Yüzey Pürüzlülüğünün Makine Öğrenmesi ile Tahmin Edilmesi
Year 2024,
EARLY VIEW, 1 - 1
Bayram Sercan Bayram
,
Oktay Yıldız
,
İhsan Korkut
Abstract
CNC tornalama genellikle metal parçaları işlemek için kullanılır. Son yüzeyin kalitesi, işlemin kalitesini değerlendirilmesi ve işleme koşullarını belirlemesinde önemli bir parametredir. İşleme performansını optimize etmek için, işleme parametreleri ve yüzey pürüzlülüğü değerleri arasındaki karmaşık ilişkileri araştırmak ve tahmin etmek gerekir. Yapay Sinir Ağı (YSA) modelleri, karmaşık ilişkileri öğrenme ve tahmin etme yetenekleri nedeniyle kesme koşullarının yüzey pürüzlülüğü üzerindeki etkilerini araştırmak için kullanılabilir. Bu çalışmada, Çoklu Lineer Regresyon (ÇLR) ve YSA yöntemleri kullanılarak tornalama sonrası yüzey pürüzlülüğü (Ra) değerlerini tahmin etmek için tahmin modelleri geliştirilmiştir. Tahmin modellerini geliştirmek için işleme deneyleri yapılmıştır. Deneylerde kesme hızı (m/dak), kesme derinliği (mm) ve ilerleme hızı (mm/dev) olmak üzere üç kontrol faktörü seviyesi kullanılmıştır. Geliştirilen modeller deneysel ölçümlerle doğrulanmış ve performansları değerlendirilmiştir. YSA tahminlerinin gerçek değerlere göre %87,6 doğruluğa sahip olduğu, çoklu regresyon tahminlerinin ise %78,4 doğruluğa sahip olduğu hesaplanmıştır. Çalışma, YSA yönteminin MLR yönteminden daha yüksek bir performansa sahip olduğunu ve yüzey pürüzlülüğü değerlerini tahmin etmek için kullanılabileceğini göstermiştir.
Ethical Statement
Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal özel bir izin gerektirmediğini beyan ederler.
Supporting Institution
Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
BAP-FYL-2021-7274
Thanks
Bu çalışma Gazi Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: BAP-FYL-2021-7274).
References
- [1] Lakshmanan S., Kumar M. P., and Dhananchezian M., “Optimization of turning parameter on surface roughness, cutting force and temperature through TOPSIS” Materials Today: Proceedings, 72(4): 2231-2237, (2023).
- [2] Merchant M. E., “An interpretive look at 20th century research on modeling of machining”, Machining Science and Technology, 2(2), 157–163, (1998).
- [3] Madić M. and Radovanović M., “Modeling and analysis of correlations between cutting parameters and cutting force components in turning AISI 1043 steel using ANN”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35: 111–121, (2013).
- [4] Çakıroğlu R., Yağmur S., Acır A., and Şeker U., “Delme İşlemlerinde Meydana Gelen Kesme Bölgesi Sıcaklığının ve Kesme Kuvvetlerinin Yapay Sinir Ağları Kullanılarak Modellenmesi,” Politeknik Dergisi, 20(2): 333–340, (2017).
- [5] Cao Y., Zhu Y., Ding W., Qiu Y., Wang L., and XU J., “Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy,”, Chinese Journal of Aeronautics, 35(2): 332–345, (2022).
- [6] Miao Q., Ding W., Kuang W., and Yang C., “Grinding force and surface quality in creep feed profile grinding of turbine blade root of nickel-based superalloy with microcrystalline alumina abrasive wheels”, Chinese Journal of Aeronautics, 34(2): 576–585, (2021).
- [7] Bennett J. M., “Recent developments in surface roughness characterization”, Meas Sci Technol, 3(12): 1119, (1992).
- [8] Sada S. O., “Improving the predictive accuracy of artificial neural network (ANN) approach in a mild steel turning operation”, The International Journal of Advanced Manufacturing Technology, 112: 2389–2398, (2021).
- [9] Suresh R., Joshi A. G., and Manjaiah M., “Experimental investigation on tool wear in AISI H13 die steel turning using RSM and ANN methods”, Arabian Journal Science Engineering, 46(3): 2311–2325, (2021).
- [10] Elsheikh A. H. et al., “Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of Inconel 718”, Journal of Materials Research and Technology, 15: 3622–3634, (2021).
- [11] Moussaoui K., Mousseigne M., Senatore J., and Chieragatti R., “The effect of roughness and residual stresses on fatigue life time of an alloy of titanium”, The International Journal of Advanced Manufacturing Technology, 78: 557–563, (2015).
- [12] Dubey V., Sharma A. K., and Pimenov D. Y., “Prediction of surface roughness using machine learning approach in MQL turning of AISI 304 steel by varying nanoparticle size in the cutting fluid”, Lubricants, 10(5): 81, (2022).
- [13] Dilipak H., Asal Ö., Yalçınkaya A., and Ünal Ş., “Minimum Miktarda Yağlama Tekniği ile Frezeleme İşleminde Yüzey Pürüzlülüğünün Anfis ile Modellenmesi,” International Journal of Innovative Engineering Applications, 5(2): 162–170, (2021).
- [14] Gürbüz H. and E. Y. Gönülaçar, “Farklı kesme parametreleri ve MQL debilerinde elde edilen deneysel değerlerin S/N oranları ve YSA ile analizi,” Politeknik Dergisi, 24(3): 1093–1107, (2021).
- [15] Seguy S., Dessein G., and Arnaud L., “Surface roughness variation of thin wall milling, related to modal interactions”, International Journal of Machine Tools and Manufacture, 48(3): 261–274, (2008).
- [16] Risbood K. A., Dixit U. S., and Sahasrabudhe A. D., “Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process”, Journal of Materials Processing Technology, 132(1-3): 203–214, (2003).
- [17] Özel T. and Karpat Y., “Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks”, International Journal of Machine Tools and Manufacture, 45(4): 467–479, (2005).
- [18] Lakhdar B., Athmane Y. M., Salim B., and Haddad A., “Modelling and optimization of machining parameters during hardened steel AISID3 turning using RSM, ANN and DFA techniques: comparative study”, Journal of Mechanical Engineering and Sciences, 14(2): 6835–6847, (2020).
- [19] Muthuram N. and Frank F. C., “Optimization of machining parameters using artificial Intelligence techniques”, Materials Today Proceedings, 46: 8097–8102, (2021).
- [20] Gürbüz H., Sözen A., and Şeker U., “Tornalama Operasyonlarında Farklı Talaş Kırıcı Formlarının Yüzey Pürüzlülüğü Üzerinde Etkilerinin Yapay Sinir Ağları Kullanılarak Modellenmesi,” Politeknik Dergisi, 19(1): 71–83, (2016).
- [21] Senthilkumar N., Tamizharasan T., and Anandakrishnan V., “An hybrid Taguchi-grey relational technique and cuckoo search algorithm for multi-criteria optimization in hard turning of AISI D3 steel”, Journal of Advanced Engineering Research, 1(1): 16–31, (2014).
- [22] Chandrasekaran M. and Tamang S., “ANN–PSO integrated optimization methodology for intelligent control of MMC machining”, Journal of The Institution of Engineers (India): Series C, 98: 395–401, (2017).
- [23] Abbas A. T., Pimenov D. Y., Erdakov I. N., Taha M. A., Soliman M. S., and El Rayes M. M., “ANN surface roughness optimization of AZ61 magnesium alloy finish turning: Minimum machining times at prime machining costs”, Materials, 11(5): 808, (2018).
- [24] Hoang T. D., Nguyen Q. V., Nguyen V. C., and Tran N. H., “Self-adjusting on-line cutting condition for high-speed milling process”, Journal of Mechanical Science and Technology, 34: 3335–3343, (2020).
- [25] Tranmer M. and Elliot M., “Multiple linear regression”, The Cathie Marsh Centre for Census and Survey Research (CCSR), 5(5), 1–5, (2008).
- [26] Özdemir V., “Determination of Turkey’s Carbonization Index Based on Basic Energy Indicators by Artificial Neural Networks,” Journal of the Faculty of Engineering and Architecture of Gazi University, 26(1): 9-15, (2011).
- [27] Rosenblatt F., “Principles of neurodynamics: Perceptrons and the theory of brain mechanisms”, Cornell Aeronautical Lab Inc., Washington DC, (1962).
Predicting Surface Roughness with Machine Learning
Year 2024,
EARLY VIEW, 1 - 1
Bayram Sercan Bayram
,
Oktay Yıldız
,
İhsan Korkut
Abstract
CNC turning is generally used to machine metal parts. The quality of the surface finish is an important parameter in assessing the quality of the process and determining the machining conditions. In order to optimise machining performance, it is necessary to investigate and predict the complex relationships between machining parameters and surface roughness values. Artificial Neural Network (ANN) models can be used to investigate the effects of cutting conditions on surface roughness due to their ability to learn and predict complex relationships. In this study, prediction models were developed to predict surface roughness (Ra) values after turning using Multiple Linear Regression (MLR) and ANN methods. Machining experiments were conducted to develop the prediction models. Three levels of control factors of cutting speed (m/min), cutting depth (mm) and feed rate (mm/rev) were used in the experiments. The developed models were validated with experimental measurements and their performance was evaluated. It was calculated that the ANN predictions had an accuracy of 87.6% with respect to the actual values, while the multiple regression predictions had an accuracy of 78.4%. The study showed that the ANN method has a higher performance than the MLR method and can be used to predict surface roughness values.
Project Number
BAP-FYL-2021-7274
References
- [1] Lakshmanan S., Kumar M. P., and Dhananchezian M., “Optimization of turning parameter on surface roughness, cutting force and temperature through TOPSIS” Materials Today: Proceedings, 72(4): 2231-2237, (2023).
- [2] Merchant M. E., “An interpretive look at 20th century research on modeling of machining”, Machining Science and Technology, 2(2), 157–163, (1998).
- [3] Madić M. and Radovanović M., “Modeling and analysis of correlations between cutting parameters and cutting force components in turning AISI 1043 steel using ANN”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35: 111–121, (2013).
- [4] Çakıroğlu R., Yağmur S., Acır A., and Şeker U., “Delme İşlemlerinde Meydana Gelen Kesme Bölgesi Sıcaklığının ve Kesme Kuvvetlerinin Yapay Sinir Ağları Kullanılarak Modellenmesi,” Politeknik Dergisi, 20(2): 333–340, (2017).
- [5] Cao Y., Zhu Y., Ding W., Qiu Y., Wang L., and XU J., “Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy,”, Chinese Journal of Aeronautics, 35(2): 332–345, (2022).
- [6] Miao Q., Ding W., Kuang W., and Yang C., “Grinding force and surface quality in creep feed profile grinding of turbine blade root of nickel-based superalloy with microcrystalline alumina abrasive wheels”, Chinese Journal of Aeronautics, 34(2): 576–585, (2021).
- [7] Bennett J. M., “Recent developments in surface roughness characterization”, Meas Sci Technol, 3(12): 1119, (1992).
- [8] Sada S. O., “Improving the predictive accuracy of artificial neural network (ANN) approach in a mild steel turning operation”, The International Journal of Advanced Manufacturing Technology, 112: 2389–2398, (2021).
- [9] Suresh R., Joshi A. G., and Manjaiah M., “Experimental investigation on tool wear in AISI H13 die steel turning using RSM and ANN methods”, Arabian Journal Science Engineering, 46(3): 2311–2325, (2021).
- [10] Elsheikh A. H. et al., “Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of Inconel 718”, Journal of Materials Research and Technology, 15: 3622–3634, (2021).
- [11] Moussaoui K., Mousseigne M., Senatore J., and Chieragatti R., “The effect of roughness and residual stresses on fatigue life time of an alloy of titanium”, The International Journal of Advanced Manufacturing Technology, 78: 557–563, (2015).
- [12] Dubey V., Sharma A. K., and Pimenov D. Y., “Prediction of surface roughness using machine learning approach in MQL turning of AISI 304 steel by varying nanoparticle size in the cutting fluid”, Lubricants, 10(5): 81, (2022).
- [13] Dilipak H., Asal Ö., Yalçınkaya A., and Ünal Ş., “Minimum Miktarda Yağlama Tekniği ile Frezeleme İşleminde Yüzey Pürüzlülüğünün Anfis ile Modellenmesi,” International Journal of Innovative Engineering Applications, 5(2): 162–170, (2021).
- [14] Gürbüz H. and E. Y. Gönülaçar, “Farklı kesme parametreleri ve MQL debilerinde elde edilen deneysel değerlerin S/N oranları ve YSA ile analizi,” Politeknik Dergisi, 24(3): 1093–1107, (2021).
- [15] Seguy S., Dessein G., and Arnaud L., “Surface roughness variation of thin wall milling, related to modal interactions”, International Journal of Machine Tools and Manufacture, 48(3): 261–274, (2008).
- [16] Risbood K. A., Dixit U. S., and Sahasrabudhe A. D., “Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process”, Journal of Materials Processing Technology, 132(1-3): 203–214, (2003).
- [17] Özel T. and Karpat Y., “Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks”, International Journal of Machine Tools and Manufacture, 45(4): 467–479, (2005).
- [18] Lakhdar B., Athmane Y. M., Salim B., and Haddad A., “Modelling and optimization of machining parameters during hardened steel AISID3 turning using RSM, ANN and DFA techniques: comparative study”, Journal of Mechanical Engineering and Sciences, 14(2): 6835–6847, (2020).
- [19] Muthuram N. and Frank F. C., “Optimization of machining parameters using artificial Intelligence techniques”, Materials Today Proceedings, 46: 8097–8102, (2021).
- [20] Gürbüz H., Sözen A., and Şeker U., “Tornalama Operasyonlarında Farklı Talaş Kırıcı Formlarının Yüzey Pürüzlülüğü Üzerinde Etkilerinin Yapay Sinir Ağları Kullanılarak Modellenmesi,” Politeknik Dergisi, 19(1): 71–83, (2016).
- [21] Senthilkumar N., Tamizharasan T., and Anandakrishnan V., “An hybrid Taguchi-grey relational technique and cuckoo search algorithm for multi-criteria optimization in hard turning of AISI D3 steel”, Journal of Advanced Engineering Research, 1(1): 16–31, (2014).
- [22] Chandrasekaran M. and Tamang S., “ANN–PSO integrated optimization methodology for intelligent control of MMC machining”, Journal of The Institution of Engineers (India): Series C, 98: 395–401, (2017).
- [23] Abbas A. T., Pimenov D. Y., Erdakov I. N., Taha M. A., Soliman M. S., and El Rayes M. M., “ANN surface roughness optimization of AZ61 magnesium alloy finish turning: Minimum machining times at prime machining costs”, Materials, 11(5): 808, (2018).
- [24] Hoang T. D., Nguyen Q. V., Nguyen V. C., and Tran N. H., “Self-adjusting on-line cutting condition for high-speed milling process”, Journal of Mechanical Science and Technology, 34: 3335–3343, (2020).
- [25] Tranmer M. and Elliot M., “Multiple linear regression”, The Cathie Marsh Centre for Census and Survey Research (CCSR), 5(5), 1–5, (2008).
- [26] Özdemir V., “Determination of Turkey’s Carbonization Index Based on Basic Energy Indicators by Artificial Neural Networks,” Journal of the Faculty of Engineering and Architecture of Gazi University, 26(1): 9-15, (2011).
- [27] Rosenblatt F., “Principles of neurodynamics: Perceptrons and the theory of brain mechanisms”, Cornell Aeronautical Lab Inc., Washington DC, (1962).