Research Article
BibTex RIS Cite

Energy Absorption Analysis of Circular Cross-Section Crashworthiness with Dual Gradient Under Axial and Oblique Loads

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1335319

Abstract

The tube structures designed in the multicell pattern are used for crashworthiness in many areas. In this study, the crashworthiness was designed by dividing the inner area of the circular section geometry into equal slices by examining previous studies. In addition, this structure was prepared as a dual gradient in two different sizes along the length. Performance parameters were investigated by performing theoretical and numerical analyses. For multicell crashworthiness, which is considered a dual gradient, the folding style was insufficient in lobe formation. However, the specific energy absorption (SEA) and the crushing force efficiency (CFE) values of the two types of dual gradient structures behaved appropriately in absorbing kinetic energy. The dual gradient new design of crashworthiness provides resistance by preventing the bending of the structure under oblique loading. According to the results of the analysis, the mean SEA and CFE under loading at all angles for the 2nd order dual gradient configuration was 12.88% and 1.61% higher than the 1st order design. However, with the preparation of circular section tubular structures using 8-panel elements, close values were obtained in the comparison of theoretical and numerical analysis under axial loading conditions.

References

  • [1] Nia A. A. and Parsapour M., “Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal, and octagonal sections”, Thin-Walled Structures, 74: 155-165, (2014).
  • [2] Altın M., ve Yücesu H. S., “Farklı geometrik yapılardaki çarpışma kutularının içerisine yerleştirilen alüminyum köpük malzemenin enerji sönümleme kapasitesi üzerine etkisinin incelenmesi”, Politeknik Dergisi, 22(1): 141-148, (2019).
  • [3] Yıldız B., “Aritmetik Optimizasyon Algoritması Kullanarak Taşıt Elemanlarının Çarpışma Performansının Eniyilemesi”, Politeknik Dergisi, 26(3): 1277-1283, (2023).
  • [4] Wang Z., Liu J., Yao S., “On folding mechanics of multi-cell thin-walled square tubes”, Composites Part B: Engineering, 132: 17-27, (2018).
  • [5] Nia A. A. and Parsapour M., “An investigation on the energy absorption characteristics of multi-cell square tubes”, Thin-Walled Structures, 68: 26-34, (2013).
  • [6] Wu Y., Fang J., He Y., Li W., “Crashworthiness of hierarchical circular-joint quadrangular honeycombs”, Thin-Walled Structures, 133: 180-191, (2018).
  • [7] Fan H., Luo Y., Yang F., Li W., “Approaching perfect energy absorption through the structural hierarchy”, International Journal of Engineering Science, 130: 12-32, (2018).
  • [8] Shen W., Gu X., Jiang P., Hu J., Lv X., Qian L., “Crushing analysis and multiobjective optimization design for rectangular unequal triple-cell tubes subjected to axial loading”, Thin-Walled Structures, 117: 190-198, (2017).
  • [9] Deng X., Lu Q., Liu F., Huang, J., “Energy absorption comparison of conventional and dual gradient hierarchical multicellular tubes under axial impact”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3): 182, (2023).
  • [10] Acar E., Altin M. U. R. A. T., Güler M. A., “Evaluation of various multi-cell design concepts for crashworthiness design of thin-walled aluminum tubes”, Thin-Walled Structures, 142: 227-235, (2019).
  • [11] Ahmed N., Xue P., Kamran M., Zafar N., Mustafa, A., Zahran, M. S., “Investigation of the energy absorption characteristics of metallic tubes with curvy stiffeners under dynamic axial crushing”, Latin American Journal of Solids and Structures, 14: 1293-1313, (2017).
  • [12] Tabacu S., “Axial crushing of circular structures with rectangular multi-cell insert”, Thin-Walled Structures, 95: 297-309, (2015).
  • [13] San Ha N., Pham T. M., Chen W., Hao H., “Energy absorption characteristics of bio-inspired hierarchical multi-cell bi-tubular tubes”, International Journal of Mechanical Sciences, 251:108260, (2023).
  • [14] San Ha N. and Lu G.,”A review of recent research on bio-inspired structures and materials for energy absorption applications”, Composites Part B: Engineering, 181: 107496, (2020).
  • [15] Qin S., Deng X., Liu X., “Crashworthiness analysis of bioinspired hierarchical gradient multicell tubes under axial impact”, Thin-Walled Structures, 179: 109591, (2022).
  • [16] Gong C., Hu Y., Bai Z., “Crashworthiness analysis and optimization of lotus-inspired bionic multi-cell circular tubes”, Mechanics of Advanced Materials and Structures, 1-19, (2022).
  • [17] Gong C., Bai Z., Lv J., Zhang L., “Crashworthiness analysis of bionic thin-walled tubes inspired by the evolution laws of plant stems”, Thin-Walled Structures, 157: 107081, (2020).
  • [18] Xiao Y., Yin H., Fang H., Wen G., “Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading”, International Journal of Mechanics and Materials in Design, 12: 563-576, (2016).
  • [19] Cheng X., Bai Z., Zhu F., Chou,C. C., Jiang B., Xu S., “An optimized bio-inspired thin-walled structure with controllable crashworthiness based on magnetorheological fluid”, Mechanics of Advanced Materials and Structures, 1-16, (2022).
  • [20] San Ha, N., Lu G., Xiang X., “High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration”, International Journal of Mechanical Sciences, 148: 409-421, (2018).
  • [21] Zou M., Xu S., Wei C., Wang H., Liu Z., “A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo”, Thin-Walled Structures, 101: 222-230, (2016).
  • [22] Zhang W., Yin S., Yu T. X., Xu J., “Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb”, International Journal of Impact Engineering, 125: 163-172, (2019).
  • [23] Greco L., Buccino F., Xu Z., Vergani L., Berto F., Guagliano M., Bagherifard S., “Design and analysis of energy absorbent bioinspired lattice structures”, Journal of Bionic Engineering, 1-17, (2023).
  • [24] Tian K., Zhang Y., Yang F., Zhao Q., Fan H., “Enhancing energy absorption of circular tubes under oblique loads through introducing grooves of non-uniform depths”, International Journal of Mechanical Sciences, 166: 105239, (2020).
  • [25] Fang J., Gao Y., Sun G., Qiu N., Li Q., “On design of multi-cell tubes under axial and oblique impact loads”, Thin-Walled Structures, 95: 115-126, (2015).
  • [26] Huang H., Xu S., “Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads”, Thin-Walled Structures, 144: 106333, (2019).
  • [27] Qiu N., Gao Y., Fang J., Feng Z., Sun G., Li Q., “Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases”, Finite Elements in Analysis and Design, 104: 89-101, (2015).
  • [28] Tsang H. H., Raza S., “Impact energy absorption of bio-inspired tubular sections with structural hierarchy”, Composite Structures, 195: 199-210, (2018).
  • [29] Xu S., Li W., Li L., Li T., Ma C., “Crashworthiness design and multi-objective optimization for bio-inspired hierarchical thin-walled structures”, Computer Modeling in Engineering & Sciences, 131(2): 929-947, (2022).
  • [30] Wu S., Zheng G., Sun G., Liu Q., Li G., Li Q., “On design of multi-cell thin-wall structures for crashworthiness”, International Journal of Impact Engineering, 88: 102-117, (2016).
  • [31] Zhang L., Bai Z., Bai F., “Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections”, Thin-Walled Structures, 122: 42-51, (2018).
  • [32] Zhang J., Zheng D., Lu B., Zhang T., “Energy absorption performance of hybrid cross-section tubes under oblique loads”, Thin-Walled Structures, 159:107133, (2021).
  • [33] Altın M., “Çarpışma kutularının üzerine açılan oyukların çarpışma performansı üzerine etkisinin incelenmesi”, Politeknik Dergisi, 22(1): 135-139, (2019).

Dairesel Kesitli ve Dual Gradyan Çarpışma Kutusunun Eksenel ve Eğik Yükler Altında Enerji Sönümleme Analizi

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1335319

Abstract

Çok hücreli desende tasarlanan tüp yapılar birçok alanda çarpmaya dayanıklı olarak kullanılmaktadır. Bu çalışmada daha önce yapılan çalışmalar incelenerek dairesel kesit geometrisinin iç alanı eşit dilimlere bölünerek çarpışma kutusu tasarlanmıştır. Ayrıca bu yapı, uzunluk boyunca iki farklı boyutta ikili gradyan olarak hazırlandı. Performans parametreleri teorik ve sayısal analizler yapılarak incelenmiştir. Çift gradyan olarak kabul edilen çok hücreli çarpışma dayanıklılığı açısından, lob oluşumunda katlanma stili yetersizdir. Bununla birlikte, iki tip çift gradyanlı yapının özgül enerji soğurma (SEA) ve çarpışma kuvveti verimliliği (CFE) değerleri, kinetik enerjinin sönümlenmesi konusunda uygun davranmıştır. Çarpışmaya dayanıklı yeni çift gradyanlı tasarım, eğik yükleme altında yapının bükülmesini önleyerek direnç sağlar. Analiz sonuçlarına göre, 2. derece ikili eğim konfigürasyonu için tüm açılardan yükleme altında ortalama SEA ve CFE, 1. derece tasarıma göre % 12.88 ve %1.61 daha yüksekti. Ancak dairesel kesitli boru yapıların 8 panelli elemanlar kullanılarak hazırlanmasıyla eksenel yükleme koşulları altında teorik ve sayısal analizlerin karşılaştırılmasında birbirine yakın değerler elde edilmiştir.

References

  • [1] Nia A. A. and Parsapour M., “Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal, and octagonal sections”, Thin-Walled Structures, 74: 155-165, (2014).
  • [2] Altın M., ve Yücesu H. S., “Farklı geometrik yapılardaki çarpışma kutularının içerisine yerleştirilen alüminyum köpük malzemenin enerji sönümleme kapasitesi üzerine etkisinin incelenmesi”, Politeknik Dergisi, 22(1): 141-148, (2019).
  • [3] Yıldız B., “Aritmetik Optimizasyon Algoritması Kullanarak Taşıt Elemanlarının Çarpışma Performansının Eniyilemesi”, Politeknik Dergisi, 26(3): 1277-1283, (2023).
  • [4] Wang Z., Liu J., Yao S., “On folding mechanics of multi-cell thin-walled square tubes”, Composites Part B: Engineering, 132: 17-27, (2018).
  • [5] Nia A. A. and Parsapour M., “An investigation on the energy absorption characteristics of multi-cell square tubes”, Thin-Walled Structures, 68: 26-34, (2013).
  • [6] Wu Y., Fang J., He Y., Li W., “Crashworthiness of hierarchical circular-joint quadrangular honeycombs”, Thin-Walled Structures, 133: 180-191, (2018).
  • [7] Fan H., Luo Y., Yang F., Li W., “Approaching perfect energy absorption through the structural hierarchy”, International Journal of Engineering Science, 130: 12-32, (2018).
  • [8] Shen W., Gu X., Jiang P., Hu J., Lv X., Qian L., “Crushing analysis and multiobjective optimization design for rectangular unequal triple-cell tubes subjected to axial loading”, Thin-Walled Structures, 117: 190-198, (2017).
  • [9] Deng X., Lu Q., Liu F., Huang, J., “Energy absorption comparison of conventional and dual gradient hierarchical multicellular tubes under axial impact”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3): 182, (2023).
  • [10] Acar E., Altin M. U. R. A. T., Güler M. A., “Evaluation of various multi-cell design concepts for crashworthiness design of thin-walled aluminum tubes”, Thin-Walled Structures, 142: 227-235, (2019).
  • [11] Ahmed N., Xue P., Kamran M., Zafar N., Mustafa, A., Zahran, M. S., “Investigation of the energy absorption characteristics of metallic tubes with curvy stiffeners under dynamic axial crushing”, Latin American Journal of Solids and Structures, 14: 1293-1313, (2017).
  • [12] Tabacu S., “Axial crushing of circular structures with rectangular multi-cell insert”, Thin-Walled Structures, 95: 297-309, (2015).
  • [13] San Ha N., Pham T. M., Chen W., Hao H., “Energy absorption characteristics of bio-inspired hierarchical multi-cell bi-tubular tubes”, International Journal of Mechanical Sciences, 251:108260, (2023).
  • [14] San Ha N. and Lu G.,”A review of recent research on bio-inspired structures and materials for energy absorption applications”, Composites Part B: Engineering, 181: 107496, (2020).
  • [15] Qin S., Deng X., Liu X., “Crashworthiness analysis of bioinspired hierarchical gradient multicell tubes under axial impact”, Thin-Walled Structures, 179: 109591, (2022).
  • [16] Gong C., Hu Y., Bai Z., “Crashworthiness analysis and optimization of lotus-inspired bionic multi-cell circular tubes”, Mechanics of Advanced Materials and Structures, 1-19, (2022).
  • [17] Gong C., Bai Z., Lv J., Zhang L., “Crashworthiness analysis of bionic thin-walled tubes inspired by the evolution laws of plant stems”, Thin-Walled Structures, 157: 107081, (2020).
  • [18] Xiao Y., Yin H., Fang H., Wen G., “Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading”, International Journal of Mechanics and Materials in Design, 12: 563-576, (2016).
  • [19] Cheng X., Bai Z., Zhu F., Chou,C. C., Jiang B., Xu S., “An optimized bio-inspired thin-walled structure with controllable crashworthiness based on magnetorheological fluid”, Mechanics of Advanced Materials and Structures, 1-16, (2022).
  • [20] San Ha, N., Lu G., Xiang X., “High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration”, International Journal of Mechanical Sciences, 148: 409-421, (2018).
  • [21] Zou M., Xu S., Wei C., Wang H., Liu Z., “A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo”, Thin-Walled Structures, 101: 222-230, (2016).
  • [22] Zhang W., Yin S., Yu T. X., Xu J., “Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb”, International Journal of Impact Engineering, 125: 163-172, (2019).
  • [23] Greco L., Buccino F., Xu Z., Vergani L., Berto F., Guagliano M., Bagherifard S., “Design and analysis of energy absorbent bioinspired lattice structures”, Journal of Bionic Engineering, 1-17, (2023).
  • [24] Tian K., Zhang Y., Yang F., Zhao Q., Fan H., “Enhancing energy absorption of circular tubes under oblique loads through introducing grooves of non-uniform depths”, International Journal of Mechanical Sciences, 166: 105239, (2020).
  • [25] Fang J., Gao Y., Sun G., Qiu N., Li Q., “On design of multi-cell tubes under axial and oblique impact loads”, Thin-Walled Structures, 95: 115-126, (2015).
  • [26] Huang H., Xu S., “Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads”, Thin-Walled Structures, 144: 106333, (2019).
  • [27] Qiu N., Gao Y., Fang J., Feng Z., Sun G., Li Q., “Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases”, Finite Elements in Analysis and Design, 104: 89-101, (2015).
  • [28] Tsang H. H., Raza S., “Impact energy absorption of bio-inspired tubular sections with structural hierarchy”, Composite Structures, 195: 199-210, (2018).
  • [29] Xu S., Li W., Li L., Li T., Ma C., “Crashworthiness design and multi-objective optimization for bio-inspired hierarchical thin-walled structures”, Computer Modeling in Engineering & Sciences, 131(2): 929-947, (2022).
  • [30] Wu S., Zheng G., Sun G., Liu Q., Li G., Li Q., “On design of multi-cell thin-wall structures for crashworthiness”, International Journal of Impact Engineering, 88: 102-117, (2016).
  • [31] Zhang L., Bai Z., Bai F., “Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections”, Thin-Walled Structures, 122: 42-51, (2018).
  • [32] Zhang J., Zheng D., Lu B., Zhang T., “Energy absorption performance of hybrid cross-section tubes under oblique loads”, Thin-Walled Structures, 159:107133, (2021).
  • [33] Altın M., “Çarpışma kutularının üzerine açılan oyukların çarpışma performansı üzerine etkisinin incelenmesi”, Politeknik Dergisi, 22(1): 135-139, (2019).
There are 33 citations in total.

Details

Primary Language English
Subjects Machine Design and Machine Equipment, Numerical Modelling and Mechanical Characterisation
Journal Section Research Article
Authors

Hakan Burçin Erdoğuş 0000-0002-2947-7510

Early Pub Date August 20, 2024
Publication Date
Submission Date July 31, 2023
Published in Issue Year 2024 EARLY VIEW

Cite

APA Erdoğuş, H. B. (2024). Energy Absorption Analysis of Circular Cross-Section Crashworthiness with Dual Gradient Under Axial and Oblique Loads. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1335319
AMA Erdoğuş HB. Energy Absorption Analysis of Circular Cross-Section Crashworthiness with Dual Gradient Under Axial and Oblique Loads. Politeknik Dergisi. Published online August 1, 2024:1-1. doi:10.2339/politeknik.1335319
Chicago Erdoğuş, Hakan Burçin. “Energy Absorption Analysis of Circular Cross-Section Crashworthiness With Dual Gradient Under Axial and Oblique Loads”. Politeknik Dergisi, August (August 2024), 1-1. https://doi.org/10.2339/politeknik.1335319.
EndNote Erdoğuş HB (August 1, 2024) Energy Absorption Analysis of Circular Cross-Section Crashworthiness with Dual Gradient Under Axial and Oblique Loads. Politeknik Dergisi 1–1.
IEEE H. B. Erdoğuş, “Energy Absorption Analysis of Circular Cross-Section Crashworthiness with Dual Gradient Under Axial and Oblique Loads”, Politeknik Dergisi, pp. 1–1, August 2024, doi: 10.2339/politeknik.1335319.
ISNAD Erdoğuş, Hakan Burçin. “Energy Absorption Analysis of Circular Cross-Section Crashworthiness With Dual Gradient Under Axial and Oblique Loads”. Politeknik Dergisi. August 2024. 1-1. https://doi.org/10.2339/politeknik.1335319.
JAMA Erdoğuş HB. Energy Absorption Analysis of Circular Cross-Section Crashworthiness with Dual Gradient Under Axial and Oblique Loads. Politeknik Dergisi. 2024;:1–1.
MLA Erdoğuş, Hakan Burçin. “Energy Absorption Analysis of Circular Cross-Section Crashworthiness With Dual Gradient Under Axial and Oblique Loads”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1335319.
Vancouver Erdoğuş HB. Energy Absorption Analysis of Circular Cross-Section Crashworthiness with Dual Gradient Under Axial and Oblique Loads. Politeknik Dergisi. 2024:1-.