Araştırma Makalesi
BibTex RIS Kaynak Göster

İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi ve Karakterizasyonu

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1337136

Öz

Bu çalışmada, polikaprolakton (PCL) kompozit filmlerin yapısal özellikleri ve biyobozunurluk davranışını incelemek için indirgenmiş grafen oksit (RGO) dolgu maddesi olarak seçilmiştir. RGO dolgusu farklı miktarlarda (ağ.% 0,1, 0,5 ve 1,0) sıvı faz ultrasonik karıştırma metodu ile PCL matriksine ilave edilerek PCL/RGO kompozit filmler hazırlanmıştır. Tüm filmlerde polimer-dolgu etkileşiminin sağlandığı, (110) ve (200) düzlemlerine ait piklerin kristal boyut değerlerinde en yüksek artışın PCL/RGO-1.0 filmine ait olduğu ve aynı filmde düzensiz, kaba yüzey görüntüsü ile birlikte diğer filmlere göre daha az boşluklu bir yüzey görüntüsü sergilediği tespit edilmiştir. Bu çalışma, kontrollü biyobozunurluk davranışı ile biyomalzeme uygulamaları için en düşük gözeneklilik (%26,84) ve yüzey pürüzlülük değerine (Rq 2,23) sahip olduğu belirlenen PCL/RGO-1.0 filmini önermektedir.

Kaynakça

  • [1] Alberto, L., Kalluri, L., Qu, J., Zhao, Y., Duan, Y., “Influence of Polycaprolactone Concentration and Solvent Type on the Dimensions and Morphology of Electrosprayed Particles.”, Materials, 16(5):2122, (2023).
  • [2] Domingos, M. F., Chiellini, S., Cometa, E., De Giglio, E., Grillo-Fernandes, P., Bártolo, Chiellini, E., “Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion. Part 1: Influence of the degradation environment.”, Virtual and Physical Prototyping, 5(2): 65-73, (2010).
  • [3] Suchý, T., Bartoš, M., Sedláček, R., Šupová, M., Žaloudková, M., Martynková, G.S., Foltán, R. “Various Simulated Body Fluids Lead to Significant Differences in Collagen Tissue Engineering Scaffolds.”, Materials, 14(16):4388, (2021).
  • [4] Chouzouri, G., Xanthos, M., “In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers.”, Acta Biomaterialia, 3(5): 745–756, (2007).
  • [5] Küçükgöksel, Y., Cesur, S., “The investigation of desired product properties of polycaprolactone-hydroxy apatite composites for tissue engineering applications.”, Usak University Journal of Material Sciences, 3(1): 107-119 (2014).
  • [6] Gopinathan, J., Mano, S., Elakkiya, V., Pillai, M. M., Sahanand, K. S., Dinakar Rai, B. K., Selvakumar, R., Bhattacharyya, A., “Biomolecule incorporated poly-ε-caprolactone nanofibrous scaffolds for enhanced human meniscal cell attachment and proliferation.”, RSC Advances, 5(90): 73552-73561, (2015).
  • [7] Elkhouly, H., Mamdouh, W., El-Korashy, D.I., “Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering”, Journal of Material Science: Materials in Medicine, 32(111):1-15, (2021).
  • [8] Karacif, K., Candemir, D. , “Grafen oksit kaplanmış alüminyum alaşımının korozyon davranışına ortam sıcaklığının etkileri.”, Politenik Dergisi, 1-1., 787-789, (2023).
  • [9] Yurddaşkal, M., Kartal, U., Doluel, E.C., “Titanyum dioksit/indirgenmiş grafen oksit kompozitlerin üretimi ve fotokatalitik özelliklerinin incelenmesi.” Politeknik Dergisi, 23(1), 249-255, (2019).
  • [10] Zan, R., Altuntepe, A., Erkan, S., Seyhan A., “Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu.” Politeknik Dergisi, 25(2):667-673, (2022).
  • [11] Yılmaz Dogan, H., Altın Y., Çelik Bedeloğlu A., “Grafen takviyeli epoksi nanokompozitlerin özelliklerinin incelenmesi”, Politeknik Dergisi, 24(4): 1719-1727, (2021).
  • [12] Cabral, C.S.D., Melo-Diogo, D., Ferreira, P., Moreira, A. F., Correia, I.J., “Reduced graphene oxide–reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regeneration.” International Journal of Biological Macromolecules, 259, 2: 129210 (2024).
  • [13] Hou, Y., Wang, W., Bartolo, P., “The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications”, Materials Today Bio, 24: 100886 (2024).
  • [14] Shabankhah, M., Moghaddaszadeh, A., Najmoddin, N. “3D printed conductive PCL/GO scaffold immobilized with gelatin/CuO accelerates H9C2 cells attachment and proliferation.” Progress in Organic Coatings, 186: 108013 (2024).
  • [15] Meng, D., Hou, Y., Kurniawan, D., Weng, R.-J., Chiang, W.-H., Wang,W., “3D-Printed Graphene and Graphene Quantum Dot-Reinforced Polycaprolactone Scaffolds for Bone-Tissue Engineering”, ACS Applied Nano Materials, 7(1):1245–1256, (2024).
  • [16] Joy, A., Unnikrishnan, G., Megha, M., Haris, M., Thomas, J., Kolanthai, E., Senthilkumar, M. “Hybrid gold/graphene oxide reinforced polycaprolactone nanocomposite for biomedical applications.” Surfaces and Interfaces, 40, 103000, (2023).
  • [17] Gracia, Lux, C., Joshi-Barr, S., Nguyen, T., Mahmoud, E., Schopf, E., Fomina, N., Almutairi, A. “Biocompatible Polymeric Nanoparticles Degrade and Release Cargo in Response to Biologically Relevant Levels of Hydrogen Peroxide”, Journal of the American Chemical Society, 134: 15758−15764, (2012).
  • [18] Ma, H.L., Zhang, H.B., Hu, Q.H., Li, W.J., Jiang, Z.G., Yu, Z.Z., Dasari, A., “Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites”, ACS Applied Materials & Interfaces, 4 (4): 1948-1953, (2012).
  • [19] Maleki-Ghaleh, H., Hossein Siadati, M., Fallah, A., Zarrabi, A., Afghah, F., Koc, B., Dalir Abdolahinia, E., Omidi, Y., Barar, J., Akbari-Fakhrabadi, A., Beygi-Khosrowshahi, Y., Adibkia, K., “Effect of zinc-doped hydroxyapatite/graphene nanocomposite on the physicochemical properties and osteogenesis differentiation of 3D-printed polycaprolactone scaffolds for bone tissue engineering” ,Chemical Engineering Journal, 426 (131321):1385-8947, (2021).
  • [20] Hummers, W.S. and Offeman, R.E., “Preparation of Graphitic Oxide.”, Journal of the American Chemical Society, 80:1339-1339, (1958).
  • [21] Mindivan, F., Göktaş, M., “Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties”, Polymer Bulletin, 77(4): 1929-1949, (2020).
  • [22] Monshi, A., Foroughi, M. R., Monshi, M. R., “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD”, World Journal of Nano Science and Engineering, 2: 154-160, (2012).
  • [23] Danilchenko, S.N., Kukharenko, O.G., Moseke, C., Protsenko, I.Y., Sukhodub, L.F., Sulkio-Cleff, B., “Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening.” Crystal Research Technology, 37(11): 1234–1240, (2002).
  • [24] Mindivan, F., Göktaş¸ M., Dike, A.S., “Mechanical, thermal, and micro- and nanostructural properties of polyvinyl chloride/ graphene nanoplatelets nanocomposites.”, Polymer Composites, 41(9):3707-3716, (2020).
  • [25] Ghorghi, M., Rafienia, M., Nasirian, V., Bitaraf, F. S., Gharravi, A. M., Zarrabi, A., “Electrospun captopril-loaded PCL-carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies”, Polymers Advanced Technologies, 31: 3302–3315, (2020).
  • [26] Gupta, D., Venugopal, J., Prabhakaran, M.P., Dev, V.G., Low, S., Choon, A.T., Ramakrishna, S., “Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering”, Acta Biomaterialia, 5(7): 2560-2569, (2009).
  • [27] Bagheri, M., Mahmoodzadeh, A., “Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers”, The Journal of Inorganic and Organometallic Polymers and Materials, 30: 1566–1577 (2020).
  • [28] Uflyand, I.E., Drogan, E.G., Burlakova, V.E., Kydralieva, K.A., Shershneva, I.N., Dzhardimalieva, G.I., “Testing the mechanical and tribological properties of new metal-polymer nanocomposite materials based on linear low-density polyethylene and Al65Cu22Fe13 quasicrystals.”, Polymer Testing, 74:178–186, (2019).
  • [29] Huang, H.-Y., Fan, F.-Y., Shen, Y.-K., Wang, C.-H., Huang, Y.-T., Chern, M.-J., Wang, Y.-H., Wang, L., “3D poly-ε-caprolactone/graphene porous scaffolds for bone tissue engineering.”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606: 125393, 0927-7757, (2020).
  • [30] Janarthanan, G., Kim, I.G., Chung, E.J., Noh, I., “Comparative studies on thin polycaprolactone-tricalcium phosphate composite scaffolds and its interaction with mesenchymal stem cells.”, Biomaterials Research, 23 (1):1-12, (2019).
  • [31] Díaz, E., Sandonis, I., Valle, M.B., “In vitro degradation of poly (caprolactone)/nHA composites”. Journal of Nanomaterials, (3): 185, (2014).

Production and Characterization of PCL Composite Films Filled with Reduced Graphene Oxide

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1337136

Öz

In this study, reduced graphene oxide (RGO) was chosen as a filler to examine the structural properties of polycaprolactone (PCL) composite films. PCL/RGO composite films were prepared by using the liquid phase ultrasonic mixing method by using different amounts of RGO filler (0.1, 0.5 and 1.0 wt%). Polymer-filler interaction was achieved in all films; the highest crystal size values of the peaks belonged to the (110) and (200) planes of the PCL/RGO-1.0 film, and an irregular, rough surface image and fewer voids were seen in the same film. This study recommended PCL/RGO-1.0 film, which had the lowest porosity (26.84%) and surface roughness value (Rq 2.23) for biomaterial applications with its controlled biodegradability behavior.

Kaynakça

  • [1] Alberto, L., Kalluri, L., Qu, J., Zhao, Y., Duan, Y., “Influence of Polycaprolactone Concentration and Solvent Type on the Dimensions and Morphology of Electrosprayed Particles.”, Materials, 16(5):2122, (2023).
  • [2] Domingos, M. F., Chiellini, S., Cometa, E., De Giglio, E., Grillo-Fernandes, P., Bártolo, Chiellini, E., “Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion. Part 1: Influence of the degradation environment.”, Virtual and Physical Prototyping, 5(2): 65-73, (2010).
  • [3] Suchý, T., Bartoš, M., Sedláček, R., Šupová, M., Žaloudková, M., Martynková, G.S., Foltán, R. “Various Simulated Body Fluids Lead to Significant Differences in Collagen Tissue Engineering Scaffolds.”, Materials, 14(16):4388, (2021).
  • [4] Chouzouri, G., Xanthos, M., “In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers.”, Acta Biomaterialia, 3(5): 745–756, (2007).
  • [5] Küçükgöksel, Y., Cesur, S., “The investigation of desired product properties of polycaprolactone-hydroxy apatite composites for tissue engineering applications.”, Usak University Journal of Material Sciences, 3(1): 107-119 (2014).
  • [6] Gopinathan, J., Mano, S., Elakkiya, V., Pillai, M. M., Sahanand, K. S., Dinakar Rai, B. K., Selvakumar, R., Bhattacharyya, A., “Biomolecule incorporated poly-ε-caprolactone nanofibrous scaffolds for enhanced human meniscal cell attachment and proliferation.”, RSC Advances, 5(90): 73552-73561, (2015).
  • [7] Elkhouly, H., Mamdouh, W., El-Korashy, D.I., “Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering”, Journal of Material Science: Materials in Medicine, 32(111):1-15, (2021).
  • [8] Karacif, K., Candemir, D. , “Grafen oksit kaplanmış alüminyum alaşımının korozyon davranışına ortam sıcaklığının etkileri.”, Politenik Dergisi, 1-1., 787-789, (2023).
  • [9] Yurddaşkal, M., Kartal, U., Doluel, E.C., “Titanyum dioksit/indirgenmiş grafen oksit kompozitlerin üretimi ve fotokatalitik özelliklerinin incelenmesi.” Politeknik Dergisi, 23(1), 249-255, (2019).
  • [10] Zan, R., Altuntepe, A., Erkan, S., Seyhan A., “Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu.” Politeknik Dergisi, 25(2):667-673, (2022).
  • [11] Yılmaz Dogan, H., Altın Y., Çelik Bedeloğlu A., “Grafen takviyeli epoksi nanokompozitlerin özelliklerinin incelenmesi”, Politeknik Dergisi, 24(4): 1719-1727, (2021).
  • [12] Cabral, C.S.D., Melo-Diogo, D., Ferreira, P., Moreira, A. F., Correia, I.J., “Reduced graphene oxide–reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regeneration.” International Journal of Biological Macromolecules, 259, 2: 129210 (2024).
  • [13] Hou, Y., Wang, W., Bartolo, P., “The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications”, Materials Today Bio, 24: 100886 (2024).
  • [14] Shabankhah, M., Moghaddaszadeh, A., Najmoddin, N. “3D printed conductive PCL/GO scaffold immobilized with gelatin/CuO accelerates H9C2 cells attachment and proliferation.” Progress in Organic Coatings, 186: 108013 (2024).
  • [15] Meng, D., Hou, Y., Kurniawan, D., Weng, R.-J., Chiang, W.-H., Wang,W., “3D-Printed Graphene and Graphene Quantum Dot-Reinforced Polycaprolactone Scaffolds for Bone-Tissue Engineering”, ACS Applied Nano Materials, 7(1):1245–1256, (2024).
  • [16] Joy, A., Unnikrishnan, G., Megha, M., Haris, M., Thomas, J., Kolanthai, E., Senthilkumar, M. “Hybrid gold/graphene oxide reinforced polycaprolactone nanocomposite for biomedical applications.” Surfaces and Interfaces, 40, 103000, (2023).
  • [17] Gracia, Lux, C., Joshi-Barr, S., Nguyen, T., Mahmoud, E., Schopf, E., Fomina, N., Almutairi, A. “Biocompatible Polymeric Nanoparticles Degrade and Release Cargo in Response to Biologically Relevant Levels of Hydrogen Peroxide”, Journal of the American Chemical Society, 134: 15758−15764, (2012).
  • [18] Ma, H.L., Zhang, H.B., Hu, Q.H., Li, W.J., Jiang, Z.G., Yu, Z.Z., Dasari, A., “Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites”, ACS Applied Materials & Interfaces, 4 (4): 1948-1953, (2012).
  • [19] Maleki-Ghaleh, H., Hossein Siadati, M., Fallah, A., Zarrabi, A., Afghah, F., Koc, B., Dalir Abdolahinia, E., Omidi, Y., Barar, J., Akbari-Fakhrabadi, A., Beygi-Khosrowshahi, Y., Adibkia, K., “Effect of zinc-doped hydroxyapatite/graphene nanocomposite on the physicochemical properties and osteogenesis differentiation of 3D-printed polycaprolactone scaffolds for bone tissue engineering” ,Chemical Engineering Journal, 426 (131321):1385-8947, (2021).
  • [20] Hummers, W.S. and Offeman, R.E., “Preparation of Graphitic Oxide.”, Journal of the American Chemical Society, 80:1339-1339, (1958).
  • [21] Mindivan, F., Göktaş, M., “Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties”, Polymer Bulletin, 77(4): 1929-1949, (2020).
  • [22] Monshi, A., Foroughi, M. R., Monshi, M. R., “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD”, World Journal of Nano Science and Engineering, 2: 154-160, (2012).
  • [23] Danilchenko, S.N., Kukharenko, O.G., Moseke, C., Protsenko, I.Y., Sukhodub, L.F., Sulkio-Cleff, B., “Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening.” Crystal Research Technology, 37(11): 1234–1240, (2002).
  • [24] Mindivan, F., Göktaş¸ M., Dike, A.S., “Mechanical, thermal, and micro- and nanostructural properties of polyvinyl chloride/ graphene nanoplatelets nanocomposites.”, Polymer Composites, 41(9):3707-3716, (2020).
  • [25] Ghorghi, M., Rafienia, M., Nasirian, V., Bitaraf, F. S., Gharravi, A. M., Zarrabi, A., “Electrospun captopril-loaded PCL-carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies”, Polymers Advanced Technologies, 31: 3302–3315, (2020).
  • [26] Gupta, D., Venugopal, J., Prabhakaran, M.P., Dev, V.G., Low, S., Choon, A.T., Ramakrishna, S., “Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering”, Acta Biomaterialia, 5(7): 2560-2569, (2009).
  • [27] Bagheri, M., Mahmoodzadeh, A., “Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers”, The Journal of Inorganic and Organometallic Polymers and Materials, 30: 1566–1577 (2020).
  • [28] Uflyand, I.E., Drogan, E.G., Burlakova, V.E., Kydralieva, K.A., Shershneva, I.N., Dzhardimalieva, G.I., “Testing the mechanical and tribological properties of new metal-polymer nanocomposite materials based on linear low-density polyethylene and Al65Cu22Fe13 quasicrystals.”, Polymer Testing, 74:178–186, (2019).
  • [29] Huang, H.-Y., Fan, F.-Y., Shen, Y.-K., Wang, C.-H., Huang, Y.-T., Chern, M.-J., Wang, Y.-H., Wang, L., “3D poly-ε-caprolactone/graphene porous scaffolds for bone tissue engineering.”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606: 125393, 0927-7757, (2020).
  • [30] Janarthanan, G., Kim, I.G., Chung, E.J., Noh, I., “Comparative studies on thin polycaprolactone-tricalcium phosphate composite scaffolds and its interaction with mesenchymal stem cells.”, Biomaterials Research, 23 (1):1-12, (2019).
  • [31] Díaz, E., Sandonis, I., Valle, M.B., “In vitro degradation of poly (caprolactone)/nHA composites”. Journal of Nanomaterials, (3): 185, (2014).
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Karekterizasyonu
Bölüm Araştırma Makalesi
Yazarlar

Meryem Göktaş 0000-0003-1583-8300

Ferda Mindivan 0000-0002-6046-2456

Erken Görünüm Tarihi 24 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 3 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Göktaş, M., & Mindivan, F. (2024). İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1337136
AMA Göktaş M, Mindivan F. İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi. Published online 01 Eylül 2024:1-1. doi:10.2339/politeknik.1337136
Chicago Göktaş, Meryem, ve Ferda Mindivan. “İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi Ve Karakterizasyonu”. Politeknik Dergisi, Eylül (Eylül 2024), 1-1. https://doi.org/10.2339/politeknik.1337136.
EndNote Göktaş M, Mindivan F (01 Eylül 2024) İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi 1–1.
IEEE M. Göktaş ve F. Mindivan, “İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi ve Karakterizasyonu”, Politeknik Dergisi, ss. 1–1, Eylül 2024, doi: 10.2339/politeknik.1337136.
ISNAD Göktaş, Meryem - Mindivan, Ferda. “İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi Ve Karakterizasyonu”. Politeknik Dergisi. Eylül 2024. 1-1. https://doi.org/10.2339/politeknik.1337136.
JAMA Göktaş M, Mindivan F. İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi. 2024;:1–1.
MLA Göktaş, Meryem ve Ferda Mindivan. “İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi Ve Karakterizasyonu”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1337136.
Vancouver Göktaş M, Mindivan F. İndirgenmiş Grafen Oksit Dolgulu PCL Kompozit Filmlerin Üretimi ve Karakterizasyonu. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.