Research Article
BibTex RIS Cite

Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1476181

Abstract

The significance of both cost and production speed has gained importance within the industrial sector. During the installation of industrial facilities, selection of materials with ideal properties is crucial for achieving the required system performance. Especially, when working with moving equipment, the speed required by the system as well as the costs of the necessary equipment are taken into account. This study compares the operational performances of S7-300, S7-400, S7-1200 and S7-1500 series PLCs with four different CPUs for the hydraulic proportional valve control system in P, PI, PD and PID control modes in Kardemir Rail and Profile Rolling Mill. Performance comparisons were made based on settling time, rise time, delay time and positive and negative maximum overshoots. The results of the study were illustrated using graphs and tables and were further analyzed based on data thus obtained. Based on these analysis results, suggestions were made regarding the type of PLC that would be appropriate to be chosen for the system.

References

  • [1] Webb JW, Reis RA., “Programmable logic controllers: Principles and applications”, Prentice Hall PTR, (2002).
  • [2] Kamel K and Kamel E., “Programmable logic controllers: Industrial control”, McGraw Hill Professional, (2013).
  • [3] Boggs MS, Fulton TL, Hausman S, McNabb G, McNutt A, Stimmel SW., “Inventors; Siemens Energy, Automation Inc, assignee. Programmable logic controller customized function call method, system and apparatus”, United States patent US 6, 904, 471. (2005).
  • [4]https://cache.industry.siemens.com/dl/files/465/36932465/att_106119/v1/s71200_system_manual_en-US_en-US.pdf
  • [5] Vadi S, Bayındır R, Toplar Y and Çolak İ. “Induction motor control system with a Programmable Logic Controller (PLC) and Profibus communication for industrial plants—An experimental setup”. ISA Transactions, 122: 459–471, (2022).
  • [6] Patel D.M., Shah A.K., “FPGA-PLC-based multi-channel position measurement system”, ISA Transactions 115: 234–249, (2021).
  • [7] Bayındır R., and Çetinceviz Y. “A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants—An experimental setup”, ISA Transactions, 50: 321–328, (2011).
  • [8] Polat Ö., Bulut M.C., Dönmez İ., Özsoy K. “PLC ve SCADA entegrasyonlu hidroelektrik santralin prototip tasarımı, imalatı ve 3B yazıcı ile türbin üretimi”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8: 253-267, (2021).
  • [9] Məmmədli M., Kabaoğlu R.O., “Simultaneous monitoring and control of automation systems with SCADA based PLC”, BSEU Journal of Science, 8(1): 336-344, (2020).
  • [10] Üstünsoy F. ve Sayan H.H., “PLC destekli SCADA ile enerji yönetimi için örnek laboratuvar çalışması”, Politeknik Dergisi, 21(4): 1007-1014, (2018).
  • [11] Duymazlar O. and Engin D., “Design, application and analysis of an OPC-based SCADA system”, Journal of Polytechnic, 26(2): 991-999, (2023).
  • [12] Vanlı M.F. and Akdaş D. “Eti Maden Bigadiç Bor İşletme Müdürlüğünde bulunan 7 tesise ait enerji izleme otomasyonu sisteminin Plc ve Scada ile tasarımı”, BAUN Fen Bil. Enst. Dergisi, 26(1): 149-162, (2024).
  • [13] Aydoğdu Ö. and Çatkafa A. “Bir hidrolik derin çekme pres makinesinin PLC tabanlı bulanık mantık kontrolü ve endüstri 4.0 uygulaması”, Konya Mühendislik Bilimleri Dergisi, 7(3): 573-584, (2019).
  • [14] Öztürk S. and Kuncan F. “Linear delta robot controlled with PLC based on image processing”, Koc. J. Sci. Eng., 5(2): 150-158, (2022).
  • [15] Ayten K.K. and Kurnaz O. “Real-time implementation of image based PLC control for a robotic platform”, Balkan Journal of Electrical & Computer Engineering, 7(1), (2019).
  • [16] Küçükatay O., Köse E. and Yıldız Z. “PLC kontrollü kurutucu konveyör tasarımı”, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(1): 249-260, (2021).
  • [17] Şengül Ö., Öztürk S., and Kuncan M. “Color Based Object Separation in Conveyor Belt Using PLC”, Avrupa Bilim ve Teknoloji Dergisi, 18: 401-412. (2020).
  • [18] Briones O., Alarcón R., Rojas A.J. and Sbarbaro D. “Tuning Generalized Predictive PI controllers for process control applications”, ISA Transactions, 119: 184–195, (2022).
  • [19] Lawrence N.P., Forbes M.G., Loewen P.D., McClement D.G., Backström J.U and Gopaluni R.B. “Deep reinforcement learning with shallow controllers: An experimental application to PID tuning”, Control Engineering Practice, 121: 105046, (2022).
  • [20] Uysal A., Gokay S., Soylu E., Soylu T. and Çaşka S. “Fuzzy proportional-integral speed control of switched reluctance motor with MATLAB/Simulink and programmable logic controller communication”, Measurement and Control, 52(7-8): 1137–1144, (2019).
  • [21] Dettori S., Iannino V,. Colla V. and Signorini A. “An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications”, Applied Energy, 227: 655–664, (2018).
  • [22] Abdullah J.H. Al Gizi, M.W. Mustafa, Kaml M.A. A.l Zaidi, Mahmoud K.J. and Al-Zaidi. “Integrated PLC-fuzzy PID Simulink implemented AVR system”. Electrical Power and Energy Systems, 69: 313–326 , (2015).
  • [23] Patil SR, Agashe SD. “Auto tuned PID and neural network predictive controller for a flow loop pilot plant”. Materials Today: Proceedings 72, 754–760, (2023).
  • [24] Ulu F.M. and Altınkaya H. “Design, control and automation of MHPP - An experimental setup”, GU J Sci, Part C, 10(4): 1083-1097, (2022).
  • [25]https://support.industry.siemens.com/cs/document/100746401/pid-control-with-pid_compact-for-simatic- s7-1200-s7-1500?dti=0&lc=en-WW

Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1476181

Abstract

The significance of both cost and production speed has gained importance within the industrial sector. During the installation of industrial facilities, selection of materials with ideal properties is crucial for achieving the required system performance. Especially, when working with moving equipment, the speed required by the system as well as the costs of the necessary equipment are taken into account. This study compares the operational performances of S7-300, S7-400, S7-1200 and S7-1500 series PLCs with four different CPUs for the hydraulic proportional valve control system in P, PI, PD and PID control modes in Kardemir Rail and Profile Rolling Mill. Performance comparisons were made based on settling time, rise time, delay time and positive and negative maximum overshoots. The results of the study were illustrated using graphs and tables and were further analyzed based on data thus obtained. Based on these analysis results, suggestions were made regarding the type of PLC that would be appropriate to be chosen for the system.

References

  • [1] Webb JW, Reis RA., “Programmable logic controllers: Principles and applications”, Prentice Hall PTR, (2002).
  • [2] Kamel K and Kamel E., “Programmable logic controllers: Industrial control”, McGraw Hill Professional, (2013).
  • [3] Boggs MS, Fulton TL, Hausman S, McNabb G, McNutt A, Stimmel SW., “Inventors; Siemens Energy, Automation Inc, assignee. Programmable logic controller customized function call method, system and apparatus”, United States patent US 6, 904, 471. (2005).
  • [4]https://cache.industry.siemens.com/dl/files/465/36932465/att_106119/v1/s71200_system_manual_en-US_en-US.pdf
  • [5] Vadi S, Bayındır R, Toplar Y and Çolak İ. “Induction motor control system with a Programmable Logic Controller (PLC) and Profibus communication for industrial plants—An experimental setup”. ISA Transactions, 122: 459–471, (2022).
  • [6] Patel D.M., Shah A.K., “FPGA-PLC-based multi-channel position measurement system”, ISA Transactions 115: 234–249, (2021).
  • [7] Bayındır R., and Çetinceviz Y. “A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants—An experimental setup”, ISA Transactions, 50: 321–328, (2011).
  • [8] Polat Ö., Bulut M.C., Dönmez İ., Özsoy K. “PLC ve SCADA entegrasyonlu hidroelektrik santralin prototip tasarımı, imalatı ve 3B yazıcı ile türbin üretimi”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8: 253-267, (2021).
  • [9] Məmmədli M., Kabaoğlu R.O., “Simultaneous monitoring and control of automation systems with SCADA based PLC”, BSEU Journal of Science, 8(1): 336-344, (2020).
  • [10] Üstünsoy F. ve Sayan H.H., “PLC destekli SCADA ile enerji yönetimi için örnek laboratuvar çalışması”, Politeknik Dergisi, 21(4): 1007-1014, (2018).
  • [11] Duymazlar O. and Engin D., “Design, application and analysis of an OPC-based SCADA system”, Journal of Polytechnic, 26(2): 991-999, (2023).
  • [12] Vanlı M.F. and Akdaş D. “Eti Maden Bigadiç Bor İşletme Müdürlüğünde bulunan 7 tesise ait enerji izleme otomasyonu sisteminin Plc ve Scada ile tasarımı”, BAUN Fen Bil. Enst. Dergisi, 26(1): 149-162, (2024).
  • [13] Aydoğdu Ö. and Çatkafa A. “Bir hidrolik derin çekme pres makinesinin PLC tabanlı bulanık mantık kontrolü ve endüstri 4.0 uygulaması”, Konya Mühendislik Bilimleri Dergisi, 7(3): 573-584, (2019).
  • [14] Öztürk S. and Kuncan F. “Linear delta robot controlled with PLC based on image processing”, Koc. J. Sci. Eng., 5(2): 150-158, (2022).
  • [15] Ayten K.K. and Kurnaz O. “Real-time implementation of image based PLC control for a robotic platform”, Balkan Journal of Electrical & Computer Engineering, 7(1), (2019).
  • [16] Küçükatay O., Köse E. and Yıldız Z. “PLC kontrollü kurutucu konveyör tasarımı”, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(1): 249-260, (2021).
  • [17] Şengül Ö., Öztürk S., and Kuncan M. “Color Based Object Separation in Conveyor Belt Using PLC”, Avrupa Bilim ve Teknoloji Dergisi, 18: 401-412. (2020).
  • [18] Briones O., Alarcón R., Rojas A.J. and Sbarbaro D. “Tuning Generalized Predictive PI controllers for process control applications”, ISA Transactions, 119: 184–195, (2022).
  • [19] Lawrence N.P., Forbes M.G., Loewen P.D., McClement D.G., Backström J.U and Gopaluni R.B. “Deep reinforcement learning with shallow controllers: An experimental application to PID tuning”, Control Engineering Practice, 121: 105046, (2022).
  • [20] Uysal A., Gokay S., Soylu E., Soylu T. and Çaşka S. “Fuzzy proportional-integral speed control of switched reluctance motor with MATLAB/Simulink and programmable logic controller communication”, Measurement and Control, 52(7-8): 1137–1144, (2019).
  • [21] Dettori S., Iannino V,. Colla V. and Signorini A. “An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications”, Applied Energy, 227: 655–664, (2018).
  • [22] Abdullah J.H. Al Gizi, M.W. Mustafa, Kaml M.A. A.l Zaidi, Mahmoud K.J. and Al-Zaidi. “Integrated PLC-fuzzy PID Simulink implemented AVR system”. Electrical Power and Energy Systems, 69: 313–326 , (2015).
  • [23] Patil SR, Agashe SD. “Auto tuned PID and neural network predictive controller for a flow loop pilot plant”. Materials Today: Proceedings 72, 754–760, (2023).
  • [24] Ulu F.M. and Altınkaya H. “Design, control and automation of MHPP - An experimental setup”, GU J Sci, Part C, 10(4): 1083-1097, (2022).
  • [25]https://support.industry.siemens.com/cs/document/100746401/pid-control-with-pid_compact-for-simatic- s7-1200-s7-1500?dti=0&lc=en-WW
There are 25 citations in total.

Details

Primary Language English
Subjects Control Engineering, Automation Engineering
Journal Section Research Article
Authors

Hüseyin Altınkaya 0000-0003-1956-1695

Tanju Kocakaya 0000-0001-9381-8714

Early Pub Date September 10, 2024
Publication Date
Submission Date April 30, 2024
Acceptance Date July 2, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Altınkaya, H., & Kocakaya, T. (2024). Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1476181
AMA Altınkaya H, Kocakaya T. Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup. Politeknik Dergisi. Published online September 1, 2024:1-1. doi:10.2339/politeknik.1476181
Chicago Altınkaya, Hüseyin, and Tanju Kocakaya. “Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup”. Politeknik Dergisi, September (September 2024), 1-1. https://doi.org/10.2339/politeknik.1476181.
EndNote Altınkaya H, Kocakaya T (September 1, 2024) Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup. Politeknik Dergisi 1–1.
IEEE H. Altınkaya and T. Kocakaya, “Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup”, Politeknik Dergisi, pp. 1–1, September 2024, doi: 10.2339/politeknik.1476181.
ISNAD Altınkaya, Hüseyin - Kocakaya, Tanju. “Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup”. Politeknik Dergisi. September 2024. 1-1. https://doi.org/10.2339/politeknik.1476181.
JAMA Altınkaya H, Kocakaya T. Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup. Politeknik Dergisi. 2024;:1–1.
MLA Altınkaya, Hüseyin and Tanju Kocakaya. “Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1476181.
Vancouver Altınkaya H, Kocakaya T. Comparison of PID Control Performances of Different PLC Series in a Hydraulic Proportional Valve System-An Experimental Setup. Politeknik Dergisi. 2024:1-.