Research Article
BibTex RIS Cite

Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1475123

Abstract

The present study deals with combustion characteristics of methane and coke oven gas for various swirl numbers in a highly internal recirculative combustor under colorless distributed combustion conditions. In order to achieve that, the fuels have been consumed numerically in the combustor at various oxygen concentrations by using a N2 diluent to reduce oxygen concentration in the air. During the modelings, swirl number has been changed from s=0 to s=1 in an interval of 0.2. In this way, swirler effects on its combustion characteristics have been studied. In order to perform all modelings, the k-ε realizable turbulence model, the PDF/Mixture Fraction combustion model, and P-1 radiation model have been used. The results showed that decrease in oxygen concentration caused a more uniform temperature field in the combustor along with ultra-low NOx emissions. When the oxygen rate was reduced from 21% to 15%, a 9% decrease in the highest temperature reached in the combustion chamber was observed. In addition, a 99% decrease in nitrogen oxide formation was observed. This has been achieved with internal and external (colorless distributed regime) entrainments. In addition to these, it is concluded that the swirler has affected that combustion took place faster mostly because of better air-fuel mixture in the combustor. It has been observed that the air and fuel mixture occurs faster in the swirler effect, which has effects on the flow characteristics in the combustion chamber and has positive effects on recirculation, which can help to obtain conditions close to distributed combustion conditions in general. For 21% oxygen ratio, nitrogen oxide formation could be reduced by approximately 50% by increasing the swirl number from 0 to 1.

References

  • [1] Arghode V.K. and Gupta A.K., “Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion”, Applied Energy, 87: 1631-40, (2010).
  • [2] Arghode V.K. and Gupta A.K., “Investigation of forward flow distributed combustion for gas turbine application”, Applied Energy, 88(1): 29-40, (2011).
  • [3] Arghode V.K., Gupta A.K. and Bryden M.K., “High intensity colorless distributed combustion for ultra low emissions and enhanced performance”, Applied Energy, 92: 822-830, (2012).
  • [4] Feser J.S., Karyeyen S. and Gupta A.K., “Flowfield impact on distributed combustion in a swirl assisted burner”, Fuel, 263: 116643, (2020).
  • [5] Ilbas A., Ozdemir M.B. and Karyeyen S., “Investigation of colorless distributed combustion regime using a high internal recirculative combustor”, International Journal of Hydrogen Energy, 47(24): 12338-12353, (2022).
  • [6] Karyeyen S., Feser J.S. and Gupta A.K., “Swirl assisted distributed combustion behaviour using hydrogen-rich gaseous fuels”, Applied Energy, 251: 113354, (2019).
  • [7] Karyeyen S. and Ilbas M., “Application of distributed combustion technique to hydrogen-rich coal gases: A numerical investigation”, International Journal of Hydrogen Energy, 45(5): 3641-3650, (2020).
  • [8] Karyeyen S., Feser J.S. and Gupta A.K., “Hydrogen concentration effects on swirl-stabilized oxy-colorless distributed combustion”. Fuel, 253: 772-780, (2019).
  • [9] Karyeyen S., Feser J.S., Jahoda E. and Gupta A.K., “Development of distributed combustion index from a swirl-assisted burner”, Applied Energy, 268: 114967, (2023).
  • [10] Khalil A.E.E. and Gupta A.K., “Swirling distributed combustion for clean energy conversion in gas turbine applications”, Applied Energy, 88(11): 3685-3693, (2011).
  • [11] Khalil A.E.E. and Gupta A.K., “Distributed swirl combustion for gas turbine application”, Applied Energy, 88: 4898–4907, (2011).
  • [12] Khalil A.E.E. and Gupta A.K., “Thermal field investigation under distributed combustion conditions”, Applied Energy, 160: 477–488, (2015).
  • [13] Khalil A.E.E. and Gupta A.K., “Impact of Internal Entrainment on High Intensity Distributed Combustion”, Applied Energy, 156: 241-250, (2015).
  • [14] Khalil A.E.E. and Gupta A.K., “Fuel Property Effects on Distributed Combustion”, Fuel, 171: 116-124, (2016).
  • [15] Khalil A.E.E. and Gupta A.K., “Towards colorless distributed combustion regime”, Fuel, 195: 113-122, (2017).
  • [16] Lammel O., Schutz H., Schmitz G., Luckerath R., Stohr M., Noll B., Aigner M., Hase M. And Krebs W., “FLOX Combustion at High Power Density and High Flame Temperature”, Journal of Engineering for Gas Turbines and Power, 132(12): 121503, (2010).
  • [17] Roy, R. and Gupta, A.K., “Flame structure and emission signature in distributed combustion”, Fuel, 262: 116460, (2020).
  • [18] Roy, R. and Gupta, A.K., “Data-driven prediction of flame temperature and pollutant emission in distributed combustion”, Applied Energy, 310: 118502, (2022).
  • [19] Roy, R. and Gupta, A.K., “Performance enhancement of swirl-assisted distributed combustion with hydrogen-enriched methane”, Applied Energy, 338: 120919, (2023).
  • [20] U.S. Energy Information Administration. International Energy Outlook 2016. Report Number: DOE/EIA-0484, U.S. Department of Energy, Washington DC, USA (2016).
  • [21] Wang Z., Feser J.S., Lei T. and Gupta A.K., “Performance and emissions of camelina oil derived jet fuel blends under distributed combustion condition”, Fuel, 271: 117685, (2020).

Girdap Üreticinin Dağıtılmış Rejimde Metan ve Kok Fırını Gazı Yanma Özelliklerine Olan Etkileri

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1475123

Abstract

Bu çalışma, renksiz dağıtılmış yanma koşulları altında yüksek düzeyde iç resirkülasyonlu bir yanma odasında çeşitli girdap sayıları için metan ve kok fırını gazının yanma özelliklerini ele almaktadır. Bunu başarmak için, havadaki oksijen konsantrasyonunu azaltmak amacıyla N2 seyrelticisi kullanılarak yakıtlar yanma odasında çeşitli oksijen konsantrasyonlarında sayısal olarak tüketilmiştir. Modellemeler sırasında girdap sayısı 0.2 aralıklarla s=0'dan s=1'e kadar değiştirilmiştir. Bu şekilde yanma özellikleri üzerindeki girdap etkileri incelenmiştir. Tüm modellemelerin gerçekleştirilebilmesi için k-ε Realizable türbülans modeli, PDF/Mixture Fraction yanma modeli ve P-1 radyasyon modeli kullanılmıştır. Sonuçlar, oksijen konsantrasyonundaki azalmanın, ultra düşük NOx emisyonlarıyla birlikte yanma odasında daha düzgün bir sıcaklık alanına neden olduğunu ortaya koymuştur. Oksijen oranının %21’den %15’e düşürülmesi ile birlikte yanma odasını içerisinde ulaşılan en yüksek sıcaklıkta %9 oranında düşüş gözlemlenmiştir. Bununla birlikte azot oksit oluşumunda %99 oranında düşüş gözlemlenmiştir. Bu durum, iç ve dış (renksiz dağıtılmış rejim) resirkülasyonun birlikte olmasıyla başarılmıştır. Bunlara ek olarak, yanma odasındaki hava-yakıt karışımının daha iyi olması nedeniyle, girdap üretici kullanımının yanmanın daha hızlı gerçekleşmesini etkilediği sonucuna varılmıştır. Girdap oluşturucu etkisinde hava ve yakıt karışımının daha hızlı gerçekleştiği, bunun yanma odası içerisinde akış karakteristiği üzerine etkileri olduğu ve genel olarak dağıtılmış yanma şartlarına yakın koşulların elde edilmesine yardımcı olabilecek şekilde resirkülasyona olumlu etkileri olduğu gözlemlenmiştir. %21 oksijen oranı için, girdap sayısının 0’dan 1’e çıkarılması ile azot oksit oluşumu yaklaşık %50 oranında düşürülebilmiştir.

References

  • [1] Arghode V.K. and Gupta A.K., “Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion”, Applied Energy, 87: 1631-40, (2010).
  • [2] Arghode V.K. and Gupta A.K., “Investigation of forward flow distributed combustion for gas turbine application”, Applied Energy, 88(1): 29-40, (2011).
  • [3] Arghode V.K., Gupta A.K. and Bryden M.K., “High intensity colorless distributed combustion for ultra low emissions and enhanced performance”, Applied Energy, 92: 822-830, (2012).
  • [4] Feser J.S., Karyeyen S. and Gupta A.K., “Flowfield impact on distributed combustion in a swirl assisted burner”, Fuel, 263: 116643, (2020).
  • [5] Ilbas A., Ozdemir M.B. and Karyeyen S., “Investigation of colorless distributed combustion regime using a high internal recirculative combustor”, International Journal of Hydrogen Energy, 47(24): 12338-12353, (2022).
  • [6] Karyeyen S., Feser J.S. and Gupta A.K., “Swirl assisted distributed combustion behaviour using hydrogen-rich gaseous fuels”, Applied Energy, 251: 113354, (2019).
  • [7] Karyeyen S. and Ilbas M., “Application of distributed combustion technique to hydrogen-rich coal gases: A numerical investigation”, International Journal of Hydrogen Energy, 45(5): 3641-3650, (2020).
  • [8] Karyeyen S., Feser J.S. and Gupta A.K., “Hydrogen concentration effects on swirl-stabilized oxy-colorless distributed combustion”. Fuel, 253: 772-780, (2019).
  • [9] Karyeyen S., Feser J.S., Jahoda E. and Gupta A.K., “Development of distributed combustion index from a swirl-assisted burner”, Applied Energy, 268: 114967, (2023).
  • [10] Khalil A.E.E. and Gupta A.K., “Swirling distributed combustion for clean energy conversion in gas turbine applications”, Applied Energy, 88(11): 3685-3693, (2011).
  • [11] Khalil A.E.E. and Gupta A.K., “Distributed swirl combustion for gas turbine application”, Applied Energy, 88: 4898–4907, (2011).
  • [12] Khalil A.E.E. and Gupta A.K., “Thermal field investigation under distributed combustion conditions”, Applied Energy, 160: 477–488, (2015).
  • [13] Khalil A.E.E. and Gupta A.K., “Impact of Internal Entrainment on High Intensity Distributed Combustion”, Applied Energy, 156: 241-250, (2015).
  • [14] Khalil A.E.E. and Gupta A.K., “Fuel Property Effects on Distributed Combustion”, Fuel, 171: 116-124, (2016).
  • [15] Khalil A.E.E. and Gupta A.K., “Towards colorless distributed combustion regime”, Fuel, 195: 113-122, (2017).
  • [16] Lammel O., Schutz H., Schmitz G., Luckerath R., Stohr M., Noll B., Aigner M., Hase M. And Krebs W., “FLOX Combustion at High Power Density and High Flame Temperature”, Journal of Engineering for Gas Turbines and Power, 132(12): 121503, (2010).
  • [17] Roy, R. and Gupta, A.K., “Flame structure and emission signature in distributed combustion”, Fuel, 262: 116460, (2020).
  • [18] Roy, R. and Gupta, A.K., “Data-driven prediction of flame temperature and pollutant emission in distributed combustion”, Applied Energy, 310: 118502, (2022).
  • [19] Roy, R. and Gupta, A.K., “Performance enhancement of swirl-assisted distributed combustion with hydrogen-enriched methane”, Applied Energy, 338: 120919, (2023).
  • [20] U.S. Energy Information Administration. International Energy Outlook 2016. Report Number: DOE/EIA-0484, U.S. Department of Energy, Washington DC, USA (2016).
  • [21] Wang Z., Feser J.S., Lei T. and Gupta A.K., “Performance and emissions of camelina oil derived jet fuel blends under distributed combustion condition”, Fuel, 271: 117685, (2020).
There are 21 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Research Article
Authors

Alparslan Ilbas 0000-0002-4140-3522

Mustafa Bahadır Özdemir 0000-0001-7801-9367

Serhat Karyeyen 0000-0002-8383-5518

Early Pub Date August 19, 2024
Publication Date
Submission Date April 30, 2024
Acceptance Date July 4, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Ilbas, A., Özdemir, M. B., & Karyeyen, S. (2024). Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1475123
AMA Ilbas A, Özdemir MB, Karyeyen S. Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics. Politeknik Dergisi. Published online August 1, 2024:1-1. doi:10.2339/politeknik.1475123
Chicago Ilbas, Alparslan, Mustafa Bahadır Özdemir, and Serhat Karyeyen. “Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics”. Politeknik Dergisi, August (August 2024), 1-1. https://doi.org/10.2339/politeknik.1475123.
EndNote Ilbas A, Özdemir MB, Karyeyen S (August 1, 2024) Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics. Politeknik Dergisi 1–1.
IEEE A. Ilbas, M. B. Özdemir, and S. Karyeyen, “Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics”, Politeknik Dergisi, pp. 1–1, August 2024, doi: 10.2339/politeknik.1475123.
ISNAD Ilbas, Alparslan et al. “Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics”. Politeknik Dergisi. August 2024. 1-1. https://doi.org/10.2339/politeknik.1475123.
JAMA Ilbas A, Özdemir MB, Karyeyen S. Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics. Politeknik Dergisi. 2024;:1–1.
MLA Ilbas, Alparslan et al. “Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1475123.
Vancouver Ilbas A, Özdemir MB, Karyeyen S. Distributed Regime and Swirler Effects on Methane and Coke Oven Gas Combustion Characteristics. Politeknik Dergisi. 2024:1-.