Conference Paper
BibTex RIS Cite

Alkali Hidroliz İşleminin İndirgenmiş Grafen Oksit Kaplı Polyester Örme Kumaşın Fiziksel ve Elektriksel Özelliklerine Etkisi

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1309440

Abstract

Bu çalışmada, alkali hidroliz işlemi ile yüzey modifikasyonu uygulanan poliester atkılı örme kumaşın grafen oksit ile kaplanması ve indirgenmesi incelenmiştir. Bu kapsamda, poliester örme kumaş öncelikle sodyum hidroksit çözeltisi ile işlem görerek kumaşta yüzey pürüzlülüğü elde edilmiştir. Ardından, işlem görmemiş ve sodyum hidroksit ile işlem görmüş kumaşlar grafen oksit suu dispersiyonu ile daldırma yöntemiyle kaplanmış ve sonrasında doğal bir indirgeme maddesi olan L-askorbik asit (C Vitamini) ile indirgenme işlemine tabi tutulmuştur. Her bir işlemden sonra kumaştaki ağırlık değişimi hesaplanmıştır. Poliester örme kumaşın fiziksel özellikleri, alkali hidroliz uygulanmış ve uygulanmamış numunelerde grafen oksit kaplama ve indirgeme işlemleri öncesi ve sonrasında aşınma dayanımı ve patlama mukavemeti ile belirlenmiştir. Taramalı elektron mikroskopu ve Fourier dönüşümlü kızılötesi spektroskopisi kumaş numunelerinin yüzey ve kimyasal yapısının incelenmesinde kullanılmıştır. Kumaş numunelerinin elektriksel yüzey ve hacim direnci bir kaynakmetre ve direnç test fikstüründen oluşan düzenek ile test edilmiştir.

References

  • [1] Rosace G., Trovato V., Colleoni C., Caldara M., Re V., Brucale M., Piperopoulos E., Mastronardo E., Milone C., De Luca G. and Plutino M. R. “Structural and morphological characterizations of MWCNTs hybrid coating onto cotton fabric as potential humidity and temperature wearable sensor”, Sensors and Actuators B: Chemical, 252: 428-439, (2017).
  • [2] Molina J., Fernández J., del Río A. I., Bonastre J. and Cases F. “Chemical and electrochemical study of fabrics coated with reduced graphene oxide”, Applied Surface Science, 279: 46-54, (2013).
  • [3] Ouadil B., Cherkaoui O., Safi M. and Zahouily M. “Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites”, Applied Surface Science, 414: 292-302, (2017).
  • [4] Gültekin B. C. “Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide”, Turkish Journal of Chemistry, 46: 968-986, (2022).
  • [5] Chatterjee A., Nivas Kumar M. and Maity S. “Influence of graphene oxide concentration and dipping cycles on electrical conductivity of coated cotton textiles”, The Journal of The Textile Institute, 108: 1910-1916, (2017).
  • [6] Hasani M. and Montazer M. “Cationization of cellulose/polyamide on UV protection, bio-activity, and electro-conductivity of graphene oxide-treated fabric”, Journal of Applied Polymer Science, 134: (2017).
  • [7] Yurddaşkal M., Kartal U. and Doluel E. C. “Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi”, Politeknik Dergisi, 23: 249-255, (2020).
  • [8] Musale R. M. and Shukla S. R. “Weight reduction of polyester fabric using sodium hydroxide solutions with additives cetyltrimethylammonium bromide and [BMIM]Cl”, The Journal of The Textile Institute, 108: 467-471, (2016).
  • [9] Gümüş Ö. Y. and Yssaad I. “Immobilization of Propolis Extract on PET Fabric for Biomedical Applications”, Politeknik Dergisi, 25: 1299-1307, (2022).
  • [10] Kongahge D., Foroughi J., Gambhir S., Spinks G. M. and Wallace G. G. “Fabrication of a graphene coated nonwoven textile for industrial applications”, RSC Advances, 6: 73203-73209, (2016).
  • [11] Corak I., Tarbuk A., Dordevic D., Visic K. and Botteri L. “Sustainable Alkaline Hydrolysis of Polyester Fabric at Low Temperature”, Materials (Basel), 15: (2022).
  • [12] Lee S. “Superhydrophobicity and conductivity of polyester-conductive fabrics using alkaline hydrolysis”, RSC Adv, 12: 22911-22921, (2022).
  • [13] Al-Balakocy N. G., Hassan T., Khalil S. and Abd El-Salam S. “Simultaneous chemical modification and functional finishing of polyester textiles”, Research Journal of Textile and Apparel, 25 257-273, (2021).
  • [14] Hashemizad S., Montazer M. and Mireshghi S. S. “Sonoloading of nano-TiO2 on sono-alkali hydrolyzed polyester fabric”, The Journal of The Textile Institute, 108: 117-122, (2016).
  • [15] Azfarniam L. and Norouzi M. “Multifunctional polyester fabric using a multicomponent treatment”, Fibers and Polymers, 17: 298-304, (2016).
  • [16] Ebrahimbeiki Chimeh A. and Montazer M. “Fabrication of nano-TiO2/carbon nanotubes and nano-TiO2/nanocarbon black on alkali hydrolyzed polyester producing photoactive conductive fabric”, The Journal of The Textile Institute, 107: 95-106, (2016).
  • [17] Najafzadeh N., Habibi S. and Ghasri M. A. “Dyeing of polyester with reactive dyestuffs using nano-chitosan”, Journal of Engineered Fibers and Fabrics, 13: 155892501801300207, (2018).
  • [18] Gadkari R. R., Ali W., Das A. and Alagirusamy R. “Configuration of a unique antibacterial needle-punched nonwoven fabric from silver impregnated polyester nanocomposite fibres”, Journal of Industrial Textiles, 51: 1511S-1527S, (2022).
  • [19] Afshari S. and Montazer M. “In-Situ sonosynthesis of Hedgehog-like nickel nanoparticles on polyester fabric producing magnetic properties”, Ultrasonics Sonochemistry, 42: 679-688, (2018).
  • [20] El-Gabry L. K., Abd El-Ghany N. A., Aboras S. E. and Abou El-Kheir A. A. “Biocidal Activity of Polyester Fabrics Modified with SiO2 Nps”, Egyptian Journal of Chemistry, 64: 1411-1419, (2021).
  • [21] Kale R. D., Potdar T., Kane P. and Singh R. “Nanocomposite polyester fabric based on graphene/titanium dioxide for conducting and UV protection functionality”, Graphene Technology, 3: 35-46, (2018).
  • [22] Xue B., Yang S., Qin R., Deng S., Niu M. and Zhang L. “Effect of a graphene-APP composite aerogel coating on the polyester fabric for outstanding flammability”, Progress in Organic Coatings, 172: 107130, (2022).
  • [23] Moazami A., Montazer M. and Dolatabadi M. K. “Tunable functional properties on polyester fabric using simultaneous green reduction of graphene oxide and silver nitrate”, Fibers and Polymers, 17: 1359-1370, (2016).
  • [24] Demirel Gültekin N., Usta İ. and Yalçin B. “Enhancing polyamide fabric performance through green reduction of graphene oxide for superior ultraviolet protection and electrical conductivity”, Coloration Technology, n/a:
  • [25] Shao F., Bian S. W., Zhu Q., Guo M. X., Liu S. and Peng Y. H. “Fabrication of Polyaniline/Graphene/Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability”, Chemistry- An Asian Journal, 11: 1906-12, (2016).
  • [26] Rathinamoorthy R. and Raja Balasaraswathi S. “Effect of surface modification of polyester fabric on microfiber shedding from household laundry”, International Journal of Clothing Science and Technology, ahead-of-print: (2022).
  • [27] Gültekin N., Usta İ. and Yalçin B. “Green Reduction of Graphene Oxide Coated Polyamide Fabric Using Carob Extract”, AATCC Journal of Research, 7: 33-40, (2020).
  • [28] Han M. S., Park Y. and Park C. H. “Development of superhydrophobic polyester fabrics using alkaline hydrolysis and coating with fluorinated polymers”, Fibers and Polymers, 17: 241-247, (2016).
  • [29] Nourbakhsh S., Montazer M. and khandaghabadi Z. “Zinc oxide nano particles coating on polyester fabric functionalized through alkali treatment”, Journal of Industrial Textiles, 47: 1006-1023, (2016).
  • [30] Tavanai H. and Kaynak A. “Effect of weight reduction pre-treatment on the electrical and thermal properties of polypyrrole coated woven polyester fabrics”, Synthetic Metals, 157: 764-769, (2007).
  • [31] Lee S. J., Yun C. and Park C. H. “Electrically conductive and superhydrophobic textiles via pyrrole polymerization and surface hydrophobization after alkaline hydrolysis”, Textile Research Journal, 89: 1436-1447, (2018).
  • [32] Yildiz Z., Usta I., Kale B. M., Mellen G. B. and Wang Y. “Alkali Treatment to Maximize Adhesion of Polypyrrole Coatings for Electro-Conductive Textile Materials”, Organic Polymer Material Research, 1: 3-9, (2019).
  • [33] Aizamddin M. F. and Mahat M. M. “Enhancing the Washing Durability and Electrical Longevity of Conductive Polyaniline-Grafted Polyester Fabrics”, ACS Omega, 8: 37936-37947, (2023).
  • [34] Zhao K., Wang Y., Wang W. and Yu D. “Moisture absorption, perspiration and thermal conductive polyester fabric prepared by thiol–ene click chemistry with reduced graphene oxide finishing agent”, Journal of Materials Science, 53: 14262-14273, (2018).
  • [35] [35] Bhattacharjee S., Joshi R., Chughtai A. A. and Macintyre C. R. “Graphene Modified Multifunctional Personal Protective Clothing”, Advanced Materials Interfaces, 6: 1900622, (2019).
  • [36] Textor T., Derksen L., Bahners T., Gutmann J. S. and Mayer-Gall T. “Abrasion resistance of textiles: Gaining insight into the damaging mechanisms of different test procedures”, Journal of Engineered Fibers and Fabrics, 14: 1558925019829481, (2019).

Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1309440

Abstract

In this research, the influence of surface treatment of polyester weft knitted fabric via alkaline hydrolysis on graphene oxide coating and reduction process is analyzed. In this regard, sodium hydroxide solution was prepared and the chemical etching of polyester fabric was carried out to create surface roughening effect. Then, untreated and sodium hydroxide-treated fabrics were dip-coated with graphene oxide aqueous dispersion followed by a reduction process with L-ascorbic acid (Vitamin C) known as green reductant. The weight changes after each treatment were calculated. The changes in surface morphology and chemical structure of fabric samples were examined. The electrical resistivity of the fabric samples was tested using a setup consisting of a sourcemeter and resistivity test fixture. The physical properties of polyester knitted fabric were determined by means of abrasion resistance and bursting strength before and after alkaline hydrolysis, graphene oxide coating, and reducing processes.

References

  • [1] Rosace G., Trovato V., Colleoni C., Caldara M., Re V., Brucale M., Piperopoulos E., Mastronardo E., Milone C., De Luca G. and Plutino M. R. “Structural and morphological characterizations of MWCNTs hybrid coating onto cotton fabric as potential humidity and temperature wearable sensor”, Sensors and Actuators B: Chemical, 252: 428-439, (2017).
  • [2] Molina J., Fernández J., del Río A. I., Bonastre J. and Cases F. “Chemical and electrochemical study of fabrics coated with reduced graphene oxide”, Applied Surface Science, 279: 46-54, (2013).
  • [3] Ouadil B., Cherkaoui O., Safi M. and Zahouily M. “Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites”, Applied Surface Science, 414: 292-302, (2017).
  • [4] Gültekin B. C. “Electrically conductive, hydrophobic, UV protective and lightweight cotton spunlace nonwoven fabric coated with reduced graphene oxide”, Turkish Journal of Chemistry, 46: 968-986, (2022).
  • [5] Chatterjee A., Nivas Kumar M. and Maity S. “Influence of graphene oxide concentration and dipping cycles on electrical conductivity of coated cotton textiles”, The Journal of The Textile Institute, 108: 1910-1916, (2017).
  • [6] Hasani M. and Montazer M. “Cationization of cellulose/polyamide on UV protection, bio-activity, and electro-conductivity of graphene oxide-treated fabric”, Journal of Applied Polymer Science, 134: (2017).
  • [7] Yurddaşkal M., Kartal U. and Doluel E. C. “Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi”, Politeknik Dergisi, 23: 249-255, (2020).
  • [8] Musale R. M. and Shukla S. R. “Weight reduction of polyester fabric using sodium hydroxide solutions with additives cetyltrimethylammonium bromide and [BMIM]Cl”, The Journal of The Textile Institute, 108: 467-471, (2016).
  • [9] Gümüş Ö. Y. and Yssaad I. “Immobilization of Propolis Extract on PET Fabric for Biomedical Applications”, Politeknik Dergisi, 25: 1299-1307, (2022).
  • [10] Kongahge D., Foroughi J., Gambhir S., Spinks G. M. and Wallace G. G. “Fabrication of a graphene coated nonwoven textile for industrial applications”, RSC Advances, 6: 73203-73209, (2016).
  • [11] Corak I., Tarbuk A., Dordevic D., Visic K. and Botteri L. “Sustainable Alkaline Hydrolysis of Polyester Fabric at Low Temperature”, Materials (Basel), 15: (2022).
  • [12] Lee S. “Superhydrophobicity and conductivity of polyester-conductive fabrics using alkaline hydrolysis”, RSC Adv, 12: 22911-22921, (2022).
  • [13] Al-Balakocy N. G., Hassan T., Khalil S. and Abd El-Salam S. “Simultaneous chemical modification and functional finishing of polyester textiles”, Research Journal of Textile and Apparel, 25 257-273, (2021).
  • [14] Hashemizad S., Montazer M. and Mireshghi S. S. “Sonoloading of nano-TiO2 on sono-alkali hydrolyzed polyester fabric”, The Journal of The Textile Institute, 108: 117-122, (2016).
  • [15] Azfarniam L. and Norouzi M. “Multifunctional polyester fabric using a multicomponent treatment”, Fibers and Polymers, 17: 298-304, (2016).
  • [16] Ebrahimbeiki Chimeh A. and Montazer M. “Fabrication of nano-TiO2/carbon nanotubes and nano-TiO2/nanocarbon black on alkali hydrolyzed polyester producing photoactive conductive fabric”, The Journal of The Textile Institute, 107: 95-106, (2016).
  • [17] Najafzadeh N., Habibi S. and Ghasri M. A. “Dyeing of polyester with reactive dyestuffs using nano-chitosan”, Journal of Engineered Fibers and Fabrics, 13: 155892501801300207, (2018).
  • [18] Gadkari R. R., Ali W., Das A. and Alagirusamy R. “Configuration of a unique antibacterial needle-punched nonwoven fabric from silver impregnated polyester nanocomposite fibres”, Journal of Industrial Textiles, 51: 1511S-1527S, (2022).
  • [19] Afshari S. and Montazer M. “In-Situ sonosynthesis of Hedgehog-like nickel nanoparticles on polyester fabric producing magnetic properties”, Ultrasonics Sonochemistry, 42: 679-688, (2018).
  • [20] El-Gabry L. K., Abd El-Ghany N. A., Aboras S. E. and Abou El-Kheir A. A. “Biocidal Activity of Polyester Fabrics Modified with SiO2 Nps”, Egyptian Journal of Chemistry, 64: 1411-1419, (2021).
  • [21] Kale R. D., Potdar T., Kane P. and Singh R. “Nanocomposite polyester fabric based on graphene/titanium dioxide for conducting and UV protection functionality”, Graphene Technology, 3: 35-46, (2018).
  • [22] Xue B., Yang S., Qin R., Deng S., Niu M. and Zhang L. “Effect of a graphene-APP composite aerogel coating on the polyester fabric for outstanding flammability”, Progress in Organic Coatings, 172: 107130, (2022).
  • [23] Moazami A., Montazer M. and Dolatabadi M. K. “Tunable functional properties on polyester fabric using simultaneous green reduction of graphene oxide and silver nitrate”, Fibers and Polymers, 17: 1359-1370, (2016).
  • [24] Demirel Gültekin N., Usta İ. and Yalçin B. “Enhancing polyamide fabric performance through green reduction of graphene oxide for superior ultraviolet protection and electrical conductivity”, Coloration Technology, n/a:
  • [25] Shao F., Bian S. W., Zhu Q., Guo M. X., Liu S. and Peng Y. H. “Fabrication of Polyaniline/Graphene/Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability”, Chemistry- An Asian Journal, 11: 1906-12, (2016).
  • [26] Rathinamoorthy R. and Raja Balasaraswathi S. “Effect of surface modification of polyester fabric on microfiber shedding from household laundry”, International Journal of Clothing Science and Technology, ahead-of-print: (2022).
  • [27] Gültekin N., Usta İ. and Yalçin B. “Green Reduction of Graphene Oxide Coated Polyamide Fabric Using Carob Extract”, AATCC Journal of Research, 7: 33-40, (2020).
  • [28] Han M. S., Park Y. and Park C. H. “Development of superhydrophobic polyester fabrics using alkaline hydrolysis and coating with fluorinated polymers”, Fibers and Polymers, 17: 241-247, (2016).
  • [29] Nourbakhsh S., Montazer M. and khandaghabadi Z. “Zinc oxide nano particles coating on polyester fabric functionalized through alkali treatment”, Journal of Industrial Textiles, 47: 1006-1023, (2016).
  • [30] Tavanai H. and Kaynak A. “Effect of weight reduction pre-treatment on the electrical and thermal properties of polypyrrole coated woven polyester fabrics”, Synthetic Metals, 157: 764-769, (2007).
  • [31] Lee S. J., Yun C. and Park C. H. “Electrically conductive and superhydrophobic textiles via pyrrole polymerization and surface hydrophobization after alkaline hydrolysis”, Textile Research Journal, 89: 1436-1447, (2018).
  • [32] Yildiz Z., Usta I., Kale B. M., Mellen G. B. and Wang Y. “Alkali Treatment to Maximize Adhesion of Polypyrrole Coatings for Electro-Conductive Textile Materials”, Organic Polymer Material Research, 1: 3-9, (2019).
  • [33] Aizamddin M. F. and Mahat M. M. “Enhancing the Washing Durability and Electrical Longevity of Conductive Polyaniline-Grafted Polyester Fabrics”, ACS Omega, 8: 37936-37947, (2023).
  • [34] Zhao K., Wang Y., Wang W. and Yu D. “Moisture absorption, perspiration and thermal conductive polyester fabric prepared by thiol–ene click chemistry with reduced graphene oxide finishing agent”, Journal of Materials Science, 53: 14262-14273, (2018).
  • [35] [35] Bhattacharjee S., Joshi R., Chughtai A. A. and Macintyre C. R. “Graphene Modified Multifunctional Personal Protective Clothing”, Advanced Materials Interfaces, 6: 1900622, (2019).
  • [36] Textor T., Derksen L., Bahners T., Gutmann J. S. and Mayer-Gall T. “Abrasion resistance of textiles: Gaining insight into the damaging mechanisms of different test procedures”, Journal of Engineered Fibers and Fabrics, 14: 1558925019829481, (2019).
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Nergis Demirel Gültekin 0000-0002-1526-9382

Early Pub Date September 12, 2024
Publication Date
Submission Date June 3, 2023
Published in Issue Year 2024 EARLY VIEW

Cite

APA Demirel Gültekin, N. (2024). Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1309440
AMA Demirel Gültekin N. Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric. Politeknik Dergisi. Published online September 1, 2024:1-1. doi:10.2339/politeknik.1309440
Chicago Demirel Gültekin, Nergis. “Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric”. Politeknik Dergisi, September (September 2024), 1-1. https://doi.org/10.2339/politeknik.1309440.
EndNote Demirel Gültekin N (September 1, 2024) Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric. Politeknik Dergisi 1–1.
IEEE N. Demirel Gültekin, “Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric”, Politeknik Dergisi, pp. 1–1, September 2024, doi: 10.2339/politeknik.1309440.
ISNAD Demirel Gültekin, Nergis. “Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric”. Politeknik Dergisi. September 2024. 1-1. https://doi.org/10.2339/politeknik.1309440.
JAMA Demirel Gültekin N. Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric. Politeknik Dergisi. 2024;:1–1.
MLA Demirel Gültekin, Nergis. “Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1309440.
Vancouver Demirel Gültekin N. Effect of Alkaline Hydrolysis Process on The Physical and Electrical Properties of Reduced Graphene Oxide Coated Polyester Knitted Fabric. Politeknik Dergisi. 2024:1-.