Conference Paper
BibTex RIS Cite

ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1330176

Abstract

Indonesia has a geothermal energy resource potential of 40% of the world's potential and only 8.9% of Indonesia's geothermal potential has just been utilized. The spread of various geothermal locations in Indonesia will affect the characteristics of Geothermal Power Plants with different process types, so an analysis is needed to compare geothermal process technology and the conditions of the power generation system between flash steam and binary cycle to find out the technology. geothermal process and suitable system conditions at the Lahendong area expansion location. In this research, simulation of double flash steam and binary cycle with regeneration were carried out and the results were then analyzed based on the highest power output and efficiency. It was found that the double flash steam system produces a power of 3125 kW with a thermal efficiency of 89.8%. Meanwhile, the binary cycle system with generation produces a power of 5433.25 kW with a thermal efficiency of 8.68%. Based on the simulation results that have been carried out, the suitability of the process for the expansion of the Lahendong Area Geothermal Power Plant location uses binary cycle technology with a binary cycle with generation system.

Thanks

This work was supported by KEMENDIKBUDRISTEK under the Hibah Penelitian Disertasi Doktor (PDD) number: 112/E5/PG.02.00.PL/2023 and DRPM Institut Teknologi Sepuluh Nopember number: 1910/PKS/ITS/2023.

References

  • [1] DiPippo R., “Geothermal energy technology and current status: an overview”, In Renewable and Sustainable Energy Reviews, Massachusetts, USA: Elsevier Inc, (2016).
  • [2] Sukra K F A, Permana D I, and Adri̇Ansyah W., “Modelling and simulation of existing geothermal power plant: a case study of darajat geothermal power plant”, International Journal of Applied Thermodynamics, vol. 26, no. 2, pp. 13–20, Jun. (2023).
  • [3] Barbier E., “Geothermal energy technology and current status: an overview”, In Renewable and Sustainable Energy Reviews (Vol. 6), (2002).
  • [4] Grant M A, and Bixley P F., "Geothermal reservoirs", in Elsevier eBooks, pp. 1–8, (2011).
  • [5] Kömürcü M I and Akpinar A., "Importance of geothermal energy and its environmental effects in turkey", Renew. Energy, vol. 34, no. 6, pp. 1611–1615, (2009).
  • [6] Talluri L., Dumont O., Manfrida G., Lemort V., and Fiaschi D., "experimental investigation of an organic rankine cycle tesla turbine working with R1233zd(E)", Applied Thermal Engineering, vol. 174, p. 115293 Jun, (2020).
  • [7] Napitu A., "A study of brine supply system to binary cycle unit at namora i langit geothermal power plant", IOP Conference Series, vol. 254, p. 012013, Apr, (2019).
  • [8] Scott C., Cohen G., Cable R., Brosseau D., and Price H., “Parabolic trough organic rankine cycle solar power plant DOE solar energy technologies denver”, Colorado: US Department of Energy NREL, (2004).
  • [9] Herath H M D P., Wijewardane M A., Ranasinghe C., and Jayasekera J., "Working fluid selection of organic rankine cycles", Energy Reports, vol. 6, pp. 680–686, Dec, (2020).
  • [10] Carnot S., Mendoza E., editor, “Reflexions Sur La Puissance Motrice Du Feu. Bachelier Libraire Paris I824”, New York: Dover Publications Inc., English translation: Reflections on the motive power of fire. (1960).
  • [11] Macchi E., and Astolfi M., editor, “Organic Rankine Cycle (ORC) power systems”, Elsevier Ltd, (2017).
  • [12] Rayegan R., and Tao Y., "A procedure to select working fluids for solar Organic Rankine Cycles (ORCs)", Renewable Energy, vol. 36, no. 2, pp. 659–670, Feb, (2011).
  • [13] Groniewsky A., Györke G., and Imre A R., "Description of wet-to-dry transition in model ORC working fluids", Applied Thermal Engineering, vol. 125, pp. 963–971, Oct, (2017).
  • [14] Nugroho, A J., “Evaluation of waste brine utilization from LHD Unit III for electricity generation in Lahendong Geothermal Field, Indonesia”, Orkustofnun, (2007).
  • [15] Fernando Monroy Parada, A., Tecla, S., & Salvador, L., “Geothermal binary cycle power plant principles, operation and maintenance”, Orkustofnun, (2013).
  • [16] Chen C C., and Mathias P. M., "Applied thermodynamics for process modeling", AICHE Journal, vol. 48, no. 2, pp. 194–200, Feb, (2002).
  • [17] Al-Madani D., “Proses produksi panas bumi di PT Pertamina Geothermal Energy area Lahendong”, Aug. 02, (2019).
  • [18] Isık T., Baba A., Chandrasekharam D., and Demi̇R M M., "A brief overview on Geothermal scaling", Bulletin of the Mineral Research and Exploration, pp. 1–22, Jan, (2023).
  • [19] Mines G., “Binary geothermal energy conversion systems: basic rankine, dual-pressure, and dual-fluid cycles”, Elsevier Inc (2016).
  • [20] Zarrouk S J., Woodhurst B C., and Morris C A., "Silica scaling in geothermal heat exchangers and its impact on pressure drop and performance: Wairakei Binary Plant, New Zealand", Geothermics, vol. 51, pp. 445–459, Jul. (2014)

LAHENDONG GENIŞLEME ALANI IÇIN JEOTERMAL ENERJI SANTRALI SÜREÇ TASARIMININ ANALIZI

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1330176

Abstract

Endonezya, dünya potansiyelinin% 40'ı kadar bir jeotermal enerji kaynağı potansiyeline sahiptir ve Endonezya'nın jeotermal potansiyelinin sadece% 8.9'u yeni kullanılmıştır. Endonezya'daki çeşitli jeotermal konumların yayılması, farklı proses türlerine sahip Jeotermal Enerji Santrallerinin özelliklerini etkileyecektir, bu nedenle jeotermal proses teknolojisini ve teknolojiyi bulmak için flaş buhar ve ikili döngü arasındaki enerji üretim sisteminin koşullarını karşılaştırmak için bir analize ihtiyaç vardır. Lahendong bölgesi genişleme konumunda jeotermal süreç ve uygun sistem koşulları. Bu araştırmada, çift flaş buhar ve rejenerasyon ile ikili çevrim simülasyonu gerçekleştirilmiş ve sonuçlar daha sonra en yüksek güç çıkışı ve verimliliğine dayalı olarak analiz edilmiştir. Çift flaşlı buhar sisteminin% 89.8'lik bir termal verimlilikle 3125 kW'lık bir güç ürettiği bulunmuştur. Bu arada, üretimli ikili çevrim sistemi,% 8.68'lik bir termal verimlilikle 5433.25 kW'lık bir güç üretir.

References

  • [1] DiPippo R., “Geothermal energy technology and current status: an overview”, In Renewable and Sustainable Energy Reviews, Massachusetts, USA: Elsevier Inc, (2016).
  • [2] Sukra K F A, Permana D I, and Adri̇Ansyah W., “Modelling and simulation of existing geothermal power plant: a case study of darajat geothermal power plant”, International Journal of Applied Thermodynamics, vol. 26, no. 2, pp. 13–20, Jun. (2023).
  • [3] Barbier E., “Geothermal energy technology and current status: an overview”, In Renewable and Sustainable Energy Reviews (Vol. 6), (2002).
  • [4] Grant M A, and Bixley P F., "Geothermal reservoirs", in Elsevier eBooks, pp. 1–8, (2011).
  • [5] Kömürcü M I and Akpinar A., "Importance of geothermal energy and its environmental effects in turkey", Renew. Energy, vol. 34, no. 6, pp. 1611–1615, (2009).
  • [6] Talluri L., Dumont O., Manfrida G., Lemort V., and Fiaschi D., "experimental investigation of an organic rankine cycle tesla turbine working with R1233zd(E)", Applied Thermal Engineering, vol. 174, p. 115293 Jun, (2020).
  • [7] Napitu A., "A study of brine supply system to binary cycle unit at namora i langit geothermal power plant", IOP Conference Series, vol. 254, p. 012013, Apr, (2019).
  • [8] Scott C., Cohen G., Cable R., Brosseau D., and Price H., “Parabolic trough organic rankine cycle solar power plant DOE solar energy technologies denver”, Colorado: US Department of Energy NREL, (2004).
  • [9] Herath H M D P., Wijewardane M A., Ranasinghe C., and Jayasekera J., "Working fluid selection of organic rankine cycles", Energy Reports, vol. 6, pp. 680–686, Dec, (2020).
  • [10] Carnot S., Mendoza E., editor, “Reflexions Sur La Puissance Motrice Du Feu. Bachelier Libraire Paris I824”, New York: Dover Publications Inc., English translation: Reflections on the motive power of fire. (1960).
  • [11] Macchi E., and Astolfi M., editor, “Organic Rankine Cycle (ORC) power systems”, Elsevier Ltd, (2017).
  • [12] Rayegan R., and Tao Y., "A procedure to select working fluids for solar Organic Rankine Cycles (ORCs)", Renewable Energy, vol. 36, no. 2, pp. 659–670, Feb, (2011).
  • [13] Groniewsky A., Györke G., and Imre A R., "Description of wet-to-dry transition in model ORC working fluids", Applied Thermal Engineering, vol. 125, pp. 963–971, Oct, (2017).
  • [14] Nugroho, A J., “Evaluation of waste brine utilization from LHD Unit III for electricity generation in Lahendong Geothermal Field, Indonesia”, Orkustofnun, (2007).
  • [15] Fernando Monroy Parada, A., Tecla, S., & Salvador, L., “Geothermal binary cycle power plant principles, operation and maintenance”, Orkustofnun, (2013).
  • [16] Chen C C., and Mathias P. M., "Applied thermodynamics for process modeling", AICHE Journal, vol. 48, no. 2, pp. 194–200, Feb, (2002).
  • [17] Al-Madani D., “Proses produksi panas bumi di PT Pertamina Geothermal Energy area Lahendong”, Aug. 02, (2019).
  • [18] Isık T., Baba A., Chandrasekharam D., and Demi̇R M M., "A brief overview on Geothermal scaling", Bulletin of the Mineral Research and Exploration, pp. 1–22, Jan, (2023).
  • [19] Mines G., “Binary geothermal energy conversion systems: basic rankine, dual-pressure, and dual-fluid cycles”, Elsevier Inc (2016).
  • [20] Zarrouk S J., Woodhurst B C., and Morris C A., "Silica scaling in geothermal heat exchangers and its impact on pressure drop and performance: Wairakei Binary Plant, New Zealand", Geothermics, vol. 51, pp. 445–459, Jul. (2014)
There are 20 citations in total.

Details

Primary Language English
Subjects Chemical and Thermal Processes in Energy and Combustion
Journal Section Research Article
Authors

Renanto Handogo 0000-0001-9172-6912

Alhafiz Taufiqul Hakim Alhafiz 0000-0001-8009-1130

Aisyah Putri Prameswari Jasmine 0000-0003-4468-0477

Juwari Juwari 0000-0001-5157-4248

Early Pub Date September 12, 2024
Publication Date
Submission Date July 22, 2023
Published in Issue Year 2024 EARLY VIEW

Cite

APA Handogo, R., Alhafiz, A. T. H., Jasmine, A. P. P., Juwari, J. (2024). ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1330176
AMA Handogo R, Alhafiz ATH, Jasmine APP, Juwari J. ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA. Politeknik Dergisi. Published online September 1, 2024:1-1. doi:10.2339/politeknik.1330176
Chicago Handogo, Renanto, Alhafiz Taufiqul Hakim Alhafiz, Aisyah Putri Prameswari Jasmine, and Juwari Juwari. “ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA”. Politeknik Dergisi, September (September 2024), 1-1. https://doi.org/10.2339/politeknik.1330176.
EndNote Handogo R, Alhafiz ATH, Jasmine APP, Juwari J (September 1, 2024) ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA. Politeknik Dergisi 1–1.
IEEE R. Handogo, A. T. H. Alhafiz, A. P. P. Jasmine, and J. Juwari, “ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA”, Politeknik Dergisi, pp. 1–1, September 2024, doi: 10.2339/politeknik.1330176.
ISNAD Handogo, Renanto et al. “ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA”. Politeknik Dergisi. September 2024. 1-1. https://doi.org/10.2339/politeknik.1330176.
JAMA Handogo R, Alhafiz ATH, Jasmine APP, Juwari J. ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA. Politeknik Dergisi. 2024;:1–1.
MLA Handogo, Renanto et al. “ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1330176.
Vancouver Handogo R, Alhafiz ATH, Jasmine APP, Juwari J. ANALYSIS OF GEOTHERMAL POWER PLANT PROCESS DESIGN FOR LAHENDONG EXPANSION AREA. Politeknik Dergisi. 2024:1-.