Separation and Identification of Microfibers in the Wastewater of Textile Finishing Process
Yıl 2024,
ERKEN GÖRÜNÜM, 1 - 1
Sinem Hazal Akyıldız
,
İpek Yalcin Enis
,
Hande Sezgin
,
Rossana Bellopede
,
Silvia Fiore
,
Bahattin Yalcin
Öz
Microplastic pollution is an important global problem caused by the textile industry, which is responsible for 35% of microplastics released as microfibers. Microplastics interact with a variety of organisms due to their small dimensions and can result in chromosomal mutations that cause obstruction, inflammation, and organ accumulation. This study aims to detect microfibers released from the textile finishing machinery, which is used to give a soft touch to fabrics, and to separate these microfibers from wastewater. Within the scope of the study, wastewater samples were taken separately in February and March 2022, right after the device exit, before being discharged to the factory effluent and pre-treated for 5 days at 25 °C with 15% H2O2. Then, the microfibers were separated from the wastewater with the help of a filter. Filters with accumulated microfibers were observed using a light microscope, and a micro-FTIR was used to detect microfibers chemically. Furthermore, a scanning electron microscope was used for analyzing the structure of microfibers. The results showed that acrylic and cotton microfibers were detected in wastewater, and wastewater samples from different dates contained different amounts of microfibers (0.058 g/L and 0.251 g/L), which reveals the seriousness of the microplastic problem we are facing.
Destekleyen Kurum
The authors gratefully acknowledge ERASMUS+ support for the mobility of Akyildiz, S.H. to Politecnico di Torino, Italy for 6 months (February–July 2022).
Kaynakça
- [1] Bergeron, C. Fact Sheet: A Summary of the Literature on the Chemical Toxicity of Plastics Pollution on Aquatic Life and Aquatic-Dependent Wildlife. EPA. (December, 2016).
- [2] Westphalen, H., & Abdelrasoul, A. Challenges and treatment of microplastics in water. Water Challenges of an Urbanizing World. (2018).
- [3] Ian Tiseo. Global plastic PRODUCTION 1950-2020. Statista. (2021, September 10).
- [4] Laskar, N., & Kumar, U. Plastics and microplastics: A threat to the environment. Environmental Technology & Innovation, 14, 100352. (2019).
- [5] Tiseo, I., and 21, M. Global plastics production forecast 2025-2050. Statista. (2022, March 21).
- [6] Lucía Fernández. Chemical and textile fibers production worldwide 2020. Statista. (2021, September 6).
- [7] Plastic in textiles: Towards a circular economy for synthetic textiles in Europe. European Environment Agency. (2021, September 17).
- [8] Patti, A., Cicala, G., & Acierno, D. Eco-sustainability of the textile production: Waste recovery and current recycling in the composites world. Polymers, 13(1), 134. (2020).
- [9] Issac, M. N., & Kandasubramanian, B. Effect of microplastics in water and Aquatic Systems. Environmental Science and Pollution Research, 28(16), 19544–19562. (2021).
- [10] ISO TR 21960 Plastics. Environmental aspects. State of knowledge and methodologies. 52. (2020).
- [11] Crawford, C. B.; Quinn, B. Microplastic pollutants; Elsevier Limited, (2016).
- [12] De Lucia, Giuseppe Andrea, et al. “Water | Free Full-Text | Sea Water Contamination in the Vicinity of the Italian Minor Islands Caused by Microplastic Pollution.” MDPI, (2018).
- [13] P.J. Kershaw, C.M. Rochman (Eds.). Sources, fate and effects of microplastics in the marine environment: part two of a global assessment, vol. 93 (220), Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. (2016).
- [14] Henry, B., Laitala, K., & Klepp, I. G. Microfibres from apparel and home textiles: Prospects for including microplastics in Environmental Sustainability Assessment. Science of The Total Environment, 652, 483–494. (2019).
- [15] Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553–561. (2018).
- [16] Manshoven, S., Smeets, A., Arnold, M., & Mortensen, L. F. Plastic in textiles: Potentials for circularity and reduced environmental and climate impacts. Eionet Portal. (2021).
- [17] Berruezo, M., Bonet-Aracil, M., Montava, I., & Díaz-García, P. Preliminary study of weave pattern influence on microplastics from fabric laundering. Textile Research Journal, 91(9-10), 1037-1045. (2020).
- [18]Ellen MacArthur Foundation, A new textiles economy: Redesigning fashion’s future. (2017).
- [19] Özkan, İ., & Gündoğdu, S. Investigation on the microfiber release under controlled washings from the knitted fabrics produced by recycled and virgin polyester yarns. The Journal of The Textile Institute, 112(2), 264–272. (2020).
- [20] Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environmental Science & Technology, 54(7), 3740–3751. (2020).
- [21] Zhou, H., Zhou, L., & Ma, K. Microfiber from textile dyeing and printing Wastewater of a typical industrial Park in china: Occurrence, removal and release. Science of The Total Environment, 739, 140329. (2020).
- [22] Raja Balasaraswathi, S., & Rathinamoorthy, R. Effect of textile parameters on microfiber shedding properties of textiles. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry, 1–25. (2021).
- [23] Senthil Kumar, R., & Sundaresan, S. Mechanical finishing techniques for technical textiles. Advances in the Dyeing and Finishing of Technical Textiles, 135–153. (2013).
- [24] Carney Almroth, B. M., Åström, L., Roslund, S., Petersson, H., Johansson, M., & Persson, N.-K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environmental Science and Pollution Research, 25(2), 1191–1199. (2017).
- [25] Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B.-J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21–37. (2019).
- [26] Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C.M., Ni, B.-J., Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res. 152, 21–37. (2019).
- [27] Li, J., Liu, H., & Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374. (2018).
- [28] Wu, P., Huang, J., Zheng, Y., Yang, Y., Zhang, Y., He, F., Chen, H., Quan, G., Yan, J., Li, T., & Gao, B. Environmental occurrences, Fate, and impacts of microplastics. Ecotoxicology and Environmental Safety, 184, 109612. (2019).
- [29] Ding, N., An, D., Yin, X., & Sun, Y. (2020). Detection and evaluation of microbeads and other microplastics in wastewater treatment plant samples. Environmental Science and Pollution Research, 27(13), 15878–15887. (2020).
- [30] Miller, M. E., Kroon, F. J., & Motti, C. A. Recovering microplastics from marine samples: A review of current practices. Marine Pollution Bulletin, 123(1-2), 6–18. (2017).
- [31] Gatidou, G., Arvaniti, O. S., & Stasinakis, A. S. Review on the occurrence and fate of microplastics in sewage treatment plants. Journal of Hazardous Materials, 367, 504–512. (2019).
- [32] He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163–172. (2018).
- [33] Akyildiz, S. H., Sezgin, H., Yalcin, B., & Yalcin-Enis, I. Optimization of the textile wastewater pretreatment process in terms of organics removal and microplastic detection. Journal of Cleaner Production, 384, 135637. (2023).
- [34] Akyildiz, S. H., Bellopede, R., Sezgin, H., Yalcin-Enis, I., Yalcin, B., & Fiore, S. Detection and analysis of microfibers and microplastics in wastewater from a textile company. Microplastics, 1(4), 572–586. (2022).
- [35] Löder, M. G. J., Kuczera, M., Mintenig, S. M., Lorenz, C., & Gerdts, G. Focal plane array detector-based micro-fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environmental Chemistry, 12(5), 563. (2015).
- [36] Dochia, M., Sirghie, C., Kozłowski, R. M., & Roskwitalski, Z. Cotton Fibres. Handbook of Natural Fibres, 11–23. (2012).
- [37] Karaca, E., Omeroglu, S., & Becerir , B. Effects of fiber cross-sectional shapes on tensile and tearing properties of polyester woven fabrics. Dergipark. (2015).
- [38] Bhattacharya S., & Chaudhari S. Study on structural, mechanical and functional properties ofpolyester silica nanocomposite fabric. International Journal of Pure and Applied Sciences and Technology, 21(1), 43. (2014).
- [39] Portella, E. H., Romanzini, D., Angrizani, C. C., Amico, S. C., & Zattera, A. J. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Research, 19(3), 542–547. (2016).
- [40] Jabbar, Madeha and Shaker, Khubab. "Textile raw materials" Physical Sciences Reviews, 1(7), 20160022. (2016).
- [41] Houtz, R. C. “orlon” acrylic fiber: Chemistry and properties. Textile Research Journal, 20(11), 786–801. (1950b).
Tekstil Terbiye İşlemi Atıksularında Mikroliflerin Ayrıştırılması ve Tanımlanması
Yıl 2024,
ERKEN GÖRÜNÜM, 1 - 1
Sinem Hazal Akyıldız
,
İpek Yalcin Enis
,
Hande Sezgin
,
Rossana Bellopede
,
Silvia Fiore
,
Bahattin Yalcin
Öz
Mikroplastik kirliliği, mikrolif olarak salınan mikroplastiklerin %35'inden sorumlu olan tekstil endüstrisinin sebep olduğu önemli bir küresel sorundur. Mikroplastikler küçük boyutlarından dolayı, çok çeşitli organizmalarla etkileşime girebilir, tıkanıklığa, iltihaplanmaya ve organ birikimine neden olan kromozomal mutasyonlara yol açabilir. Bu çalışma, kumaşlara yumuşak bir tuşe vermek için kullanılan tekstil terbiye makinelerinden salınan mikrolifleri tespit etmeyi ve bu mikrolifleri atıksulardan ayırmayı amaçlamaktadır. Çalışma kapsamında, atıksu numuneleri fabrika çıkış suyuna verilmeden önce cihaz çıkışından hemen sonra Şubat ve Mart 2022 tarihlerinde ayrı ayrı alınmış olup, %15 H2O2 ile 25 °C'de 5 gün ön işleme tabi tutulmuştur. Ardından mikrolifler filtre yardımı ile atıksudan ayrıştırılmıştır. Filtrelerde biriken mikrolifler, ışık mikroskobu kullanılarak gözlemlenmiş ve mikrolifleri kimyasal olarak tespit etmek için mikro-FTIR cihazı kullanılmıştır. Ayrıca, mikroliflerin morfolojisi taramalı elektron mikroskobu ile incelenmiştir. Elde edilen sonuçlar, atıksularda akrilik ve pamuk mikroliflerinin tespit edildiğini ve farklı tarihlere ait atık su numunelerinin farklı miktarlarda (0,058 g/L ve 0,251 g/L) mikrolif içerdiğini göstermiştir ki bu da karşı karşıya olduğumuz mikroplastik sorununun ciddiyetini ortaya koymaktadır.
Kaynakça
- [1] Bergeron, C. Fact Sheet: A Summary of the Literature on the Chemical Toxicity of Plastics Pollution on Aquatic Life and Aquatic-Dependent Wildlife. EPA. (December, 2016).
- [2] Westphalen, H., & Abdelrasoul, A. Challenges and treatment of microplastics in water. Water Challenges of an Urbanizing World. (2018).
- [3] Ian Tiseo. Global plastic PRODUCTION 1950-2020. Statista. (2021, September 10).
- [4] Laskar, N., & Kumar, U. Plastics and microplastics: A threat to the environment. Environmental Technology & Innovation, 14, 100352. (2019).
- [5] Tiseo, I., and 21, M. Global plastics production forecast 2025-2050. Statista. (2022, March 21).
- [6] Lucía Fernández. Chemical and textile fibers production worldwide 2020. Statista. (2021, September 6).
- [7] Plastic in textiles: Towards a circular economy for synthetic textiles in Europe. European Environment Agency. (2021, September 17).
- [8] Patti, A., Cicala, G., & Acierno, D. Eco-sustainability of the textile production: Waste recovery and current recycling in the composites world. Polymers, 13(1), 134. (2020).
- [9] Issac, M. N., & Kandasubramanian, B. Effect of microplastics in water and Aquatic Systems. Environmental Science and Pollution Research, 28(16), 19544–19562. (2021).
- [10] ISO TR 21960 Plastics. Environmental aspects. State of knowledge and methodologies. 52. (2020).
- [11] Crawford, C. B.; Quinn, B. Microplastic pollutants; Elsevier Limited, (2016).
- [12] De Lucia, Giuseppe Andrea, et al. “Water | Free Full-Text | Sea Water Contamination in the Vicinity of the Italian Minor Islands Caused by Microplastic Pollution.” MDPI, (2018).
- [13] P.J. Kershaw, C.M. Rochman (Eds.). Sources, fate and effects of microplastics in the marine environment: part two of a global assessment, vol. 93 (220), Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. (2016).
- [14] Henry, B., Laitala, K., & Klepp, I. G. Microfibres from apparel and home textiles: Prospects for including microplastics in Environmental Sustainability Assessment. Science of The Total Environment, 652, 483–494. (2019).
- [15] Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553–561. (2018).
- [16] Manshoven, S., Smeets, A., Arnold, M., & Mortensen, L. F. Plastic in textiles: Potentials for circularity and reduced environmental and climate impacts. Eionet Portal. (2021).
- [17] Berruezo, M., Bonet-Aracil, M., Montava, I., & Díaz-García, P. Preliminary study of weave pattern influence on microplastics from fabric laundering. Textile Research Journal, 91(9-10), 1037-1045. (2020).
- [18]Ellen MacArthur Foundation, A new textiles economy: Redesigning fashion’s future. (2017).
- [19] Özkan, İ., & Gündoğdu, S. Investigation on the microfiber release under controlled washings from the knitted fabrics produced by recycled and virgin polyester yarns. The Journal of The Textile Institute, 112(2), 264–272. (2020).
- [20] Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environmental Science & Technology, 54(7), 3740–3751. (2020).
- [21] Zhou, H., Zhou, L., & Ma, K. Microfiber from textile dyeing and printing Wastewater of a typical industrial Park in china: Occurrence, removal and release. Science of The Total Environment, 739, 140329. (2020).
- [22] Raja Balasaraswathi, S., & Rathinamoorthy, R. Effect of textile parameters on microfiber shedding properties of textiles. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry, 1–25. (2021).
- [23] Senthil Kumar, R., & Sundaresan, S. Mechanical finishing techniques for technical textiles. Advances in the Dyeing and Finishing of Technical Textiles, 135–153. (2013).
- [24] Carney Almroth, B. M., Åström, L., Roslund, S., Petersson, H., Johansson, M., & Persson, N.-K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environmental Science and Pollution Research, 25(2), 1191–1199. (2017).
- [25] Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B.-J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21–37. (2019).
- [26] Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C.M., Ni, B.-J., Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res. 152, 21–37. (2019).
- [27] Li, J., Liu, H., & Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374. (2018).
- [28] Wu, P., Huang, J., Zheng, Y., Yang, Y., Zhang, Y., He, F., Chen, H., Quan, G., Yan, J., Li, T., & Gao, B. Environmental occurrences, Fate, and impacts of microplastics. Ecotoxicology and Environmental Safety, 184, 109612. (2019).
- [29] Ding, N., An, D., Yin, X., & Sun, Y. (2020). Detection and evaluation of microbeads and other microplastics in wastewater treatment plant samples. Environmental Science and Pollution Research, 27(13), 15878–15887. (2020).
- [30] Miller, M. E., Kroon, F. J., & Motti, C. A. Recovering microplastics from marine samples: A review of current practices. Marine Pollution Bulletin, 123(1-2), 6–18. (2017).
- [31] Gatidou, G., Arvaniti, O. S., & Stasinakis, A. S. Review on the occurrence and fate of microplastics in sewage treatment plants. Journal of Hazardous Materials, 367, 504–512. (2019).
- [32] He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163–172. (2018).
- [33] Akyildiz, S. H., Sezgin, H., Yalcin, B., & Yalcin-Enis, I. Optimization of the textile wastewater pretreatment process in terms of organics removal and microplastic detection. Journal of Cleaner Production, 384, 135637. (2023).
- [34] Akyildiz, S. H., Bellopede, R., Sezgin, H., Yalcin-Enis, I., Yalcin, B., & Fiore, S. Detection and analysis of microfibers and microplastics in wastewater from a textile company. Microplastics, 1(4), 572–586. (2022).
- [35] Löder, M. G. J., Kuczera, M., Mintenig, S. M., Lorenz, C., & Gerdts, G. Focal plane array detector-based micro-fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environmental Chemistry, 12(5), 563. (2015).
- [36] Dochia, M., Sirghie, C., Kozłowski, R. M., & Roskwitalski, Z. Cotton Fibres. Handbook of Natural Fibres, 11–23. (2012).
- [37] Karaca, E., Omeroglu, S., & Becerir , B. Effects of fiber cross-sectional shapes on tensile and tearing properties of polyester woven fabrics. Dergipark. (2015).
- [38] Bhattacharya S., & Chaudhari S. Study on structural, mechanical and functional properties ofpolyester silica nanocomposite fabric. International Journal of Pure and Applied Sciences and Technology, 21(1), 43. (2014).
- [39] Portella, E. H., Romanzini, D., Angrizani, C. C., Amico, S. C., & Zattera, A. J. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Research, 19(3), 542–547. (2016).
- [40] Jabbar, Madeha and Shaker, Khubab. "Textile raw materials" Physical Sciences Reviews, 1(7), 20160022. (2016).
- [41] Houtz, R. C. “orlon” acrylic fiber: Chemistry and properties. Textile Research Journal, 20(11), 786–801. (1950b).