177-185, (2017).
- [24] Changmai M., Banerjee P., Nahar K. and Purkait M.K., “A novel adsorbent from carrot, tomato and polyethylene terephthalate waste as a potential adsorbent for Co(II) from aqueous solution: Kinetic and equilibrium studies”, Journal of Environmental Chemical Engineering, 6, 246-157, (2018).
- [25] Lemraski E.H. and Sharafinia S., “Kinetics, equilibrium and thermodynamics studies of Pb2+ adsorption onto new activated carbon prepared from Persian mesquite grain”, Journal of Molecular Liquids, 219, 482-492, (2016).
- [26] Khan T.A., Sharma S. and Ali I., “Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: Equilibrium, kinetic and thermodynamic studies”, Journal of Toxicology and Environmental Health Sciences, 3(10), 286-297, (2011).
- [27] Shayesteh H., Rahbar-Kelishami A. and Norouzbeigi R., “Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: Kinetic, equilibrium, and thermodynamic studies”, Desalination and Water Treatment, 57,12822-12831, (2016).
- [28] Zamouche M. and Hamdaoui O., “Sorption of Rhodamine B by cedar cone: Effect of pH and ionic strength”, Energy Procedia, 18, 1228-1239, (2012).
- [29] Erdoğan F.A., “Düşük maliyetli adsorbentler üzerine dispers sarı 211 tekstil boyasının adsorpsiyonu”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 889-898, (2017).
- [30] Thakur A. and Kaur H., “Removal of hazardous Rhodamine B dye by using chemically activated low cost adsorbent: Pine cone charcoal”, International Journal of Chemical and Physical Sciences, 5(4), 17-28, (2016).
- [31] Liu H., Zhang J., Bao N., Cheng C., Ren L. and Zhang C., “Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: Adsorption of trimethoprim”, J Hazard Mater, 235, 367–375, (2012).
- [32] Shaarani F.W. and Hameed B.H., “Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol”, Chem Eng J, 169(1–3), 180–185, (2011).
- [33] Guo Jia and Lua A.C., “Textural and chemical characterization of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages”, Journal of Colloid and Interface Science, 254, 227-233, (2002).
- [34] Abdolrahimi N. and Tadjarodi A., “Adsorption of Rhodamine-B from aqueous solution by activated carbon from almond shell”, Proceedings, 41, 51, (2019).
- [35] Mohammadi, M., Hassani, A.J., Mohamed, A.R. and Najafpour, G.D. “Removal of Rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies”, J. Chem. Eng. Data, 55, 12, 5777–5785, (2010).
- [36] Khamparia S. and Jaspal D., “Investigation of adsorption of Rhodamine B onto a natural adsorbent argemone mexicana”, Journal of Environmental Management, 183,786-793, (2016).
- [37] Bozkan H., “Removal of azo dyes by adsorption method using olive waste (pirina)”, M.Sc. Thesis, Selcuk University, Institute of Science and Technology, Environmental Engineering Department, Konya, (2012).
- [38] Aksu A., Murathan A. and Koçyiğit H., “Adsorption of reactive blue 221 on pumice stone and kinetic study”, Fac.of Eng. and Arch. of Gazi Univ., 26(4), 807-12, (2011).
- [39] Sevim A. M., Hojiyev R., Gül A. and Çelik M.S., “An investigation of the kinetics and thermodynamics of the adsorption of a cationic cobalt porphyrazine onto sepiolite”, Dyes and Pigments, 88, 25-38, (2011).
- [40] Kooh M.R.R., Dahri M.K. and Lim L.B.L., “The removal of Rhodamine B dye from aqueous solution using casuarina equisetifolia needles as adsorbent”, Cogent Environmental Science, 2, 1140553, (2016).
- [41] Fırat B., “Atık sulardan kurşun (II) ve bakır (II) iyonlarının yumurta kabuğu ile uzaklaştırılması ve optimum koşulların belirlenmesi”, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2007).
- [42] Shen K. and Gondal M.A., “Removal of hazardous Rhodamine Dye from water by adsorption onto exhausted coffee ground”, Journal of Saudi Chemical Society, 21, S120-S127, (2017).
- [43] Gad, H.M.H., El-Sayed, A.A., “Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution”, Journal of Hazardous Materials, 168, 1070–1081, (2009).
- [44] Lacerda, V. da S., Lopez-Sotelo, J. B., Correa-Guimaraes, A., Hernandez-Navarro, S., Sanchez-Bascones, M., Navas-Gracia, L.M., Martín-Ramos, P., Martín-Gil, J., “Rhodamine B removal with activated carbons obtained from lignocellulosic waste”, Journal of Environmental Management, Volume 155, Pages 67-76, (2015).
- [45] Kumar . A., Sengupta, B., Dasgupta, D., Mandal, T., Datta,S., “Recovery of value added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste”, Rev Environ Sci Biotechnol , 15:47–65, (2016).
- [46] Yargıç, A.Ş., “Kavak ağacı kabuğu esaslı sorbentlerin 25 tam faktöriyel deney tasarımı kullanılarak boyarmadde gideriminde değerlendirilmesi ve % giderim etkinliğinin istatistiksel analizi”, Politeknik Dergisi, 23(4) : 941-954,( 2020).
Çam Kozalağından Üretilmiş Modifiye Aktif Karbon ile Sulu Çözeltiden Rodamin B Boyasının Adsorpsiyonu
Year 2023,
Volume: 26 Issue: 1, 283 - 292, 27.03.2023
Meryem Gören
,
Hatice Begüm Murathan
,
Nihan Kaya
,
Atilla M. Murathan
Abstract
Bu çalışmada çam kozalağının pirolizi ile elde edilen aktif karbon, sulu çözeltilerden Rodamin B boyasının gideriminde adsorban olarak kullanılmıştır. Üretilen aktif karbon 4 farklı kimyasal katalizör (ZnCl2, H3PO4, H2SO4 ve KOH) ile modifiye edilerek, aktivasyon işleminin adsorpsiyon verimliliği üzerine etkisi incelenmiştir. Adsorpsiyon deneyleri kesikli sistemde çalışılmış ve baslangıç boya konsantrasyonu, temas süresi, pH ve sıcaklık gibi parametrelerin adsorpsiyon prosesi üzerine etkisi araştırılmıştır. Maksimum boya giderimi pH=3,0’de gözlemlenmiştir. Başlangıçtaki boya konsantrasyonunun artmasıyla Rodamin B adsorpsiyonu azalmıştır. Temas süresinin artmasıyla Rodamin B'nin giderim verimi artmıştır ve yaklaşık 30 dakika içinde dengeye ulaşılmıştır. Aktif karbonun KOH ile aktivasyonu sonucu en yüksek boya uzaklaştırma verimi (%49,71) elde edilmiştir. Deneysel sonuçlar, Langmuir ve Freundlich izoterm modellerine uygunlukları açısından incelenmiştir. Korelasyon katsayılarına göre Langmuir izoterm modelinin bu çalışmada elde edilen deneysel verilere daha uygun olduğu bulunmuştur. Hesaplanan termodinamik parametrelerle birlikte adsorpsiyon mekanizması açıklanmaya çalışılmıştır. Buna göre elde edilen pozitif ∆G değerleri adsorpsiyon prosesinin kendiliğinden olmadığını, pozitif ∆H ve ∆S değerleri ise adsorpsiyon prosesinin endotermik ve rastgele olduğunu göstermiştir.
References
- [1] Ding L., Zou B., Gao W., Liu Q., Wang Z., Guo Y., Wang X. and Liu Y., “Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activatd carbon”, Colloids and Surfaces A: Physicochem. Eng.Aspects, 446, 1-7, (2014).
- [2] Shah J., Jan M.R., Haq A. and Khan Y., “Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: Kinetics, equilibrium and thermodynamics studies”, Front. Chem. Sci. Eng., 7(4), 428-436, (2013).
- [3] Zamouche M., Sihhem A. and Mossaab B.L., “Removal of Rhodamine B from water by cedar cone: Effect of calcinations and chemical activation”, International Journal of Hydrogen Energy, 39(3), 1523-1531, (2014).
- [4] Liu K., Li H., Wang Y., Gou X. and Duan Y., “Adsorption and removal of Rhodamine B from aqueous solution by tannic acid functionalized graphene”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 477, 35-41, (2015).
- [5] Ilayaraja M., Krishnan N.P., Kannan R. S., “Adsorption of Rhodamine-B and Congo Red dye from aqueous solution using activated carbon: Kinetics, isotherms, and thermodynamics”, IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 5(5),79-89, (2013).
- [6] Motahari F., Mozdianfard M.R. and Salavati-Niasari M., “Synthesis and adsorption studies of nio nanoparticles in the presence of H2 acacen ligand for removing Rhodamine B in waste water treatment”, Process Safety and Environmental Protection, 93, 282-292, (2015).
- [7] Sihem A., Brahmia I. ve Bousbaa L., “Experimental study of removal of Rhodamine B by activated cereal by product”, Energy Procedia, 18, 1208-1219, (2012).
- [8] Ali M.E., Hoque M.E., Safdar Hossain S.K. and Biswas M.C., “Nanoadsorbents for wastewater treatment: Next generation biotechnological solution”, International Journal of Environmental Science and Technology, 17,4095-4132, (2020).
- [9] Ma J., Jia Y., Jing Y., Yao Y. and Sun J., “Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectoritecomposite”, Dyes and Pigments, 93,1441-1446, (2012).
- [10] Jain R., Mathur M., Sikarwar S. and Mittal A., “Removal of the hazardous dye Rhodamine B through photocatalytic and adsorption treatments”, J. Environ. Manage., 85(4), 956-964, (2007).
- [11] Hameed B.H., Ahmad A.L. and Latiff K.N.A., “Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust”, Dyes and Pigments, 75,143-149, (2007).
- [12] Adekola F.A., Ayodele S.B., Inyinbor A.A., “Activated active carbon prepared from plaintain peels: Characterization and Rhodamine B adsorption data set”, Chemical Data Collections, 19,100170, 2019.
- [13] Lacerda V.S., Lopez-Sotelo J.B., Correa-Guimaraes A., Hernandez-Navarro S., Sanchez-Bascones M., Navas-Gracia L.M., Martin-Ramos P. and Martin-Gil J., “Rhodamine B removal with activated carbons obtained from lignocellulosic waste”, Journal of Environmental Management, 155, 67-76, (2015).
- [14] Bhatnagar A., Hogland W., Marques M., Sillanpaa M., “An overview of the modification methods of activated carbon for its water treatment applications.”, Chem Eng J, 219, 499- 511, (2013).
- [15] Jia Y.F. and Thomas K.M., “Adsorption of cadmium ions on oxygen surface sites in activated carbon”, Langmuir,16(3), 1114-1122, (2000).
- [16] Raymundo-Pinero E., Cazorla-Amoros D. and Linares-Solano A., “The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres”, Carbon, 41(10),1925-1932, (2003).
- [17] Singh S., Parveen N. and Gupta H., “Adsorptive decontamination of Rhodamine-B from water using banana peel powder: A biosorbent”, Environmental Technology & Innovation, 12, 189-195, (2018).
- [18] Uçar B., “Tekstil atık sularındaki reaktif boyaların farklı katı atıklar kullanılarak adsorpsiyonla giderimi”, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Ankara, (2009).
- [19] Demiral İ. and Aydın Şamdan C., “Preparation and characterisation of activated carbon from pumpkin seed shell using H3PO4”, Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 17(1), 125-138, (2016).
- [20] Nirmala S., Pasupathy A., Raja T. and Raja M., “Removal of malachite green from aqueous solutions by adsorption using low cost adsorbent obtained from centella asiatica leaves”, International Journal of Research in Pharmacy and Chemistry, 6(4), 916-921, (2016).
- [21] Vanamudan A., Bandwala K. and Pamidimukkala P., “Adsorption property of Rhodamine 6G onto chitosan-G-(N-vinylpyrrolidone)/montmorillonite composite”, International Journal of Biological Macromolecules, 69, 506-513, (2014).
- [22] Adekola F.A., Ayodele S.B. and Inyinbor A.A., “Efficient Rhodamine B removal using acid- and alkaline-activated musa paradisiaca active carbon”, Pol. J. Environ. Stud., 28(5),3063-3070, (2019).
- [23] Balcı B. ve Erkurt F.E., “Bir nano adsorbent ile reaktif black 39 boyar maddesinin distile sudan ve sentetik atıksudan giderimi”, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(1), 177-185, (2017).
- [24] Changmai M., Banerjee P., Nahar K. and Purkait M.K., “A novel adsorbent from carrot, tomato and polyethylene terephthalate waste as a potential adsorbent for Co(II) from aqueous solution: Kinetic and equilibrium studies”, Journal of Environmental Chemical Engineering, 6, 246-157, (2018).
- [25] Lemraski E.H. and Sharafinia S., “Kinetics, equilibrium and thermodynamics studies of Pb2+ adsorption onto new activated carbon prepared from Persian mesquite grain”, Journal of Molecular Liquids, 219, 482-492, (2016).
- [26] Khan T.A., Sharma S. and Ali I., “Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: Equilibrium, kinetic and thermodynamic studies”, Journal of Toxicology and Environmental Health Sciences, 3(10), 286-297, (2011).
- [27] Shayesteh H., Rahbar-Kelishami A. and Norouzbeigi R., “Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: Kinetic, equilibrium, and thermodynamic studies”, Desalination and Water Treatment, 57,12822-12831, (2016).
- [28] Zamouche M. and Hamdaoui O., “Sorption of Rhodamine B by cedar cone: Effect of pH and ionic strength”, Energy Procedia, 18, 1228-1239, (2012).
- [29] Erdoğan F.A., “Düşük maliyetli adsorbentler üzerine dispers sarı 211 tekstil boyasının adsorpsiyonu”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 889-898, (2017).
- [30] Thakur A. and Kaur H., “Removal of hazardous Rhodamine B dye by using chemically activated low cost adsorbent: Pine cone charcoal”, International Journal of Chemical and Physical Sciences, 5(4), 17-28, (2016).
- [31] Liu H., Zhang J., Bao N., Cheng C., Ren L. and Zhang C., “Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: Adsorption of trimethoprim”, J Hazard Mater, 235, 367–375, (2012).
- [32] Shaarani F.W. and Hameed B.H., “Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol”, Chem Eng J, 169(1–3), 180–185, (2011).
- [33] Guo Jia and Lua A.C., “Textural and chemical characterization of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages”, Journal of Colloid and Interface Science, 254, 227-233, (2002).
- [34] Abdolrahimi N. and Tadjarodi A., “Adsorption of Rhodamine-B from aqueous solution by activated carbon from almond shell”, Proceedings, 41, 51, (2019).
- [35] Mohammadi, M., Hassani, A.J., Mohamed, A.R. and Najafpour, G.D. “Removal of Rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies”, J. Chem. Eng. Data, 55, 12, 5777–5785, (2010).
- [36] Khamparia S. and Jaspal D., “Investigation of adsorption of Rhodamine B onto a natural adsorbent argemone mexicana”, Journal of Environmental Management, 183,786-793, (2016).
- [37] Bozkan H., “Removal of azo dyes by adsorption method using olive waste (pirina)”, M.Sc. Thesis, Selcuk University, Institute of Science and Technology, Environmental Engineering Department, Konya, (2012).
- [38] Aksu A., Murathan A. and Koçyiğit H., “Adsorption of reactive blue 221 on pumice stone and kinetic study”, Fac.of Eng. and Arch. of Gazi Univ., 26(4), 807-12, (2011).
- [39] Sevim A. M., Hojiyev R., Gül A. and Çelik M.S., “An investigation of the kinetics and thermodynamics of the adsorption of a cationic cobalt porphyrazine onto sepiolite”, Dyes and Pigments, 88, 25-38, (2011).
- [40] Kooh M.R.R., Dahri M.K. and Lim L.B.L., “The removal of Rhodamine B dye from aqueous solution using casuarina equisetifolia needles as adsorbent”, Cogent Environmental Science, 2, 1140553, (2016).
- [41] Fırat B., “Atık sulardan kurşun (II) ve bakır (II) iyonlarının yumurta kabuğu ile uzaklaştırılması ve optimum koşulların belirlenmesi”, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2007).
- [42] Shen K. and Gondal M.A., “Removal of hazardous Rhodamine Dye from water by adsorption onto exhausted coffee ground”, Journal of Saudi Chemical Society, 21, S120-S127, (2017).
- [43] Gad, H.M.H., El-Sayed, A.A., “Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution”, Journal of Hazardous Materials, 168, 1070–1081, (2009).
- [44] Lacerda, V. da S., Lopez-Sotelo, J. B., Correa-Guimaraes, A., Hernandez-Navarro, S., Sanchez-Bascones, M., Navas-Gracia, L.M., Martín-Ramos, P., Martín-Gil, J., “Rhodamine B removal with activated carbons obtained from lignocellulosic waste”, Journal of Environmental Management, Volume 155, Pages 67-76, (2015).
- [45] Kumar . A., Sengupta, B., Dasgupta, D., Mandal, T., Datta,S., “Recovery of value added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste”, Rev Environ Sci Biotechnol , 15:47–65, (2016).
- [46] Yargıç, A.Ş., “Kavak ağacı kabuğu esaslı sorbentlerin 25 tam faktöriyel deney tasarımı kullanılarak boyarmadde gideriminde değerlendirilmesi ve % giderim etkinliğinin istatistiksel analizi”, Politeknik Dergisi, 23(4) : 941-954,( 2020).