Research Article
BibTex RIS Cite

Servo kontrollü maliyet etkin bir aktif kuvvet duyargası tasarımı ve denenmesi

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1337734

Abstract

Bu çalışmada, analog özelliklere sahip bir hidrolik sistemin bilgisayar kontrollü kontrolü incelenmiş ve bu kapsamda yeni bir kuvvet sensörü tasarlanmıştır. Sistem dört yollu servo valf, hidrolik piston, servo yükseltici ve tasarlanan kuvvet sensöründen oluşan analog alt sistem ve masaüstü bilgisayardan oluşan karşılaştırma ve kontrolden sorumlu sayısallaştırıcı alt sistem olmak üzere iki ana yapıdan oluşmaktadır. Bu çalışma kapsamında, bir sıkıştırma yayı, kılavuzlar, bir destek çerçevesi ve bir lineer değişken diferansiyel transformatör (LVDT) entegre edilerek uygun maliyetli bir kuvvet sensörü tasarlanmıştır. Bu entegre sistemde, harici bir kuvvet ölçüm ve geri besleme ünitesinden belirli bir büyüklük ve frekansta uygulanan kuvvet, LVDT çekirdeğinin yatay hareketi ile elektrik sinyallerine dönüştürülür. Kuvvet sensöründen gelen bu elektrik sinyalleri sayısallaştırılır ve bilgisayara ve veri toplama kartına geri beslenir. Bu çalışmada geliştirilen yazılıma aktarılan sayısallaştırılmış veriler, sürekli olarak referans verilerle karşılaştırılarak konuma bağlı kuvvet kontrolü sağlar. Bir servo valf tarafından kontrol edilen iki hidrolik piston arasına yerleştirilen kuvvet sensörü ile yapılan deneyler, pistonların sağa ve sola hareket etmesine neden olarak referans kuvvet girişi ile sistemin istenilen kontrolünü sağladığını ortaya koymuştur. Özellikle yüksek frekanslı sinyal girişlerinde sistemin çok daha kararlı çalıştığı gözlemlendi.

References

  • [1] Ogata, K., “Automatic Control”, Prentice Hall, Englewood Cliffs, (1990).
  • [2] Ercan, Y., “Mühendislik sistemlerinin modellenmesi ve dinamiği”, Gazi Üniversitesi Yayınları No: 179, (1992). [3] Ercan, Y., “Akışkan gücü ve kontrolü”, Gazi Üniversitesi Yayınları, No. 206. (1995).
  • [4] Dindorf R., P. Wos, “Force and position control of the integrated electro-hydraulic servo-drive”, 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 1-6, (2019). doi: 10.1109/CarpathianCC.2019.8765986.
  • [5] Keles O., Ercan Y., “Theoretical and experimental investigation of a pulse-width modulated digital hydraulic position control system”, Control Engineering Practice, 10: 645–654, (2002).
  • [6] Usta Y., “Sayısal bir hidrolik pozisyon kontrol sistemi geliştirilmesi ve denenmesi" Yüksek Lisans Tezi G.Ü. Fen Bilimleri Enstitüsü, Ankara, (1991).
  • [7] Priyandoko G., Mailah, M., Jamaluddin H., “Vehicle active suspension system using skyhook adaptive neuro active force control”, Mechanical Systems and Signal Processing, 23: 855–868, (2009).
  • [8] Fateh M.M., Alavi S.S., “Impedance control of an active suspension system”, Mechatronics, 19: 134–140, (2009).
  • [9] Wu J., Huang Y., Song Y., Wu D., “Integrated design of a novel force tracking electro-hydraulic actuator”, Mechatronics, 62: 102247, (2019).
  • [10] Li J.Y., Shao J.P., Wang Z.W., Wu B., Han G.H., “Study of electro-hydraulic force servo control system based on fuzzy control, IEEE Xplore, IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, pp. 688-693, (2009). doi: 10.1109/ICICISYS.2009.5358308.
  • [11] Li J.Y., Zhongwen, J. S., WU W. Bo, G. Han, “Study of the electro-hydraulic load simulator based on double Servo Valve Concurrent Control”, The Ninth International Conference on Electronic Measurement & Instruments (ICEMI 2009), Harbin University of Science and Technology, China. (2009).
  • [12] Chen L., Jiang J., Gao W., Wang C., Xu W., Ai C., Chen C., “Position control for a hydraulic loading system using the adaptive backsliding control method”, Control Engineering Practice, 138: 105586, (2023).
  • [13] Fu S., Lu S., Kai G., “Characteristics and Control Technology Research of Three-stage Electro-hydraulic Servo Valve”, Journal of Applied Science and Engineering Innovation, 2(2): 43-45, (2015).
  • [14] Feng H., Song Q., Ma S., Ma W., Yin C., Cao D., “A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system”, ISA Transactions, 129: 472–484, (2022).
  • [15] Coşkun M.Y., İtik M., “Intelligent PID control of an industrial electro-hydraulic system”, ISA Transactions, (Article in press), (2023), https://doi.org/10.1016/j.isatra.2023.04.005
  • [16] Yang G., Jao J., “Multilayer neuroadaptive force control of electro-hydraulic load simulators with uncertainty rejection”, Applied Soft Computing, 130: 109672, (2022).
  • [17] Çakan A., Botsalı F.M., Önen Ü., “Kalyoncu M., Modeling of electro-hydraulic servo system using the BEES algorithm”, Konya Journal of Engineering Sciences, 10(1): 1-10, (2022).
  • [18] Gao B., Guan H., Shen W., Ye Y., Application of the gray wolf optimization algorithm in active disturbance rejection control parameter tuning of an electro-hydraulic servo unit, Machines, 10: 599, (2022).
  • [19] Özkan Y., “Quick basic 4.50”, Alfa kitabevi, (1994).
  • [20] Ahmad, X. Ge, Q. -L. Han and Z. Cao, "Dynamic Event-Triggered Fault-Tolerant Control of Vehicle Active Suspension Systems," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020, pp. 4889-4894.
  • [21] Hsiao C.-Y., Wang Y.-H., “Evaluation of ride comfort for active suspension system based on self-tuning fuzzy sliding mode control”, International Journal of Control, Automation and Systems, 20(4): 1131-1141, (2022).
  • [22] Kumar S., Medhavi A., Kumar R. Mall P.K., “Modeling and analysis of active full vehicle suspension model optimized using the advanced fuzzy logic controller”, International Journal of Acoustics and Vibration, 27(1): 26-36, (2022).
  • [23] Chen H.-M., Yang G.-W., Liao C-C., “Precision Force Control for an Electro-Hydraulic, Press Machine”, Smart Science, 2(3): 132-138 (2016).
  • [24] Shao J., Li J., Wang Z., Han G., “Research on electro-hydraulic load simulator based on building model of flow press servo valve”, Advanced Materials Research, 129(131): 213-217, (2010).
  • [25] Ahmed A.S., Ali A.S., Ghazaly N.M., Abd-el Jaber G.T., “PID controller of active suspension system for a quarter car model”, International Journal of Advances in Engineering & Technology, 8(6): 899-909 (2015).
  • [26] Jones B.E., “Feedback in instrument and its applications”, Mc Graw-Hill, New York. (1979).
  • [27] Tseng H.E., Hrovat D., “State of the art survey: active and semi-active suspension control”, Vehicle System Dynamics, 53(7): 1034-1062, (2015).
  • [28] Raghavendra D. R., “Electrohydraulic Servo Systems: Applications, Design and Control”, Springer Nature, (2021).
  • [29] Fan Y., Shao J., Sun G., Shao X., “Proportional–Integral–Derivative controller design using an advanced lévy-flight salp swarm algorithm for hydraulic systems”, Energies, 13: 459, (2020).
  • [30] Wu L., Zhao D., Zhao X., Qim Y., “Nonlinear adaptive back-stepping optimization control of the hydraulic active suspension actuator”, Process, 11: 2020, (2023).
  • [31] Adıgüzel F., “Doğrusal karesel regülatör ve ileri beslemeli kontrol yöntemi ile otonom araçlar için kooperatif uyarlamalı hız kontrol sistemi”, Journal of Polytechnic, DOI: 10.2339/politeknik.1170311, (2022).
  • [32] Ünal A., Yaman K., Okur E., Adlı M.A., “Design and implementation of a Thrust Vector Control (TVC) test system”, Journal of Polytechnic, 21(2): 487-505, (2018).
  • [33] Putgül Y., Altıparmak D., “Taşıt süspansiyon sistemi çeşitleri ve ön düzen geometrisine etkileri”, Journal of Polytechnic, 19(2): 195-202, (2016).

Design and testing of a cost-effective active force sensor with servo control

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1337734

Abstract

In this work, the computerized control of a hydraulic system with analog characteristics is examined, and within this scope, a novel force sensor is designed. The system consists of two main structures: an analog subsystem comprising a four-way servo valve, hydraulic piston, servo amplifier, and the designed force sensor, and a digitizing subsystem responsible for comparison and control, composed of a desktop computer. Throughout this work, a cost-effective force sensor was designed by integrating a compression spring, guides, a support frame and a linear variable differential transformer (LVDT). In this integrated system, the force applied at a specific magnitude and frequency from an external force measurement and feedback unit is converted into electrical signals by horizontal motion of the LVDT core. These electrical signals from the force sensor are digitized and fed back to the computer and data acquisition card. The digitized data transferred to the software developed in this study continuously compare with the reference data, enabling position-dependent force control. Experiments conducted with the force sensor placed between two hydraulic pistons controlled by a servo valve revealed that it caused the pistons to move right and left, providing the desired control of the system with the reference force input. The system was observed to operate much more stably, especially for high-frequency signal inputs.

References

  • [1] Ogata, K., “Automatic Control”, Prentice Hall, Englewood Cliffs, (1990).
  • [2] Ercan, Y., “Mühendislik sistemlerinin modellenmesi ve dinamiği”, Gazi Üniversitesi Yayınları No: 179, (1992). [3] Ercan, Y., “Akışkan gücü ve kontrolü”, Gazi Üniversitesi Yayınları, No. 206. (1995).
  • [4] Dindorf R., P. Wos, “Force and position control of the integrated electro-hydraulic servo-drive”, 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 1-6, (2019). doi: 10.1109/CarpathianCC.2019.8765986.
  • [5] Keles O., Ercan Y., “Theoretical and experimental investigation of a pulse-width modulated digital hydraulic position control system”, Control Engineering Practice, 10: 645–654, (2002).
  • [6] Usta Y., “Sayısal bir hidrolik pozisyon kontrol sistemi geliştirilmesi ve denenmesi" Yüksek Lisans Tezi G.Ü. Fen Bilimleri Enstitüsü, Ankara, (1991).
  • [7] Priyandoko G., Mailah, M., Jamaluddin H., “Vehicle active suspension system using skyhook adaptive neuro active force control”, Mechanical Systems and Signal Processing, 23: 855–868, (2009).
  • [8] Fateh M.M., Alavi S.S., “Impedance control of an active suspension system”, Mechatronics, 19: 134–140, (2009).
  • [9] Wu J., Huang Y., Song Y., Wu D., “Integrated design of a novel force tracking electro-hydraulic actuator”, Mechatronics, 62: 102247, (2019).
  • [10] Li J.Y., Shao J.P., Wang Z.W., Wu B., Han G.H., “Study of electro-hydraulic force servo control system based on fuzzy control, IEEE Xplore, IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, pp. 688-693, (2009). doi: 10.1109/ICICISYS.2009.5358308.
  • [11] Li J.Y., Zhongwen, J. S., WU W. Bo, G. Han, “Study of the electro-hydraulic load simulator based on double Servo Valve Concurrent Control”, The Ninth International Conference on Electronic Measurement & Instruments (ICEMI 2009), Harbin University of Science and Technology, China. (2009).
  • [12] Chen L., Jiang J., Gao W., Wang C., Xu W., Ai C., Chen C., “Position control for a hydraulic loading system using the adaptive backsliding control method”, Control Engineering Practice, 138: 105586, (2023).
  • [13] Fu S., Lu S., Kai G., “Characteristics and Control Technology Research of Three-stage Electro-hydraulic Servo Valve”, Journal of Applied Science and Engineering Innovation, 2(2): 43-45, (2015).
  • [14] Feng H., Song Q., Ma S., Ma W., Yin C., Cao D., “A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system”, ISA Transactions, 129: 472–484, (2022).
  • [15] Coşkun M.Y., İtik M., “Intelligent PID control of an industrial electro-hydraulic system”, ISA Transactions, (Article in press), (2023), https://doi.org/10.1016/j.isatra.2023.04.005
  • [16] Yang G., Jao J., “Multilayer neuroadaptive force control of electro-hydraulic load simulators with uncertainty rejection”, Applied Soft Computing, 130: 109672, (2022).
  • [17] Çakan A., Botsalı F.M., Önen Ü., “Kalyoncu M., Modeling of electro-hydraulic servo system using the BEES algorithm”, Konya Journal of Engineering Sciences, 10(1): 1-10, (2022).
  • [18] Gao B., Guan H., Shen W., Ye Y., Application of the gray wolf optimization algorithm in active disturbance rejection control parameter tuning of an electro-hydraulic servo unit, Machines, 10: 599, (2022).
  • [19] Özkan Y., “Quick basic 4.50”, Alfa kitabevi, (1994).
  • [20] Ahmad, X. Ge, Q. -L. Han and Z. Cao, "Dynamic Event-Triggered Fault-Tolerant Control of Vehicle Active Suspension Systems," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020, pp. 4889-4894.
  • [21] Hsiao C.-Y., Wang Y.-H., “Evaluation of ride comfort for active suspension system based on self-tuning fuzzy sliding mode control”, International Journal of Control, Automation and Systems, 20(4): 1131-1141, (2022).
  • [22] Kumar S., Medhavi A., Kumar R. Mall P.K., “Modeling and analysis of active full vehicle suspension model optimized using the advanced fuzzy logic controller”, International Journal of Acoustics and Vibration, 27(1): 26-36, (2022).
  • [23] Chen H.-M., Yang G.-W., Liao C-C., “Precision Force Control for an Electro-Hydraulic, Press Machine”, Smart Science, 2(3): 132-138 (2016).
  • [24] Shao J., Li J., Wang Z., Han G., “Research on electro-hydraulic load simulator based on building model of flow press servo valve”, Advanced Materials Research, 129(131): 213-217, (2010).
  • [25] Ahmed A.S., Ali A.S., Ghazaly N.M., Abd-el Jaber G.T., “PID controller of active suspension system for a quarter car model”, International Journal of Advances in Engineering & Technology, 8(6): 899-909 (2015).
  • [26] Jones B.E., “Feedback in instrument and its applications”, Mc Graw-Hill, New York. (1979).
  • [27] Tseng H.E., Hrovat D., “State of the art survey: active and semi-active suspension control”, Vehicle System Dynamics, 53(7): 1034-1062, (2015).
  • [28] Raghavendra D. R., “Electrohydraulic Servo Systems: Applications, Design and Control”, Springer Nature, (2021).
  • [29] Fan Y., Shao J., Sun G., Shao X., “Proportional–Integral–Derivative controller design using an advanced lévy-flight salp swarm algorithm for hydraulic systems”, Energies, 13: 459, (2020).
  • [30] Wu L., Zhao D., Zhao X., Qim Y., “Nonlinear adaptive back-stepping optimization control of the hydraulic active suspension actuator”, Process, 11: 2020, (2023).
  • [31] Adıgüzel F., “Doğrusal karesel regülatör ve ileri beslemeli kontrol yöntemi ile otonom araçlar için kooperatif uyarlamalı hız kontrol sistemi”, Journal of Polytechnic, DOI: 10.2339/politeknik.1170311, (2022).
  • [32] Ünal A., Yaman K., Okur E., Adlı M.A., “Design and implementation of a Thrust Vector Control (TVC) test system”, Journal of Polytechnic, 21(2): 487-505, (2018).
  • [33] Putgül Y., Altıparmak D., “Taşıt süspansiyon sistemi çeşitleri ve ön düzen geometrisine etkileri”, Journal of Polytechnic, 19(2): 195-202, (2016).
There are 32 citations in total.

Details

Primary Language English
Subjects Dynamics, Vibration and Vibration Control, Machine Design and Machine Equipment, Machine Theory and Dynamics, Numerical Modelling and Mechanical Characterisation
Journal Section Research Article
Authors

Kemal Yaman 0000-0003-3063-391X

Early Pub Date February 28, 2024
Publication Date
Submission Date August 4, 2023
Published in Issue Year 2024 EARLY VIEW

Cite

APA Yaman, K. (2024). Design and testing of a cost-effective active force sensor with servo control. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1337734
AMA Yaman K. Design and testing of a cost-effective active force sensor with servo control. Politeknik Dergisi. Published online February 1, 2024:1-1. doi:10.2339/politeknik.1337734
Chicago Yaman, Kemal. “Design and Testing of a Cost-Effective Active Force Sensor With Servo Control”. Politeknik Dergisi, February (February 2024), 1-1. https://doi.org/10.2339/politeknik.1337734.
EndNote Yaman K (February 1, 2024) Design and testing of a cost-effective active force sensor with servo control. Politeknik Dergisi 1–1.
IEEE K. Yaman, “Design and testing of a cost-effective active force sensor with servo control”, Politeknik Dergisi, pp. 1–1, February 2024, doi: 10.2339/politeknik.1337734.
ISNAD Yaman, Kemal. “Design and Testing of a Cost-Effective Active Force Sensor With Servo Control”. Politeknik Dergisi. February 2024. 1-1. https://doi.org/10.2339/politeknik.1337734.
JAMA Yaman K. Design and testing of a cost-effective active force sensor with servo control. Politeknik Dergisi. 2024;:1–1.
MLA Yaman, Kemal. “Design and Testing of a Cost-Effective Active Force Sensor With Servo Control”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1337734.
Vancouver Yaman K. Design and testing of a cost-effective active force sensor with servo control. Politeknik Dergisi. 2024:1-.