Research Article
BibTex RIS Cite

Navigating Türkiye's Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1409895

Abstract

This paper aims to unveil the intellectual structure and knowledge flow within Türkiye's academic landscape, shedding light on influential research clusters and highlighting the interconnections between different research themes. The manuscript also synthesizes findings from a Web of Science database, elucidating the growth trajectories of Türkiye's contributions to the global discourse on energy, fuels, and hydrogen. Additionally, the role of interdisciplinary collaboration has been explored and the impact of Türkiye's research output on the international stage has been assessed. According to results, the oldest date goes back to 1972 for energy&fuels topic and 1989 for hydrogen topic. Whereas Ayhan Demirbas and Ibrahim Dincer are the most productive authors, Istanbul Technical University and Yildiz Technical University are the most productive institutions. Moreover, USA and Canada are the most efficient countries for colloborations. Last of all, while new trends in Energy&Fuels publications have been observed as machine learning, supercapacitor, nanoparticles, electric vehicle and graphene, new trends in hydrogen publications were observed as methanolysis, multigeneration, ammonia, thermodynamic analysis and graphene.

References

  • [1] Ayres, R. A Brief History of Ideas: Energy, Entropy and Evolution. in Energy, Complexity and Wealth Maximization 15–54, Springer, (2016).
  • [2] Kalligas, P. From ‘Energeia’ to Energy: Plotinus and the formation of the concept of energy. Hermathena 192: 45–64 (2012).
  • [3] Santos, D. M. F. & Sequeira, C. A. C. Sodium borohydride as a fuel for the future. Renewable and Sustainable Energy Reviews 15: 3980–4001 (2011).
  • [4] Ronald Dell, D. A. J. R. Clean Energy Royal Society of Chemistry, (2004).
  • [5] Reitz, R. D. et al. IJER editorial: The future of the internal combustion engine. International Journal of Engine Research 21: 3–10 (2020).
  • [6] Cloete, S. Prediction of Reactive Multiphase Flows in Chemical Looping Combustion. (Skipnes Kommunikasjon, (2014).
  • [7] Mitrova, T., Grushevenko, E., Makarov, A. A. & Kapustin, N. Global and Russian Energy Outlook, (2016).
  • [8] Rate of change of global primary energy demand, 1900-2020. International Energy Agency (2020). https://www.iea.org/data-and-statistics/charts/rate-of-change-of-global-primary-energy-demand-1900-2020.
  • [9] Kayani, U. N., Hassan, M. K., Moussa, F. & Hossain, G. F. Oil in crisis: What can we learn. The Journal of Economic Asymmetries 28: (2023).
  • [10] Zuk, P. _ & Zuk, P. _. National energy security or acceleration of transition? Energy policy after the war in Ukraine. Joule 6, 709–712 (2022).
  • [11] Gomez, A. & Smith, H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis. Aerospace Science and Technology 95: 105438 (2019).
  • [12] Domonkos, E. THE IMPACTS OF THE 1973 AND 1979 OIL CRISIS ON CENTRAL AND EASTERN EUROPEAN COUNTRIES. Gradus 10, (2023).
  • [13] Riera, J. A., Lima, R. M. & Knio, O. M. A review of hydrogen production and supply chain modeling and optimization. International Journal of Hydrogen Energy 48: 13731–13755 (2023).
  • [14] Samaras, C., Nuttall, W. J. & Bazilian, M. Energy and the military: Convergence of security, economic, and environmental decision-making. Energy Strategy Reviews 26: 100409 (2019).
  • [15] Mårald, E. Methanol as future fuel: Efforts to develop alternative fuels in sweden after the oil crisis. History and Technology 26: 335–357 (2010).
  • [16] Millot, A., Krook-Riekkola, A. & Maïzi, N. Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden. Energy Policy 139: 111358 (2020).
  • [17] Hordeski, M. F. Alternative Fuels: The Future of Hydrogen, Third Edition - Michael Frank Hordeski - Google Kitaplar. CRC Press, (2020).
  • [18] Stančin, H., Mikulčić, H., Wang, X. & Duić, N. A review on alternative fuels in future energy system. Renewable and Sustainable Energy Reviews 128: 109927 (2020).
  • [19] Vinoth Kanna, I. & Paturu, P. A study of hydrogen as an alternative fuel. International Journal of Ambient Energy 41: 1433–1436 (2020).
  • [20] Economidou, M. et al. Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings 225: 110322 (2020).
  • [21] Dunlop, T. Mind the gap: A social sciences review of energy efficiency. Energy Research & Social Science 56: 101216 (2019).
  • [22] Babayev, R., Andersson, A., Serra Dalmau, A., Im, H. G. & Johansson, B. Computational comparison of the conventional diesel and hydrogen direct-injection compression-ignition combustion engines. Fuel 307: 121909 (2022).
  • [23] Zhiznin, S. Z., Shvets, N. N., Timokhov, V. M. & Gusev, A. L. Economics of hydrogen energy of green transition in the world and Russia.Part I. International Journal of Hydrogen Energy 48: 21544–21567 (2023).
  • [24] York, R. & Bell, S. E. Energy transitions or additions?: Why a transition from fossil fuels requires more than the growth of renewable energy. Energy Research & Social Science 51: 40–43 (2019).
  • [25] Dincer, I. Covid‐19 coronavirus: Closing carbon age, but opening hydrogen age. International Journal of Energy Research 44: 6093 (2020).
  • [26] Sulukan, E., Sari, A., Özekinci, M. C., Özkan, D. & Uyar, T. S. Hydrogen Utilization in Ships in Line with EU Green Deal Goals. Lecture Notes in Energy 87: 699–721 (2022).
  • [27] Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Applied Energy 225: 965–974 (2018).
  • [28] Senecal, K. & Leach, F. Racing Towards Zero: The Untold Story of Driving Green. (2021).
  • [29] Asif, M. et al. Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking. Chemical Engineering Journal 473: 145381 (2023).
  • [30] Sathe, R. Y., Dhilip Kumar, T. J. & Ahuja, R. Furtherance of the material-based hydrogen storage based on theory and experiments. International Journal of Hydrogen Energy 48: 12767–12795 (2023).
  • [31] Kindra, V., Maksimov, I., Oparin, M., Zlyvko, O. & Rogalev, A. Hydrogen Technologies: A Critical Review and Feasibility Study. Energies, 16: 5482 (2023).
  • [32] Genovese, M. et al. Power-to-hydrogen and hydrogen-to-X energy systems for the industry of the future in Europe. International Journal of Hydrogen Energy 48: 16545–16568 (2023).
  • [33] Hassan, Q. et al. Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation. International Journal of Hydrogen Energy 48: 17383–17408 (2023).
  • [34] Erdener, B. C. et al. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines. International Journal of Hydrogen Energy 48: 5595–5617 (2023).
  • [35] Hossain, M. A., Islam, M. R., Hossain, M. A. & Hossain, M. J. Control strategy review for hydrogen-renewable energy power system. Journal of Energy Storage 72: 108170 (2023).
  • [36] Samantaray, S., Putnam, S., Inorganics, N. S.- & 2021, U. Volumetrics of hydrogen storage by physical adsorption. Inorganics 9: (2021).
  • [37] Aslannezhad, M. et al. A review of hydrogen/rock/brine interaction: Implications for Hydrogen Geo-storage. Progress in Energy and Combustion Science 95: 101066 (2023).
  • [38] Yazdi, M., Moradi, R., Pirbalouti, R. G., Zarei, E. & Li, H. Enabling Safe and Sustainable Hydrogen Mobility: Circular Economy-Driven Management of Hydrogen Vehicle Safety. Processes 11: 2730 (2023).
  • [39] Başhan, V. & Ust, Y. A Bibliometric Analysis and Evaluation of Hydrogen Energy: The Top 100 Most Cited Studies. El-Cezerî Journal of Science and Engineering 9: 748–759 (2022).
  • [40] Liu, Y., Tu, Z. & Chan, S. H. Applications of ejectors in proton exchange membrane fuel cells: A review. Fuel Processing Technology 214: 106683 (2021).
  • [41] Haseli, Y. Maximum conversion efficiency of hydrogen fuel cells. International Journal of Hydrogen Energy 43: 9015–9021 (2018).
  • [42] Chandra Muduli, R. & Kale, P. Silicon nanostructures for solid-state hydrogen storage: A review. International Journal of Hydrogen Energy 48: 1401–1439 (2023).
  • [43] Zhang, H. et al. Material challenges in green hydrogen ecosystem. Coordination Chemistry Reviews 494: 215272 (2023).
  • [44] Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M. & Al-Jiboory, A. K. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage 72: 108404 (2023).
  • [45] Kumar Kar, S. et al. Hydrogen economy in India: A status review. (2022).
  • [46] Guan, D. et al. Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production. Advanced Materials 35: 2305074 (2023).
  • [47] Dala Catumba, B. et al. Sustainability and challenges in hydrogen production: An advanced bibliometric analysis. (2022).
  • [48] Rafique, M. et al. Hydrogen Production Using TiO2-Based Photocatalysts: A Comprehensive Review. ACS Omega 8: 25640–25648 (2023).
  • [49] Okere, C. J. & Sheng, J. J. Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. (2023).
  • [50] Shahi, R. R., Gupta, A. K. & Kumari, P. Perspectives of high entropy alloys as hydrogen storage materials. International Journal of Hydrogen Energy 48: 21412–21428 (2023).
  • [51] Navaid, H. Bin, Emadi, H. & Watson, M. A comprehensive literature review on the challenges associated with underground hydrogen storage. International Journal of Hydrogen Energy 48: 10603–10635 (2023).
  • [52] Noh, H., Kang, K. & Seo, Y. Environmental and energy efficiency assessments of offshore hydrogen supply chains utilizing compressed gaseous hydrogen, liquefied hydrogen, liquid organic hydrogen carriers and ammonia. International Journal of Hydrogen Energy 48: 7515–7532 (2023).
  • [53] Zhang, T. et al. Hydrogen liquefaction and storage: Recent progress and perspectives. Renewable and Sustainable Energy Reviews 176: 113204 (2023).
  • [54] Shreenag Meda, U. et al. Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels. (2023).
  • [55] Tian, Y. et al. Methodology for optimally designing firewalls in hydrogen refueling stations. International Journal of Hydrogen Energy (2023).
  • [56] Le, S. T., Nguyen, T. N., Linforth, S. & Ngo, T. D. Safety investigation of hydrogen energy storage systems using quantitative risk assessment. International Journal of Hydrogen Energy 48: 2861–2875 (2023).
  • [57] Sand, M. et al. A multi-model assessment of the Global Warming Potential of hydrogen. Communications Earth & Environment 4:1, 4: 1–12 (2023).
  • [58] Tang, D. et al. State-of-the-art hydrogen generation techniques and storage methods: A critical review. Journal of Energy Storage 64: 107196 (2023).
  • [59] Zhiznin, S. Z., Timokhov, V. M. & Gusev, A. L. Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy 45: 31353–31366 (2020).
  • [60] Erdoğan, A. & Güler, M. G. Optimization and analysis of a hydrogen supply chain in terms of cost, CO2 emissions, and risk: the case of Turkey. International Journal of Hydrogen Energy 48: 22752–22765 (2023).
  • [61] Wang, X., Fu, J., Liu, Z. & Liu, J. Review of researches on important components of hydrogen supply systems and rapid hydrogen refueling processes. International Journal of Hydrogen Energy 48: 1904–1929 (2023).
  • [62] Bisognin Garlet, T., de Souza Savian, F., Duarte Ribeiro, J. L. & Mairesse Siluk, J. C. Unlocking Brazil’s green hydrogen potential: Overcoming barriers and formulating strategies to this promising sector. International Journal of Hydrogen Energy (2023).
  • [63] Zhou, H. et al. Understanding innovation of new energy industry: Observing development trend and evolution of hydrogen fuel cell based on patent mining. International Journal of Hydrogen Energy (2023).
  • [64] Kim, C. et al. Review of hydrogen infrastructure: The current status and roll-out strategy. International Journal of Hydrogen Energy 48: 1701–1716 (2023).
  • [65] Singh, G. et al. Material-based generation, storage, and utilisation of hydrogen. Progress in Materials Science 135: 101104 (2023).
  • [66. Dash, S. K., Chakraborty, S. & Elangovan, D. A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16: 1141 (2023).
  • [67] Incer-Valverde, J., Morosuk, T. & Tsatsaronis, G. Power-to-liquid hydrogen: Exergy-based evaluation of a large-scale system. (2021).
  • [68] Chen, H. Q. et al. Chinese energy and fuels research priorities and trend: A bibliometric analysis. Renewable and Sustainable Energy Reviews 58: 966–975 (2016).
  • [69] Dünya Bankası Türkiye Genel Bakış. (2023). https://www.worldbank.org/tr/country/turkey/overview. (Accessed: 15th November 2023)
  • [70] Muthuvelan, T. STUDY ON ENERGY CRISIS AND THE FUTURE OF FOSSIL FUELS. Proceedings of SHEE (2009).
  • [71] Türkiye - Countries & Regions - IEA. Available at: https://www.iea.org/countries/turkiye. (Accessed: 16th November 2023)
  • [72] IEA- Turkey 2021 Energy Policy Review. (2021).
  • [73] Sorgulu, F. & Dincer, I. A solar energy driven thermochemical cycle based integrated system for hydrogen production. Energy 269: 126834 (2023).
  • [74] Bilgili, F., Zarali, F., Ilgün, M. F., Dumrul, C. & Dumrul, Y. The evaluation of renewable energy alternatives for sustainable development in Turkey using intuitionistic fuzzy-TOPSIS method. Renewable Energy 189: 1443–1458 (2022).
  • [75] Ağbulut, Ü. et al. Current practices, potentials, challenges, future opportunities, environmental and economic assumptions for Türkiye’s clean and sustainable energy policy: A comprehensive assessment. Sustainable Energy Technologies and Assessments 56: 103019 (2023).
  • [76] Ozturk, M. & Dincer, I. System development and assessment for green hydrogen generation and blending with natural gas. Energy 261: 125233 (2022).
  • [77] Kılkış, B. & Taşeli, B. K. Two-step onboard hydrogen generation from Black Sea H2S reserves. International Journal of Energy Research 45: 7177–7192 (2021).
  • [78] Ozturk, M., Midilli, A. & Dincer, I. Effective use of hydrogen sulfide and natural gas resources available in the Black Sea for hydrogen economy. (2021).
  • [79] Seker, S. & Aydin, N. Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. International Journal of Hydrogen Energy 45: 15855–15868 (2020).
  • [80] Yüksel, S., Mikhaylov, A., Ubay, G. G. & Uyeh, D. D. The Role of Hydrogen in the Black Sea for the Future Energy Supply Security of Turkey. https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-8335-7.ch001 1–15 (1AD).
  • [81] Demirci, U. B. Sodium borohydride for the near-future energy: a ‘rough diamond’ for Turkey. Turkish Journal of Chemistry 42: 193–220 (2018).
  • [82] GÜLMEZ, S. T. A. Examining of Boron of Disposability as Substitution of Oil in the Lıne With Turkey’s Petrolleum Dependency. Internatıonal Journal Of Economıc Studıes 7:, (2021).
  • [83] Karayel, G. K., Javani, N. & Dincer, I. Hydropower for green hydrogen production in Turkey. International Journal of Hydrogen Energy 48: 22806–22817 (2023).
  • [84] Karayel, G. K., Javani, N. & Dincer, I. Green hydrogen production potential in Turkey with wind power. International Journal of Green Energy 20: 129–138 (2023).
  • [85] Kubilay Karayel, G., Javani, N. & Dincer, I. Effective use of geothermal energy for hydrogen production: A comprehensive application. Energy 249:, (2022).
  • [86] Kubilay Karayel, G., Javani, N. & Dincer, I. Green hydrogen production potential for Turkey with solar energy. (2021).
  • [87] Tanchum, M. Turkey’s Maghreb-West Africa Economic Architecture: Challenges and Opportunities for the European Union. (2021).
  • [88] Baş, F., Şen, B. & Fatih Kaya, M. Producing Hydrogen Gas from Organic Wastes Released by Agricultural Activities. Turkish Journal of Agriculture-Food Science and Technology 8: 54–61 (2020).
  • [89] Orak, C. & Yüksel, A. Photocatalytic Hydrogen Energy Evolution from Sugar Beet Wastewater. ChemistrySelect 6: 12266–12275 (2021).
  • [90] Deniz CANBAZ, E. & Gür, M. PREDICTION OF UNDERGROUND COAL GASIFICATION PERFORMANCE OF TURKISH LIGNITE RESERVES USING STOICHIOMETRIC EQUILIBRIUM MODEL. J. of Thermal Science and Technology 40: 195–205 (2020).
  • [91] Gür, M. & Canbaz, E. D. Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel 269: 117331 (2020).
  • [92] Ates, F. & Ozcan, H. Turkey’s industrial waste heat recovery potential with power and hydrogen conversion technologies: A techno-economic analysis. International Journal of Hydrogen Energy 47: 3224–3236 (2022).
  • [93] Sinan Karakurt, A., Özsari, İ., Başhan, V., Güneş, Ü. & Dalkilic, A. S. Evolution of steam turbines: A bibliometric approach. Journal of Thermal Engineering 8: 681–690 (2022).
  • [94] Bicen, S. & Celik, M. A bibliometric review on maritime inspection analysis: Current and future insights. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 237: 275–292 (2022).
  • [95] Başhan, V. & Çetinkaya, A. Influential Publications and Bibliometric Approach to Heavy Metal Removals for Water. Water, Air, & Soil Pollution 233: (2022).
  • [96] Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. & Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal 22: 338–342 (2008).
  • [97] Singh, V. K., Singh, P., Karmakar, M., Leta, J. & Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 126: 5113–5142 (2021).
  • [98] Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications, (2021).
  • [99] Martín-Martín, A., Orduna-Malea, E., Thelwall, M. & Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12: 1160–1177 (2018).
  • [100] Birkle, C., Pendlebury, D. A., Schnell, J. & Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1: 363–376 (2020).
  • [101] Zhu, J. & Liu, W. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 123: 321–335 (2020).
  • [102] Web of Science platform: Web of Science Core Collection. Available at: https://clarivate.libguides.com/webofscienceplatform/woscc#:~:text=It is a curated collection,social sciences%2C and humanities disciplines.
  • [103] Caputo, A. & Kargina, M. A user-friendly method to merge Scopus and Web of Science data during bibliometric analysis. Journal of Marketing Analytics 10: 82–88 (2022).
  • [104] Tarık TALAN, M. D. Bibliometric Analysis of Research on Learning Analytics Based on Web of Science Database. Informatics in Education - An International Journal 22: 161–181 (2023).
  • [105] Web of Science Coverage Details. Available at: https://clarivate.libguides.com/librarianresources/coverage.
  • [106] Sukaesih Kurniati, P., Saputra, H. & Ahmad Fauzan, T. A Bibliometric Analysis of Chemistry Industry Research Using Vosviewer Application with Publish or Perish. Moroccan Journal of Chemistry 10: 10-3 428-441 (2022).
  • [107] Türkiye Cumhuriyeti, İletişim Başkanlığı. (2022). Available at: https://www.iletisim.gov.tr/turkce/dis_basinda_turkiye/detay/bm-turkiyenin-yabanci-dildeki-ismini-degistirdi. (Accessed: 19th November 2023)
  • [108] Jan van Eck, N. & Waltman, L. VOSviewer Manual. (2023).
  • [109] Kazemzadehmarand, S. & Sözen, A. Determining the optimum photovoltaic installation angle for provinces in turkey. Journal of Polytechnic (2024).
  • [110] Ozcan, M. Enhancing the renewable energy auctions in Turkey. Journal of Polytechnic 24: 1379–1390 (2021).
  • [111] Nurgül Durmuş ŞENYAPAR, H., Çeti̇nkaya, Ü. & Bayindir, R. Renewable energy incentives and future implications for Turkey: a comparative bibliometric analysis. Journal of Polytechnic 27: 329–342 (2024).
  • [112] Korkut, O. et al. Current Status of Renewable Energy in Türkiye. Journal of The Institute of Science and Technology 6: 2378–2391 (2023).
  • [113] Nur BIÇAKÇI, S. & Akgül, G. Application of high performance carbon derived from tea waste into transistor as a conduction channel material. Journal of Polytechnic 23: 909–914 (2020).
  • [114] KUMAŞ, K., TEMİZ, D., AKYÜZ, A. Ö. & GÜNGÖR, A. BİYOKÜTLEDEN ENERJİYE: TÜRKİYE VE DÜNYADA BİYOGAZ POTANSİYELİ. Mesleki Bilimler Dergisi 8: 70–77 (2019).
  • [115] Pence, I., Kumas, · K, Siseci Cesmeli, · M & Akyüz, · A. Detailed analysis of Türkiye’s agricultural biomass-based energy potential with machine learning algorithms based on environmental and climatic conditions. Clean Technologies and Environmental Policy. (2024)
  • [116] Çelik, D. Overview & analysis of woody biomass situation and conversion techniques in Türkiye: possible improvements. (Technische Universität München, 2022).
  • [117] Biyokütle - T.C. Enerji ve Tabii Kaynaklar Bakanlığı. (2022). Available at: https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-biyokutle. (Accessed: 13th April 2024)
  • [118] Murat Danisman, E. A. Defining a new business model for sustainable biomass production from forestry residues in Türkiye by using TRIZ. International Journal of Energy Economics and Policy 13: 243–253 (2023).
  • [119] Avcıoğlu, A. O., Dayıoğlu, M. A. & Türker, U. Assessment of the energy potential of agricultural biomass residues in Turkey. Renewable Energy 138: 610–619 (2019).
  • [120] Işık, G. et al. Determination of the best hydrogen production method in Türkiye by using neutrosophic picture fuzzy TOPSIS.(2023).
  • [121] Dinçer, İ., Arcaklıoğlu, E. & Ezan, M. A. ENERJİDE YAPAY ZEKÂNIN ROLÜ RAPORU. (2022).
  • [122] Dinçer, İ. & Ezan, M. A. TÜBA Jeotermal Enerji Teknolojileri Raporu. (2020).
  • [123] Gürbüz, H. Yerli Elektrikli Aracın Elektrik Sarfiyatını Güneş ve Rüzgâr Enerjisi ile Karşılama Potansiyeli. European Journal of Science and Technology 58–69 (2021).
  • [124] DÖNMEZÇELİK, O., KOÇAK, E. & ÖRKCÜ, H. H. Energy modeling of türkiye road and rail transport towards net zero emissions target (2025-2050). Journal of PolyTechnic (2023).
  • [125] YILDIZ, M. Electric energy use in aviation, perspective, and applications. Journal of Polytechnic 24: 1605–1610 (2021).
  • [126] Umur AYDINOĞLU, A., Erden Topal, Y. & Gökalp, İ. Interdisciplinarity in hydrogen technologies research: social sciences aspects. Journal of Polytechnic 26: 357–366 (2023).
  • [127] Faitori, A., Ben Saoud, M., Alakour, A. & Gedik, E. Experimental study on heat transfer performance of solar thermoelectric generators using MWCNT-distilled water and GNP-distilled water nanofluids as coolants. Journal of Polytechnic 26: 1445–1452 (2023).
  • [128] T.C. Sanayi ve Teknoloji Bakanlığı- Türkiye Grafen Üretiyor. Available at: https://www.sanayi.gov.tr/medya/haber/turkiye-grafen-uretiyor. (Accessed: 14th April 2024)
  • [129] Dinçer, İ., Javani, N. & Karayel, G. K. TÜRKİYE İÇİN HİDROJEN ÇİFTLİĞİ KONSEPTİ RAPORU. (2021).
  • [130] Turan, H., Kaan, M., Meryem, B. & Sürer, G. ULAŞIM SEKTÖRÜ İÇİN HİDROJEN İLE ÇALIŞAN YAKIT HÜCRELİ ELEKTRİKLİ ARAÇLAR. (2023).
  • [131] Dinçer, İ. & Ezan, M. A. Alternatif Enerji Kaynakları ve Doğal Gaz Lojistiği Raporu. (2023).
  • [132] Dinçer, İ. et al. Türkiye’de Yeşil Hidrojenin Üretilip Doğal Gaza Karıştırılması Çalışmaları. (2021).
  • [133] Dinçer, İ. & Ezan, M. A. TÜBA Enerji Depolama Teknolojileri Raporu. (2020).
  • [134] Çinar, M., Kiliçkap, S., Hakki Sariçam, İ. & Çevik, M. H. Ultra Deep Offshore Gas Fields: Development Options and Common Problems. Yerbilimleri/ Earth Sciences 44: 1–21 (2023).
  • [135] Dinçer, İ. & Ezan, M. A. TÜBA Doğal Gaz Raporu. (2021).

Türkiye'nin Enerji Ufkunda Gezinmek: Enerji, Yakıtlar ve Hidrojen Konularına Akademik Katkıların Bibliyometrik İncelemesi

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1409895

Abstract

Bu çalışma, Türkiye'nin akademik ortamındaki entelektüel yapıyı ve bilgi akışını ortaya çıkarmayı, etkili araştırma kümelerine ışık tutmayı ve farklı araştırma temaları arasındaki bağlantıları vurgulamayı amaçlamaktadır. Çalışma aynı zamanda Web of Science veri tabanından elde edilen bulguları sentezleyerek Türkiye'nin enerji, yakıtlar ve hidrojen konusundaki küresel söyleme katkılarının büyüme yörüngelerini aydınlatmaktadır. Ayrıca, disiplinler arası işbirliğinin rolü araştırılmış ve Türkiye'nin araştırma çıktılarının uluslararası platformdaki etkisi değerlendirilmiştir. Sonuçlara göre, enerji ve yakıtlar konusunda en eski tarih 1972'ye, hidrojen konusu için ise 1989'a kadar uzanmaktadır. Ayhan Demirbaş ve İbrahim Dincer en üretken yazarlar olurken, İstanbul Teknik Üniversitesi ve Yıldız Teknik Üniversitesi en üretken kurumlardır. Ayrıca, ABD ve Kanada, işbirliklerinin en etkili olduğu ülkelerdir. Son olarak, Energy&Fuels yayınlarında yeni trendler makine öğrenmesi, süperkapasitör, nanopartiküller, elektrikli araç ve grafen olarak gözlemlenirken, hidrojen çalışmalarında yeni trendler metanoliz, multijenerasyon, amonyak, termodinamik analiz ve grafen olarak gözlemlenmiştir.

References

  • [1] Ayres, R. A Brief History of Ideas: Energy, Entropy and Evolution. in Energy, Complexity and Wealth Maximization 15–54, Springer, (2016).
  • [2] Kalligas, P. From ‘Energeia’ to Energy: Plotinus and the formation of the concept of energy. Hermathena 192: 45–64 (2012).
  • [3] Santos, D. M. F. & Sequeira, C. A. C. Sodium borohydride as a fuel for the future. Renewable and Sustainable Energy Reviews 15: 3980–4001 (2011).
  • [4] Ronald Dell, D. A. J. R. Clean Energy Royal Society of Chemistry, (2004).
  • [5] Reitz, R. D. et al. IJER editorial: The future of the internal combustion engine. International Journal of Engine Research 21: 3–10 (2020).
  • [6] Cloete, S. Prediction of Reactive Multiphase Flows in Chemical Looping Combustion. (Skipnes Kommunikasjon, (2014).
  • [7] Mitrova, T., Grushevenko, E., Makarov, A. A. & Kapustin, N. Global and Russian Energy Outlook, (2016).
  • [8] Rate of change of global primary energy demand, 1900-2020. International Energy Agency (2020). https://www.iea.org/data-and-statistics/charts/rate-of-change-of-global-primary-energy-demand-1900-2020.
  • [9] Kayani, U. N., Hassan, M. K., Moussa, F. & Hossain, G. F. Oil in crisis: What can we learn. The Journal of Economic Asymmetries 28: (2023).
  • [10] Zuk, P. _ & Zuk, P. _. National energy security or acceleration of transition? Energy policy after the war in Ukraine. Joule 6, 709–712 (2022).
  • [11] Gomez, A. & Smith, H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis. Aerospace Science and Technology 95: 105438 (2019).
  • [12] Domonkos, E. THE IMPACTS OF THE 1973 AND 1979 OIL CRISIS ON CENTRAL AND EASTERN EUROPEAN COUNTRIES. Gradus 10, (2023).
  • [13] Riera, J. A., Lima, R. M. & Knio, O. M. A review of hydrogen production and supply chain modeling and optimization. International Journal of Hydrogen Energy 48: 13731–13755 (2023).
  • [14] Samaras, C., Nuttall, W. J. & Bazilian, M. Energy and the military: Convergence of security, economic, and environmental decision-making. Energy Strategy Reviews 26: 100409 (2019).
  • [15] Mårald, E. Methanol as future fuel: Efforts to develop alternative fuels in sweden after the oil crisis. History and Technology 26: 335–357 (2010).
  • [16] Millot, A., Krook-Riekkola, A. & Maïzi, N. Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden. Energy Policy 139: 111358 (2020).
  • [17] Hordeski, M. F. Alternative Fuels: The Future of Hydrogen, Third Edition - Michael Frank Hordeski - Google Kitaplar. CRC Press, (2020).
  • [18] Stančin, H., Mikulčić, H., Wang, X. & Duić, N. A review on alternative fuels in future energy system. Renewable and Sustainable Energy Reviews 128: 109927 (2020).
  • [19] Vinoth Kanna, I. & Paturu, P. A study of hydrogen as an alternative fuel. International Journal of Ambient Energy 41: 1433–1436 (2020).
  • [20] Economidou, M. et al. Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings 225: 110322 (2020).
  • [21] Dunlop, T. Mind the gap: A social sciences review of energy efficiency. Energy Research & Social Science 56: 101216 (2019).
  • [22] Babayev, R., Andersson, A., Serra Dalmau, A., Im, H. G. & Johansson, B. Computational comparison of the conventional diesel and hydrogen direct-injection compression-ignition combustion engines. Fuel 307: 121909 (2022).
  • [23] Zhiznin, S. Z., Shvets, N. N., Timokhov, V. M. & Gusev, A. L. Economics of hydrogen energy of green transition in the world and Russia.Part I. International Journal of Hydrogen Energy 48: 21544–21567 (2023).
  • [24] York, R. & Bell, S. E. Energy transitions or additions?: Why a transition from fossil fuels requires more than the growth of renewable energy. Energy Research & Social Science 51: 40–43 (2019).
  • [25] Dincer, I. Covid‐19 coronavirus: Closing carbon age, but opening hydrogen age. International Journal of Energy Research 44: 6093 (2020).
  • [26] Sulukan, E., Sari, A., Özekinci, M. C., Özkan, D. & Uyar, T. S. Hydrogen Utilization in Ships in Line with EU Green Deal Goals. Lecture Notes in Energy 87: 699–721 (2022).
  • [27] Kalghatgi, G. Is it really the end of internal combustion engines and petroleum in transport? Applied Energy 225: 965–974 (2018).
  • [28] Senecal, K. & Leach, F. Racing Towards Zero: The Untold Story of Driving Green. (2021).
  • [29] Asif, M. et al. Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking. Chemical Engineering Journal 473: 145381 (2023).
  • [30] Sathe, R. Y., Dhilip Kumar, T. J. & Ahuja, R. Furtherance of the material-based hydrogen storage based on theory and experiments. International Journal of Hydrogen Energy 48: 12767–12795 (2023).
  • [31] Kindra, V., Maksimov, I., Oparin, M., Zlyvko, O. & Rogalev, A. Hydrogen Technologies: A Critical Review and Feasibility Study. Energies, 16: 5482 (2023).
  • [32] Genovese, M. et al. Power-to-hydrogen and hydrogen-to-X energy systems for the industry of the future in Europe. International Journal of Hydrogen Energy 48: 16545–16568 (2023).
  • [33] Hassan, Q. et al. Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation. International Journal of Hydrogen Energy 48: 17383–17408 (2023).
  • [34] Erdener, B. C. et al. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines. International Journal of Hydrogen Energy 48: 5595–5617 (2023).
  • [35] Hossain, M. A., Islam, M. R., Hossain, M. A. & Hossain, M. J. Control strategy review for hydrogen-renewable energy power system. Journal of Energy Storage 72: 108170 (2023).
  • [36] Samantaray, S., Putnam, S., Inorganics, N. S.- & 2021, U. Volumetrics of hydrogen storage by physical adsorption. Inorganics 9: (2021).
  • [37] Aslannezhad, M. et al. A review of hydrogen/rock/brine interaction: Implications for Hydrogen Geo-storage. Progress in Energy and Combustion Science 95: 101066 (2023).
  • [38] Yazdi, M., Moradi, R., Pirbalouti, R. G., Zarei, E. & Li, H. Enabling Safe and Sustainable Hydrogen Mobility: Circular Economy-Driven Management of Hydrogen Vehicle Safety. Processes 11: 2730 (2023).
  • [39] Başhan, V. & Ust, Y. A Bibliometric Analysis and Evaluation of Hydrogen Energy: The Top 100 Most Cited Studies. El-Cezerî Journal of Science and Engineering 9: 748–759 (2022).
  • [40] Liu, Y., Tu, Z. & Chan, S. H. Applications of ejectors in proton exchange membrane fuel cells: A review. Fuel Processing Technology 214: 106683 (2021).
  • [41] Haseli, Y. Maximum conversion efficiency of hydrogen fuel cells. International Journal of Hydrogen Energy 43: 9015–9021 (2018).
  • [42] Chandra Muduli, R. & Kale, P. Silicon nanostructures for solid-state hydrogen storage: A review. International Journal of Hydrogen Energy 48: 1401–1439 (2023).
  • [43] Zhang, H. et al. Material challenges in green hydrogen ecosystem. Coordination Chemistry Reviews 494: 215272 (2023).
  • [44] Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M. & Al-Jiboory, A. K. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. Journal of Energy Storage 72: 108404 (2023).
  • [45] Kumar Kar, S. et al. Hydrogen economy in India: A status review. (2022).
  • [46] Guan, D. et al. Identifying a Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production. Advanced Materials 35: 2305074 (2023).
  • [47] Dala Catumba, B. et al. Sustainability and challenges in hydrogen production: An advanced bibliometric analysis. (2022).
  • [48] Rafique, M. et al. Hydrogen Production Using TiO2-Based Photocatalysts: A Comprehensive Review. ACS Omega 8: 25640–25648 (2023).
  • [49] Okere, C. J. & Sheng, J. J. Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. (2023).
  • [50] Shahi, R. R., Gupta, A. K. & Kumari, P. Perspectives of high entropy alloys as hydrogen storage materials. International Journal of Hydrogen Energy 48: 21412–21428 (2023).
  • [51] Navaid, H. Bin, Emadi, H. & Watson, M. A comprehensive literature review on the challenges associated with underground hydrogen storage. International Journal of Hydrogen Energy 48: 10603–10635 (2023).
  • [52] Noh, H., Kang, K. & Seo, Y. Environmental and energy efficiency assessments of offshore hydrogen supply chains utilizing compressed gaseous hydrogen, liquefied hydrogen, liquid organic hydrogen carriers and ammonia. International Journal of Hydrogen Energy 48: 7515–7532 (2023).
  • [53] Zhang, T. et al. Hydrogen liquefaction and storage: Recent progress and perspectives. Renewable and Sustainable Energy Reviews 176: 113204 (2023).
  • [54] Shreenag Meda, U. et al. Challenges associated with hydrogen storage systems due to the hydrogen embrittlement of high strength steels. (2023).
  • [55] Tian, Y. et al. Methodology for optimally designing firewalls in hydrogen refueling stations. International Journal of Hydrogen Energy (2023).
  • [56] Le, S. T., Nguyen, T. N., Linforth, S. & Ngo, T. D. Safety investigation of hydrogen energy storage systems using quantitative risk assessment. International Journal of Hydrogen Energy 48: 2861–2875 (2023).
  • [57] Sand, M. et al. A multi-model assessment of the Global Warming Potential of hydrogen. Communications Earth & Environment 4:1, 4: 1–12 (2023).
  • [58] Tang, D. et al. State-of-the-art hydrogen generation techniques and storage methods: A critical review. Journal of Energy Storage 64: 107196 (2023).
  • [59] Zhiznin, S. Z., Timokhov, V. M. & Gusev, A. L. Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy 45: 31353–31366 (2020).
  • [60] Erdoğan, A. & Güler, M. G. Optimization and analysis of a hydrogen supply chain in terms of cost, CO2 emissions, and risk: the case of Turkey. International Journal of Hydrogen Energy 48: 22752–22765 (2023).
  • [61] Wang, X., Fu, J., Liu, Z. & Liu, J. Review of researches on important components of hydrogen supply systems and rapid hydrogen refueling processes. International Journal of Hydrogen Energy 48: 1904–1929 (2023).
  • [62] Bisognin Garlet, T., de Souza Savian, F., Duarte Ribeiro, J. L. & Mairesse Siluk, J. C. Unlocking Brazil’s green hydrogen potential: Overcoming barriers and formulating strategies to this promising sector. International Journal of Hydrogen Energy (2023).
  • [63] Zhou, H. et al. Understanding innovation of new energy industry: Observing development trend and evolution of hydrogen fuel cell based on patent mining. International Journal of Hydrogen Energy (2023).
  • [64] Kim, C. et al. Review of hydrogen infrastructure: The current status and roll-out strategy. International Journal of Hydrogen Energy 48: 1701–1716 (2023).
  • [65] Singh, G. et al. Material-based generation, storage, and utilisation of hydrogen. Progress in Materials Science 135: 101104 (2023).
  • [66. Dash, S. K., Chakraborty, S. & Elangovan, D. A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16: 1141 (2023).
  • [67] Incer-Valverde, J., Morosuk, T. & Tsatsaronis, G. Power-to-liquid hydrogen: Exergy-based evaluation of a large-scale system. (2021).
  • [68] Chen, H. Q. et al. Chinese energy and fuels research priorities and trend: A bibliometric analysis. Renewable and Sustainable Energy Reviews 58: 966–975 (2016).
  • [69] Dünya Bankası Türkiye Genel Bakış. (2023). https://www.worldbank.org/tr/country/turkey/overview. (Accessed: 15th November 2023)
  • [70] Muthuvelan, T. STUDY ON ENERGY CRISIS AND THE FUTURE OF FOSSIL FUELS. Proceedings of SHEE (2009).
  • [71] Türkiye - Countries & Regions - IEA. Available at: https://www.iea.org/countries/turkiye. (Accessed: 16th November 2023)
  • [72] IEA- Turkey 2021 Energy Policy Review. (2021).
  • [73] Sorgulu, F. & Dincer, I. A solar energy driven thermochemical cycle based integrated system for hydrogen production. Energy 269: 126834 (2023).
  • [74] Bilgili, F., Zarali, F., Ilgün, M. F., Dumrul, C. & Dumrul, Y. The evaluation of renewable energy alternatives for sustainable development in Turkey using intuitionistic fuzzy-TOPSIS method. Renewable Energy 189: 1443–1458 (2022).
  • [75] Ağbulut, Ü. et al. Current practices, potentials, challenges, future opportunities, environmental and economic assumptions for Türkiye’s clean and sustainable energy policy: A comprehensive assessment. Sustainable Energy Technologies and Assessments 56: 103019 (2023).
  • [76] Ozturk, M. & Dincer, I. System development and assessment for green hydrogen generation and blending with natural gas. Energy 261: 125233 (2022).
  • [77] Kılkış, B. & Taşeli, B. K. Two-step onboard hydrogen generation from Black Sea H2S reserves. International Journal of Energy Research 45: 7177–7192 (2021).
  • [78] Ozturk, M., Midilli, A. & Dincer, I. Effective use of hydrogen sulfide and natural gas resources available in the Black Sea for hydrogen economy. (2021).
  • [79] Seker, S. & Aydin, N. Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. International Journal of Hydrogen Energy 45: 15855–15868 (2020).
  • [80] Yüksel, S., Mikhaylov, A., Ubay, G. G. & Uyeh, D. D. The Role of Hydrogen in the Black Sea for the Future Energy Supply Security of Turkey. https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-8335-7.ch001 1–15 (1AD).
  • [81] Demirci, U. B. Sodium borohydride for the near-future energy: a ‘rough diamond’ for Turkey. Turkish Journal of Chemistry 42: 193–220 (2018).
  • [82] GÜLMEZ, S. T. A. Examining of Boron of Disposability as Substitution of Oil in the Lıne With Turkey’s Petrolleum Dependency. Internatıonal Journal Of Economıc Studıes 7:, (2021).
  • [83] Karayel, G. K., Javani, N. & Dincer, I. Hydropower for green hydrogen production in Turkey. International Journal of Hydrogen Energy 48: 22806–22817 (2023).
  • [84] Karayel, G. K., Javani, N. & Dincer, I. Green hydrogen production potential in Turkey with wind power. International Journal of Green Energy 20: 129–138 (2023).
  • [85] Kubilay Karayel, G., Javani, N. & Dincer, I. Effective use of geothermal energy for hydrogen production: A comprehensive application. Energy 249:, (2022).
  • [86] Kubilay Karayel, G., Javani, N. & Dincer, I. Green hydrogen production potential for Turkey with solar energy. (2021).
  • [87] Tanchum, M. Turkey’s Maghreb-West Africa Economic Architecture: Challenges and Opportunities for the European Union. (2021).
  • [88] Baş, F., Şen, B. & Fatih Kaya, M. Producing Hydrogen Gas from Organic Wastes Released by Agricultural Activities. Turkish Journal of Agriculture-Food Science and Technology 8: 54–61 (2020).
  • [89] Orak, C. & Yüksel, A. Photocatalytic Hydrogen Energy Evolution from Sugar Beet Wastewater. ChemistrySelect 6: 12266–12275 (2021).
  • [90] Deniz CANBAZ, E. & Gür, M. PREDICTION OF UNDERGROUND COAL GASIFICATION PERFORMANCE OF TURKISH LIGNITE RESERVES USING STOICHIOMETRIC EQUILIBRIUM MODEL. J. of Thermal Science and Technology 40: 195–205 (2020).
  • [91] Gür, M. & Canbaz, E. D. Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel 269: 117331 (2020).
  • [92] Ates, F. & Ozcan, H. Turkey’s industrial waste heat recovery potential with power and hydrogen conversion technologies: A techno-economic analysis. International Journal of Hydrogen Energy 47: 3224–3236 (2022).
  • [93] Sinan Karakurt, A., Özsari, İ., Başhan, V., Güneş, Ü. & Dalkilic, A. S. Evolution of steam turbines: A bibliometric approach. Journal of Thermal Engineering 8: 681–690 (2022).
  • [94] Bicen, S. & Celik, M. A bibliometric review on maritime inspection analysis: Current and future insights. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 237: 275–292 (2022).
  • [95] Başhan, V. & Çetinkaya, A. Influential Publications and Bibliometric Approach to Heavy Metal Removals for Water. Water, Air, & Soil Pollution 233: (2022).
  • [96] Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. & Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal 22: 338–342 (2008).
  • [97] Singh, V. K., Singh, P., Karmakar, M., Leta, J. & Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 126: 5113–5142 (2021).
  • [98] Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications, (2021).
  • [99] Martín-Martín, A., Orduna-Malea, E., Thelwall, M. & Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics 12: 1160–1177 (2018).
  • [100] Birkle, C., Pendlebury, D. A., Schnell, J. & Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies 1: 363–376 (2020).
  • [101] Zhu, J. & Liu, W. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 123: 321–335 (2020).
  • [102] Web of Science platform: Web of Science Core Collection. Available at: https://clarivate.libguides.com/webofscienceplatform/woscc#:~:text=It is a curated collection,social sciences%2C and humanities disciplines.
  • [103] Caputo, A. & Kargina, M. A user-friendly method to merge Scopus and Web of Science data during bibliometric analysis. Journal of Marketing Analytics 10: 82–88 (2022).
  • [104] Tarık TALAN, M. D. Bibliometric Analysis of Research on Learning Analytics Based on Web of Science Database. Informatics in Education - An International Journal 22: 161–181 (2023).
  • [105] Web of Science Coverage Details. Available at: https://clarivate.libguides.com/librarianresources/coverage.
  • [106] Sukaesih Kurniati, P., Saputra, H. & Ahmad Fauzan, T. A Bibliometric Analysis of Chemistry Industry Research Using Vosviewer Application with Publish or Perish. Moroccan Journal of Chemistry 10: 10-3 428-441 (2022).
  • [107] Türkiye Cumhuriyeti, İletişim Başkanlığı. (2022). Available at: https://www.iletisim.gov.tr/turkce/dis_basinda_turkiye/detay/bm-turkiyenin-yabanci-dildeki-ismini-degistirdi. (Accessed: 19th November 2023)
  • [108] Jan van Eck, N. & Waltman, L. VOSviewer Manual. (2023).
  • [109] Kazemzadehmarand, S. & Sözen, A. Determining the optimum photovoltaic installation angle for provinces in turkey. Journal of Polytechnic (2024).
  • [110] Ozcan, M. Enhancing the renewable energy auctions in Turkey. Journal of Polytechnic 24: 1379–1390 (2021).
  • [111] Nurgül Durmuş ŞENYAPAR, H., Çeti̇nkaya, Ü. & Bayindir, R. Renewable energy incentives and future implications for Turkey: a comparative bibliometric analysis. Journal of Polytechnic 27: 329–342 (2024).
  • [112] Korkut, O. et al. Current Status of Renewable Energy in Türkiye. Journal of The Institute of Science and Technology 6: 2378–2391 (2023).
  • [113] Nur BIÇAKÇI, S. & Akgül, G. Application of high performance carbon derived from tea waste into transistor as a conduction channel material. Journal of Polytechnic 23: 909–914 (2020).
  • [114] KUMAŞ, K., TEMİZ, D., AKYÜZ, A. Ö. & GÜNGÖR, A. BİYOKÜTLEDEN ENERJİYE: TÜRKİYE VE DÜNYADA BİYOGAZ POTANSİYELİ. Mesleki Bilimler Dergisi 8: 70–77 (2019).
  • [115] Pence, I., Kumas, · K, Siseci Cesmeli, · M & Akyüz, · A. Detailed analysis of Türkiye’s agricultural biomass-based energy potential with machine learning algorithms based on environmental and climatic conditions. Clean Technologies and Environmental Policy. (2024)
  • [116] Çelik, D. Overview & analysis of woody biomass situation and conversion techniques in Türkiye: possible improvements. (Technische Universität München, 2022).
  • [117] Biyokütle - T.C. Enerji ve Tabii Kaynaklar Bakanlığı. (2022). Available at: https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-biyokutle. (Accessed: 13th April 2024)
  • [118] Murat Danisman, E. A. Defining a new business model for sustainable biomass production from forestry residues in Türkiye by using TRIZ. International Journal of Energy Economics and Policy 13: 243–253 (2023).
  • [119] Avcıoğlu, A. O., Dayıoğlu, M. A. & Türker, U. Assessment of the energy potential of agricultural biomass residues in Turkey. Renewable Energy 138: 610–619 (2019).
  • [120] Işık, G. et al. Determination of the best hydrogen production method in Türkiye by using neutrosophic picture fuzzy TOPSIS.(2023).
  • [121] Dinçer, İ., Arcaklıoğlu, E. & Ezan, M. A. ENERJİDE YAPAY ZEKÂNIN ROLÜ RAPORU. (2022).
  • [122] Dinçer, İ. & Ezan, M. A. TÜBA Jeotermal Enerji Teknolojileri Raporu. (2020).
  • [123] Gürbüz, H. Yerli Elektrikli Aracın Elektrik Sarfiyatını Güneş ve Rüzgâr Enerjisi ile Karşılama Potansiyeli. European Journal of Science and Technology 58–69 (2021).
  • [124] DÖNMEZÇELİK, O., KOÇAK, E. & ÖRKCÜ, H. H. Energy modeling of türkiye road and rail transport towards net zero emissions target (2025-2050). Journal of PolyTechnic (2023).
  • [125] YILDIZ, M. Electric energy use in aviation, perspective, and applications. Journal of Polytechnic 24: 1605–1610 (2021).
  • [126] Umur AYDINOĞLU, A., Erden Topal, Y. & Gökalp, İ. Interdisciplinarity in hydrogen technologies research: social sciences aspects. Journal of Polytechnic 26: 357–366 (2023).
  • [127] Faitori, A., Ben Saoud, M., Alakour, A. & Gedik, E. Experimental study on heat transfer performance of solar thermoelectric generators using MWCNT-distilled water and GNP-distilled water nanofluids as coolants. Journal of Polytechnic 26: 1445–1452 (2023).
  • [128] T.C. Sanayi ve Teknoloji Bakanlığı- Türkiye Grafen Üretiyor. Available at: https://www.sanayi.gov.tr/medya/haber/turkiye-grafen-uretiyor. (Accessed: 14th April 2024)
  • [129] Dinçer, İ., Javani, N. & Karayel, G. K. TÜRKİYE İÇİN HİDROJEN ÇİFTLİĞİ KONSEPTİ RAPORU. (2021).
  • [130] Turan, H., Kaan, M., Meryem, B. & Sürer, G. ULAŞIM SEKTÖRÜ İÇİN HİDROJEN İLE ÇALIŞAN YAKIT HÜCRELİ ELEKTRİKLİ ARAÇLAR. (2023).
  • [131] Dinçer, İ. & Ezan, M. A. Alternatif Enerji Kaynakları ve Doğal Gaz Lojistiği Raporu. (2023).
  • [132] Dinçer, İ. et al. Türkiye’de Yeşil Hidrojenin Üretilip Doğal Gaza Karıştırılması Çalışmaları. (2021).
  • [133] Dinçer, İ. & Ezan, M. A. TÜBA Enerji Depolama Teknolojileri Raporu. (2020).
  • [134] Çinar, M., Kiliçkap, S., Hakki Sariçam, İ. & Çevik, M. H. Ultra Deep Offshore Gas Fields: Development Options and Common Problems. Yerbilimleri/ Earth Sciences 44: 1–21 (2023).
  • [135] Dinçer, İ. & Ezan, M. A. TÜBA Doğal Gaz Raporu. (2021).
There are 135 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Cenk Kaya 0000-0003-4470-5427

Veysi Başhan 0000-0002-1070-1754

Early Pub Date July 1, 2024
Publication Date
Submission Date December 25, 2023
Acceptance Date April 18, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Kaya, C., & Başhan, V. (2024). Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1409895
AMA Kaya C, Başhan V. Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects. Politeknik Dergisi. Published online July 1, 2024:1-1. doi:10.2339/politeknik.1409895
Chicago Kaya, Cenk, and Veysi Başhan. “Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects”. Politeknik Dergisi, July (July 2024), 1-1. https://doi.org/10.2339/politeknik.1409895.
EndNote Kaya C, Başhan V (July 1, 2024) Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects. Politeknik Dergisi 1–1.
IEEE C. Kaya and V. Başhan, “Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects”, Politeknik Dergisi, pp. 1–1, July 2024, doi: 10.2339/politeknik.1409895.
ISNAD Kaya, Cenk - Başhan, Veysi. “Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects”. Politeknik Dergisi. July 2024. 1-1. https://doi.org/10.2339/politeknik.1409895.
JAMA Kaya C, Başhan V. Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects. Politeknik Dergisi. 2024;:1–1.
MLA Kaya, Cenk and Veysi Başhan. “Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1409895.
Vancouver Kaya C, Başhan V. Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects. Politeknik Dergisi. 2024:1-.