Research Article
BibTex RIS Cite

Measuring Renewable Energy Productivity in EU Countries with the Hicks-Moorsteen Index

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1438535

Abstract

This study aims to investigate the renewable energy (RE) productivity of European Union (EU) countries for 2013-2022. For this purpose, the study focuses on 26 EU member states and uses the Hicks-Moorsteen productivity index (HMPI) method. Because of the analysis, it is determined that Luxembourg, Malta, the Netherlands, Belgium, and Ireland are the leaders in RE productivity, while the RE productivity of other countries, except Hungary, Romania, Latvia, Croatia, and Bulgaria, has increased in the said period. Moreover, the HMPI values of EU countries for 2013-2022 vary between 0.968 and 1.182. When analyzing the annual averages by country, the average HMPI value for the relevant period is 1.040. Considering the index components, the increase in productivity across the EU is primarily driven by technological change (1.025), whereas efficiency change (1.018) contributes less to this increase.

Ethical Statement

The author of this article declares that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission

Supporting Institution

-

Thanks

-

References

  • [1] Koç, E. & Kaya, K., “Enerji kaynakları–yenilenebilir enerji durumu”, Mühendis ve Makina, 56 (668): 36-47, (2015).
  • [2] Balashova, S. A., Gomonov, K. G. & Matyushok, V. M., “The influence of energy production from renewable energy sources on energy efficiency and total factor productivity”, IOP Conf. Series: Materials Science and Engineering, 937 (1): 012003, (2020).
  • [3] Gökgöz, F., & Güvercin, M. T., “Energy security and renewable energy efficiency in EU”, Renewable and Sustainable Energy Reviews, 96: 226-239, (2018).
  • [4] Öztürk, H. H., “Yenilenebilir Enerji Kaynakları”, Birsen Yayınevi, İstanbul, (2021).
  • [5] Aydoğdu, Ç., “Yenilenebilir enerji sektöründe ve enerji verimliliğinde kamusal destekler ve Türkiye’de yansımaları”, Akademik İzdüşüm Dergisi, 6 (1): 52-74, (2021).
  • [6] EU, “Joint communication to the European parliament, the council, the European economic and social committee and the committee of the regions: EU external energy engagement in a changing World”, European Commission, Brussels, Belgium, (2022).
  • [7] IEA-International Energy Agency, https://www.iea.org/energy-system/renewables, 29.01.2024, (2024).
  • [8] European Commission, “Renewable Energy Directive”, https://energy.ec.europa.eu-/topics/renewable-energy/-renewable-energy-directive-targets-and-rules/renewable-ener-gy-directive_en, 27.01.2024, (2024).
  • [9] Li, J., Zhang, X., Ali, S., & Khan, Z., “Eco-innovation and energy productivity: New determinants of renewable energy consumption”, Journal of Environmental Management, 271: 111028, (2020).
  • [10] Lo Storto, C. & Capano, B., “Productivity changes of the renewable energy installed capacity: An empirical study relating to 31 European countries between 2002 and 2011”, Energy Education Science and Technology Part A: Energy Science and Research, 32 (5): 3061-3072, (2014).
  • [11] Kara, S. E., Ibrahim, M. D. & Daneshvar, S., “Dual efficiency and productivity analysis of renewable energy alternatives of OECD countries”, Sustainability, 13: 7401. https://doi.org/10.3390/ su13137401, (2021).
  • [12] Ogunrinde, O. & Shittu, E., “Efficiency and productivity of renewable energy technologies: Evidence from US investor-owned utilities across regional markets”, Utilities Policy, 82: 101560, (2023).
  • [13] Shah, W. U. H., Hao, G., Yan, H., Zhu, N., Yasmeen, R., & Dincă, G., “Role of renewable, non-renewable energy consumption and carbon emission in energy efficiency and productivity change: Evidence from G20 economies”, Geoscience Frontiers, 101631, (2023).
  • [14] Sovacool, B. K., “The cultural barriers to renewable energy and energy efficiency in the United States”, Technology in Society, 31(4): 365-373, (2009).
  • [15] Tugcu, C. T. & Tiwari, A. K., “Does renewable and/or non-renewable energy consumption matter for total factor productivity (TFP) growth? Evidence from the BRICS”, Renewable and Sustainable Energy Reviews, 65: 610-616, (2016).
  • [16] Sohag, K., Chukavina, K. & Samargandi, N., “Renewable energy and total factor productivity in OECD member countries”, Journal of Cleaner Production, 296: 126499, (2021).
  • [17] Zhen, W., Xin-gang, Z. & Ying, Z., “Biased technological progress and total factor productivity growth: From the perspective of China's renewable energy industry”, Renewable and Sustainable Energy Reviews, 146: 111136, (2021).
  • [18] Wang, J., Dong, X. & Dong, K., “Does renewable energy technological innovation matter for green total factor productivity? Empirical evidence from Chinese provinces”, Sustainable Energy Technologies and Assessments, 55: 102966, (2023).
  • [19] Ibrahim, M. D., & Alola, A. A., “Integrated analysis of energy-economic development-environmental sustainability nexus: A case study of MENA countries”, Science of the Total Environment, 737: 139768, (2020).
  • [20] Woo, C., Chung, Y., Chun, D., Seo, H. & Hong, S., “The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries”, Renewable and Sustainable Energy Reviews, 47: 367-376, (2015).
  • [21] Li, W., Ji, Z. & Dong, F., “Global renewable energy power generation efficiency evaluation and influencing factors analysis”, Sustainable Production and Consumption, 33: 438-453, (2022).
  • [22] Yağcı, B. E. & Sözen, A., “Türkiye’nin enerji verimliliği etkinlik analizi”, Politeknik Dergisi, 1-1, (2022).
  • [23] Eurostat, https://ec.europa.eu/eurostat/data/database, 26.12.2023, (2023).
  • [24] Loroupe, G. D., “Analysis of the sources of productivity change in Togo public hospitals: Hicks-Moorsteen’s productivity index”, International Journal of Accounting, Auditing, and Taxation, 3 (5): 357-363, (2016).
  • [25] Becerra-Peña, D. & Santin, D., “Measuring public primary education productivity across Mexican states using a Hicks-Moorsteen index”. Applied Economics, 53 (8): 924-939, (2021).
  • [26] Arjomandi, A., Valadkhani, A. & O’Brien, M., “Analysing banks’ intermediation and operational performance using the Hicks–Moorsteen TFP index: The case of Iran”, Research in International Business and Finance, 40: 111-125, (2014).
  • [27] Kerstens, K. & Van de Woestyne, I., “Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data”, European Journal of Operational Research, 233 (3), 749-758, (2014).
  • [28] Kerstens, K., Hachem, B. A. M. & Van de Woestyne, I. “Malmquist and Hicks-Moorsteen productivity indices: An empirical comparison focusing on infeasibilities”, HUB Research Paper, 31, (2010).
  • [29] O’Donnell, C. J., “Measuring and decomposing agricultural productivity and profitability change”, Australian Journal of Agricultural and Resource Economics, 54 (4): 527-560, (2010).
  • [30] Medal-Bartual, A., Molinos-Senante, M., & Sala-Garrido, R., “Assessment of the total factor productivity change in the Spanish ports: Hicks–Moorsteen productivity index approach”, Journal of Waterway, Port, Coastal, and Ocean Engineering, 142 (1): 04015013, (2016).
  • [31] Mohammadian, I. & Rezaee, M. J., “A new decomposition and interpretation of Hicks-Moorsteen productivity index for analysis of Stock Exchange companies: A case study on pharmaceutical industry”, Socio-Economic Planning Sciences, 69: 100674, (2020).
  • [32] Bjurek, H., “The Malmquist total factor productivity index”, The Scandinavian Journal of Economics, 98 (2): 303-313, (1996).
  • [33] Sel, A., “Avrupa Bölgesi Ülkelerinin Enerji Kullanımları Açısından Bulanık Kümeleme Yöntemleri ile Analizi”, Sosyal Bilimler Araştırmaları Dergisi, 16 (1): 121-135, (2021).
  • [34] Kranzl, L., Brakhage, A., Gürtler, P., Pett, J., Ragwitz, M., & Stadler, M., “Integrating policies for renewables and energy efficiency: Comparing results from Germany, Luxembourg, and Northern Ireland”, La Colle sur Loup, France, (2007).
  • [35] Bensebaa, F., “Clean energy”. In Interface science and technology, 19: 279-383, Elsevier, (2013).
  • [36] Barton, J. H., “Intellectual property and access to clean energy technologies in developing countries: An Analysis of Solar Photovoltaic, Biofuel, and Wind Technologies”, ICTSD Issue Paper, 2, (2007).
  • [37] Abolhosseini, S., Heshmati, A. & Altmann, J., “A Review of Renewable Energy Supply and Energy Efficiency Technologies”, IZA Discussion Paper, 8145, (2014).
  • [38] Lo, K., “A critical review of China's rapidly developing renewable energy and energy efficiency policies”, Renewable and Sustainable Energy Reviews, 29: 508-516, (2014).
  • [39] Edenhofer, O., Pichs-Madruga, R., Sokona, Y.,... & von Stechow, C. (Eds.), “Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change”, Cambridge University Press, New York, NY, (2012).
  • [40] Fernández, L., “Global Renewable Energy Industry-Statistics & Facts”, https://www.statista.com/topics/-2608/global-renewable-energy-industry/#topicOvervi-ew 29.01.2024, (2023).
  • [41] Dönmezçelik O., Koçak E. & Örkcü H. H., “Net sıfır emisyon hedefine doğru türkiye kara yolu ve demir yolu taşımacılığının enerji modellemesi (2025-2050)”, Politeknik Dergisi, 27 (3): 931-946, (2024).
  • [42] Yıldırım R. & Karadöl İ., “Çok kriterli karar verme metodu ile biyogaz üretimindeki en iyi enerji bitkisinin belirlenerek türkiye ölçeğindeki enerji potansiyelinin hesaplanması”, Politeknik Dergisi, 28 (1): 35-43, (2025).
  • [43] Odabaş Kırar, A.M. & Olgun, H., “Türkiye’de enerji kooperatiflerinin gzft (güçlü, zayıf, fırsat, tehdit yönleri) ve pest (politik, ekonomik, sosyolojik, teknolojik etkenler) analizleri ile değerlendirilmesi”, Politeknik Dergisi, 27 (1): 11-20, (2024).
  • [44] Yang, X., Zhou, H. & Gao, J., “Enhancing renewable energy productivity and energy efficiency of energy projects: How does cost of capital influence?”, Energy Strategy Reviews, 57: 101608, (2025).
  • [45] Bashir, M. F., Pata, U. K. & Shahzad, L. “Linking climate change, energy transition and renewable energy investments to combat energy security risks: Evidence from top energy consuming economies”, Energy, 314: 134175, (2025).
  • [46] Teng, X., Linghu, K., Jiang, G., Chang, T-H., Liu, F-P. & Chiu, Y-H. “China's energy efficiency improvement considering renewable energy substitution: Applying a dynamic two-stage undesirable non-radial directional distance function”, Journal of Power Sources, 629: 235946, (2025).
  • [47] Hussain, A., Huseynova, A., Hakimova, Y., Nassani, A. A. & Bo, B. “Energy efficiency and emission flexibility: Management and economic insights for renewable energy integration”, Energy Strategy Reviews, 57: 101631, (2025).

AB Ülkelerinde Yenilenebilir Enerji Verimliliğinin Hicks-Moorsteen Endeksi ile Ölçülmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1438535

Abstract

Bu çalışma 2013-2022 dönemi için Avrupa Birliği (AB) ülkelerinin yenilenebilir enerji verimliliğini araştırmayı amaçlamaktadır. Bu amaçla, çalışmada 26 AB üyesi ülkeye odaklanılmakta ve Hicks-Moorsteen verimlilik endeksi (HMPI) yöntemi kullanılmaktadır. Araştırma sonucunda, Lüksemburg, Malta, Hollanda, Belçika ve İrlanda'nın yenilenebilir enerji verimliliğinde lider olduğu, söz konusu dönemde Macaristan, Romanya, Letonya, Hırvatistan, Bulgaristan hariç diğer ülkelerin yenilenebilir enerji verimliliğinin arttığı saptanmıştır. Ayrıca, AB ülkelerinin 2013-2022 dönemi için HMPI değerleri 0,968 ile 1,182 arasında değişmektedir. Ülke bazında yıllık ortalamalar incelendiğinde, ilgili dönem için ortalama HMPI değeri 1.040’dır. Endeks bileşenleri dikkate alındığında ise AB genelinde verimlilik artışının büyük ölçüde teknolojik değişimden (1.025) kaynaklandığı, etkinlik değişiminin (1.018) ise bu artışa daha az katkıda bulunduğu tespit edilmiştir.

Ethical Statement

Bu makalenin yazarı, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel izin gerektirmediğini beyan eder.

Supporting Institution

-

Thanks

-

References

  • [1] Koç, E. & Kaya, K., “Enerji kaynakları–yenilenebilir enerji durumu”, Mühendis ve Makina, 56 (668): 36-47, (2015).
  • [2] Balashova, S. A., Gomonov, K. G. & Matyushok, V. M., “The influence of energy production from renewable energy sources on energy efficiency and total factor productivity”, IOP Conf. Series: Materials Science and Engineering, 937 (1): 012003, (2020).
  • [3] Gökgöz, F., & Güvercin, M. T., “Energy security and renewable energy efficiency in EU”, Renewable and Sustainable Energy Reviews, 96: 226-239, (2018).
  • [4] Öztürk, H. H., “Yenilenebilir Enerji Kaynakları”, Birsen Yayınevi, İstanbul, (2021).
  • [5] Aydoğdu, Ç., “Yenilenebilir enerji sektöründe ve enerji verimliliğinde kamusal destekler ve Türkiye’de yansımaları”, Akademik İzdüşüm Dergisi, 6 (1): 52-74, (2021).
  • [6] EU, “Joint communication to the European parliament, the council, the European economic and social committee and the committee of the regions: EU external energy engagement in a changing World”, European Commission, Brussels, Belgium, (2022).
  • [7] IEA-International Energy Agency, https://www.iea.org/energy-system/renewables, 29.01.2024, (2024).
  • [8] European Commission, “Renewable Energy Directive”, https://energy.ec.europa.eu-/topics/renewable-energy/-renewable-energy-directive-targets-and-rules/renewable-ener-gy-directive_en, 27.01.2024, (2024).
  • [9] Li, J., Zhang, X., Ali, S., & Khan, Z., “Eco-innovation and energy productivity: New determinants of renewable energy consumption”, Journal of Environmental Management, 271: 111028, (2020).
  • [10] Lo Storto, C. & Capano, B., “Productivity changes of the renewable energy installed capacity: An empirical study relating to 31 European countries between 2002 and 2011”, Energy Education Science and Technology Part A: Energy Science and Research, 32 (5): 3061-3072, (2014).
  • [11] Kara, S. E., Ibrahim, M. D. & Daneshvar, S., “Dual efficiency and productivity analysis of renewable energy alternatives of OECD countries”, Sustainability, 13: 7401. https://doi.org/10.3390/ su13137401, (2021).
  • [12] Ogunrinde, O. & Shittu, E., “Efficiency and productivity of renewable energy technologies: Evidence from US investor-owned utilities across regional markets”, Utilities Policy, 82: 101560, (2023).
  • [13] Shah, W. U. H., Hao, G., Yan, H., Zhu, N., Yasmeen, R., & Dincă, G., “Role of renewable, non-renewable energy consumption and carbon emission in energy efficiency and productivity change: Evidence from G20 economies”, Geoscience Frontiers, 101631, (2023).
  • [14] Sovacool, B. K., “The cultural barriers to renewable energy and energy efficiency in the United States”, Technology in Society, 31(4): 365-373, (2009).
  • [15] Tugcu, C. T. & Tiwari, A. K., “Does renewable and/or non-renewable energy consumption matter for total factor productivity (TFP) growth? Evidence from the BRICS”, Renewable and Sustainable Energy Reviews, 65: 610-616, (2016).
  • [16] Sohag, K., Chukavina, K. & Samargandi, N., “Renewable energy and total factor productivity in OECD member countries”, Journal of Cleaner Production, 296: 126499, (2021).
  • [17] Zhen, W., Xin-gang, Z. & Ying, Z., “Biased technological progress and total factor productivity growth: From the perspective of China's renewable energy industry”, Renewable and Sustainable Energy Reviews, 146: 111136, (2021).
  • [18] Wang, J., Dong, X. & Dong, K., “Does renewable energy technological innovation matter for green total factor productivity? Empirical evidence from Chinese provinces”, Sustainable Energy Technologies and Assessments, 55: 102966, (2023).
  • [19] Ibrahim, M. D., & Alola, A. A., “Integrated analysis of energy-economic development-environmental sustainability nexus: A case study of MENA countries”, Science of the Total Environment, 737: 139768, (2020).
  • [20] Woo, C., Chung, Y., Chun, D., Seo, H. & Hong, S., “The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries”, Renewable and Sustainable Energy Reviews, 47: 367-376, (2015).
  • [21] Li, W., Ji, Z. & Dong, F., “Global renewable energy power generation efficiency evaluation and influencing factors analysis”, Sustainable Production and Consumption, 33: 438-453, (2022).
  • [22] Yağcı, B. E. & Sözen, A., “Türkiye’nin enerji verimliliği etkinlik analizi”, Politeknik Dergisi, 1-1, (2022).
  • [23] Eurostat, https://ec.europa.eu/eurostat/data/database, 26.12.2023, (2023).
  • [24] Loroupe, G. D., “Analysis of the sources of productivity change in Togo public hospitals: Hicks-Moorsteen’s productivity index”, International Journal of Accounting, Auditing, and Taxation, 3 (5): 357-363, (2016).
  • [25] Becerra-Peña, D. & Santin, D., “Measuring public primary education productivity across Mexican states using a Hicks-Moorsteen index”. Applied Economics, 53 (8): 924-939, (2021).
  • [26] Arjomandi, A., Valadkhani, A. & O’Brien, M., “Analysing banks’ intermediation and operational performance using the Hicks–Moorsteen TFP index: The case of Iran”, Research in International Business and Finance, 40: 111-125, (2014).
  • [27] Kerstens, K. & Van de Woestyne, I., “Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data”, European Journal of Operational Research, 233 (3), 749-758, (2014).
  • [28] Kerstens, K., Hachem, B. A. M. & Van de Woestyne, I. “Malmquist and Hicks-Moorsteen productivity indices: An empirical comparison focusing on infeasibilities”, HUB Research Paper, 31, (2010).
  • [29] O’Donnell, C. J., “Measuring and decomposing agricultural productivity and profitability change”, Australian Journal of Agricultural and Resource Economics, 54 (4): 527-560, (2010).
  • [30] Medal-Bartual, A., Molinos-Senante, M., & Sala-Garrido, R., “Assessment of the total factor productivity change in the Spanish ports: Hicks–Moorsteen productivity index approach”, Journal of Waterway, Port, Coastal, and Ocean Engineering, 142 (1): 04015013, (2016).
  • [31] Mohammadian, I. & Rezaee, M. J., “A new decomposition and interpretation of Hicks-Moorsteen productivity index for analysis of Stock Exchange companies: A case study on pharmaceutical industry”, Socio-Economic Planning Sciences, 69: 100674, (2020).
  • [32] Bjurek, H., “The Malmquist total factor productivity index”, The Scandinavian Journal of Economics, 98 (2): 303-313, (1996).
  • [33] Sel, A., “Avrupa Bölgesi Ülkelerinin Enerji Kullanımları Açısından Bulanık Kümeleme Yöntemleri ile Analizi”, Sosyal Bilimler Araştırmaları Dergisi, 16 (1): 121-135, (2021).
  • [34] Kranzl, L., Brakhage, A., Gürtler, P., Pett, J., Ragwitz, M., & Stadler, M., “Integrating policies for renewables and energy efficiency: Comparing results from Germany, Luxembourg, and Northern Ireland”, La Colle sur Loup, France, (2007).
  • [35] Bensebaa, F., “Clean energy”. In Interface science and technology, 19: 279-383, Elsevier, (2013).
  • [36] Barton, J. H., “Intellectual property and access to clean energy technologies in developing countries: An Analysis of Solar Photovoltaic, Biofuel, and Wind Technologies”, ICTSD Issue Paper, 2, (2007).
  • [37] Abolhosseini, S., Heshmati, A. & Altmann, J., “A Review of Renewable Energy Supply and Energy Efficiency Technologies”, IZA Discussion Paper, 8145, (2014).
  • [38] Lo, K., “A critical review of China's rapidly developing renewable energy and energy efficiency policies”, Renewable and Sustainable Energy Reviews, 29: 508-516, (2014).
  • [39] Edenhofer, O., Pichs-Madruga, R., Sokona, Y.,... & von Stechow, C. (Eds.), “Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change”, Cambridge University Press, New York, NY, (2012).
  • [40] Fernández, L., “Global Renewable Energy Industry-Statistics & Facts”, https://www.statista.com/topics/-2608/global-renewable-energy-industry/#topicOvervi-ew 29.01.2024, (2023).
  • [41] Dönmezçelik O., Koçak E. & Örkcü H. H., “Net sıfır emisyon hedefine doğru türkiye kara yolu ve demir yolu taşımacılığının enerji modellemesi (2025-2050)”, Politeknik Dergisi, 27 (3): 931-946, (2024).
  • [42] Yıldırım R. & Karadöl İ., “Çok kriterli karar verme metodu ile biyogaz üretimindeki en iyi enerji bitkisinin belirlenerek türkiye ölçeğindeki enerji potansiyelinin hesaplanması”, Politeknik Dergisi, 28 (1): 35-43, (2025).
  • [43] Odabaş Kırar, A.M. & Olgun, H., “Türkiye’de enerji kooperatiflerinin gzft (güçlü, zayıf, fırsat, tehdit yönleri) ve pest (politik, ekonomik, sosyolojik, teknolojik etkenler) analizleri ile değerlendirilmesi”, Politeknik Dergisi, 27 (1): 11-20, (2024).
  • [44] Yang, X., Zhou, H. & Gao, J., “Enhancing renewable energy productivity and energy efficiency of energy projects: How does cost of capital influence?”, Energy Strategy Reviews, 57: 101608, (2025).
  • [45] Bashir, M. F., Pata, U. K. & Shahzad, L. “Linking climate change, energy transition and renewable energy investments to combat energy security risks: Evidence from top energy consuming economies”, Energy, 314: 134175, (2025).
  • [46] Teng, X., Linghu, K., Jiang, G., Chang, T-H., Liu, F-P. & Chiu, Y-H. “China's energy efficiency improvement considering renewable energy substitution: Applying a dynamic two-stage undesirable non-radial directional distance function”, Journal of Power Sources, 629: 235946, (2025).
  • [47] Hussain, A., Huseynova, A., Hakimova, Y., Nassani, A. A. & Bo, B. “Energy efficiency and emission flexibility: Management and economic insights for renewable energy integration”, Energy Strategy Reviews, 57: 101631, (2025).
There are 47 citations in total.

Details

Primary Language English
Subjects Clean Production Technologies, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Research Article
Authors

Habibe Yaman 0000-0002-9212-3264

Early Pub Date April 29, 2025
Publication Date
Submission Date February 17, 2024
Acceptance Date April 28, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Yaman, H. (2025). Measuring Renewable Energy Productivity in EU Countries with the Hicks-Moorsteen Index. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1438535
AMA Yaman H. Measuring Renewable Energy Productivity in EU Countries with the Hicks-Moorsteen Index. Politeknik Dergisi. Published online April 1, 2025:1-1. doi:10.2339/politeknik.1438535
Chicago Yaman, Habibe. “Measuring Renewable Energy Productivity in EU Countries With the Hicks-Moorsteen Index”. Politeknik Dergisi, April (April 2025), 1-1. https://doi.org/10.2339/politeknik.1438535.
EndNote Yaman H (April 1, 2025) Measuring Renewable Energy Productivity in EU Countries with the Hicks-Moorsteen Index. Politeknik Dergisi 1–1.
IEEE H. Yaman, “Measuring Renewable Energy Productivity in EU Countries with the Hicks-Moorsteen Index”, Politeknik Dergisi, pp. 1–1, April 2025, doi: 10.2339/politeknik.1438535.
ISNAD Yaman, Habibe. “Measuring Renewable Energy Productivity in EU Countries With the Hicks-Moorsteen Index”. Politeknik Dergisi. April 2025. 1-1. https://doi.org/10.2339/politeknik.1438535.
JAMA Yaman H. Measuring Renewable Energy Productivity in EU Countries with the Hicks-Moorsteen Index. Politeknik Dergisi. 2025;:1–1.
MLA Yaman, Habibe. “Measuring Renewable Energy Productivity in EU Countries With the Hicks-Moorsteen Index”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1438535.
Vancouver Yaman H. Measuring Renewable Energy Productivity in EU Countries with the Hicks-Moorsteen Index. Politeknik Dergisi. 2025:1-.