Research Article
BibTex RIS Cite

Enabling the electrospinnability of PS/PVC/Bi2O3 nanocomposite fibers via wet electrospinning

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1484990

Abstract

It has been well-known that process, solution and environmental parameters have significant effects on characteristics of electrospun mats. Electrospinning is a promising technique for manufacturing of functional, lightweight and novel surfaces due to producibility of fibrous mats from polymer solutions loaded with various additives. In this study, Bi2O3 was incorporated into binary polymer solutions prepared with polymers having high and moderate shielding efficiency (PS and PVC, respectively) and their appropriate solvents. The characterization of electrospun mats showed that electrospinnability of prepared solution was possible with wet electrospinning at identical process, solution and environmental conditions. It was noticed that the average fiber diameter was 979.18 nm, thicker nanofibrous mats were fabricated and a few bead formation was observed in wet electrospun mats. But bead-dominant structure was obtained in dry electrospun mats despite of finer average fiber diameter (271.22 nm). Similar crystalline structure and no distinct bond occurence was observed in wet and dry electrospun nanocomposite mats. The average mat thickness of wet electrospun mats was approximately 65 times higher than dry electrospun mat. In wet electrospinning, use of liquid in collector promoted surface unevenness, decreased beading formation, facilitated fiber-to-fiber interaction and influenced pore distribution positively due to high surface tension of distilled water.

Ethical Statement

The author of this article declares that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

References

  • [1] Liu, W., Huang, C. & Jin, X. “Electrospinning of grooved polystyrene fibers: effect of solvent systems”, Nanoscale Research Letters, 10: 237, (2015).
  • [2] Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I.S. & Bechelany, M. “Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications”, Applied Materials Today, 17: 1–35, (2019).
  • [3] Lin, W., Chen, M., Qu, T., Li, J. & Man, Y. “Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(4): 1311–1321, (2020).
  • [4] Rahmati, M., Mills, D.K., Urbanska, A.M., Saeb, M.R., Venugopal, J.R., Ramakrishna, S. & Mozafari, M. “Electrospinning for tissue engineering applications”, Progress in Materials Science, 117: 100721, (2021).
  • [5] San Keskin, N.O. & Dinç, S.K. “Electrospinning techniques for encapsulation”, In: Micro- and Nano-containers for Smart Applications. Composites Science and Technology, Springer, Singapore, (2022).
  • [6] Kabay, G., Demirci, C., Kaleli Can, G., A. E. Meydan, A.E., Daşan, B.G. & Mutlu, M. “A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior”, International Journal of Biological Macromolecules, 114: 989–997, (2018).
  • [7] Nergis, F.B., Aral Yılmaz, N. & Pala Avcı, N. “The effect of polymer concentration on coaxial electrospinning of PVP/PCL core-sheath nanofibers”, Journal of Polytechnic, 1-1, (2023).
  • [8] Dos Santos, D.M., Correa, D.S., Medeiros, E.S., Oliveira, J.E. & Mattoso, L.H.C. “Advances in functional polymer nanofibers: from spinning fabrication techniques to recent biomedical applications”, ACS Applied Materials Interfaces, 12(41): 45673-45701, (2020).
  • [9] Fang, J., Wang, H., Niu, H. & Wang, X. “Evolution of fiber morphology during electrospinning”, Journal of Applied Polymer Science, 118: 2553-2561, (2010).
  • [10] Taskin, M.B., Klausen, L.H., Dong, M. & Chen, M. “Emerging wet electrohydrodynamic approaches for versatile bioactive 3D interfaces”, Nano Research, 13(2): 315–327, (2020).
  • [11] Mejía Suaza, M., Moncada, M. & Hurtado Henao, Y. “Wet electrospinning and its applications: a review”, TecnoLógicas, 25 (54): 1-26, (2022).
  • [12] Puppi, D. & Chiellini, F. “Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds”, Polymer International, 66(12): 1690–1696, (2017).
  • [13] Maio, A., Gammino, M., Gulino, E.F., Megna, B., Fara, P. & Scaffaro, R. “Rapid one-step fabrication of graphene oxide-decorated polycaprolactone three-dimensional templates for water treatment”, ACS Applied Polymer Materials, 2(11): 4993–5005, (2020).
  • [14] Jin, S., Chen, Z., Xin, B., Xi, T. & Meng, N. “An investigation on the comparison of wet spinning and electrospinning: Experimentation and simulation”, Fibers and Polymers, 18(6): 1160-1170, (2017).
  • [15] Kostakova, E., Lukas, D., Pokorny, P. & Seps, M. “Study of polycaprolactone wet electrospinning process”, eXPRESS Polymer Letters, 8(8): 554-564, (2014).
  • [16] Röcker, T. & Greiner, A. "Electrospinning of poly-L-lactide nanofibers on liquid reservoir collectors", e-Polymers, 8(1): 111, (2008).
  • [17] Rosário, J.D.S., Moreira, F.H., Rosa, L.H.F., Guerra, W. & Silva-Caldeira, P.P. “Biological activities of bismuth compounds: an overview of the new findings and the old challenges not yet overcome”, Molecules, 28(15): 5921, (2023).
  • [18] Abudayyak, M., Oztas, E., Arici, M. & Ozhan, G. “Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines” Chemosphere, 169(2017): 117-123, (2017).
  • [19] Wang, R., Li, H.& Sun, H. “Bismuth: Environmental pollution and health effects”, Encyclopedia of Environmental Health, Elsevier, London, (2019).
  • [20] Musa, F.H., Flayyih, A.O., Mahdi, W.K. & Abuzaid, Y.I.M. “Biosynthesis, characterization, and applications of bismuth oxide nanoparticles using aqueous extract of beta vulgaris”, Chemical Methodologies, 6(8): 620 – 628, (2022).
  • [21] Bedoya-Hincapie, C., Pinzón Cárdenas, M., Alfonso, E., Restrepo Parra, E. & Florez, J. “Physical-chemical properties of bismuth and bismuth oxides: synthesis, characterization and applications”, Dyna, 79(176): 139-148, (2012).
  • [22] Kashif, M., Muhammad, S., Ali, A., Ali, K., Khan, S., Zahoor, S. & Hamza, M. “Bismuth oxide nanoparticle fabrication and characterization for photocatalytic bromophenol blue degradation”, Journal of Xi’ab Shiyou University, 19(7): 521-544, (2023).
  • [23] Reddy, B., Seenappa, L., Manjunatha, H.C., Vidya, Y.S., Sridhar, K., Kumar, C. & Pasha, U. “Study of antimicrobial applications of Bismuth Oxide”, Materials Today: Proceedings, 57(9): 112-115, (2022).
  • [24] Guo, H., Chen, Y., Li, Y., Zhou, W., Xu, W., Pang, L., Fan, X. & Shaohua, J. “Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review”, Composites Part A: Applied Science and Manufacturing, 143(1): 106309, (2021).
  • [25] Wahyuni, F., Sakti, S.P., Santjojo, D.J.D.H. & Juswono, U.P. “Bismuth oxide filled polyester composites for X-ray radiation shielding applications”, Polish Journal of Environmental Studies, 31(4): 3985-3990, (2022).
  • [26] Ambika, M.R., Nagaih, N. & Suman, S.K. “Role of bismuth oxide as a reinforcer on gamma shielding ability of unstaturated polyester based polymer composites”, Journal of Applied Polymer Science, 134(13): 1-7, (2016).
  • [27] Hazritz, M., Munirah, H., Ramzun, J., Ramli, M., Zahirah, N. & Azman, N. “X-ray attenuation characterisation of electrospun Bi2O3/PVA and WO3/PVA nanofibre mats as potential X-ray shielding materials”, Applied Physics A, 124: 497, (2018).
  • [28] Ahmad, M., Mohd Zaki, U., Ramli, R.M., Abdul Rahman, A. & Noor Azman, N.Z. “Effect of combination of two different filler loadings of electrospun Bi2O3/WO3/ PVA nanofibre mats on X-ray attenuation study”, Chemical Physics Impact, 2: 100020, (2021).
  • [29] Jamil, M., Hazlan, M.H., Ramli, R.M. & Noor Azman, N.Z. “Study of electrospun PVA-based concentrations nanofibre filled with Bi2O3 or WO3 as potential x-ray shielding material”, Radiation Physics and Chemistry, 156: 272–282, (2019).
  • [30] Ivanov, V.S. “Radiation Chemistry of Polymers”, VSP Publishing, Wakefield, (1992).
  • [31] Huang, Z.M., Zhang, Y.Z., Kotaki, M. & Ramakrishna, S. “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Composites Science and Technology, 63: 2223–2253, (2003).
  • [32] Aygün, H.H. & Alma, M.H. "X-ray shielding performance and characterization of electrospun PVC/bismuth(III) oxide nanocomposites”, ChemistrySelect, 7: e202202118, (2022).
  • [33] Eda, G. & Shivkumar, S. “Bead structure variations during electrospinning of polystyrene”, Journal of Materials Science, 41: 5704–5708, (2006).
  • [34] Ge, C., Zheng, Y., Liu, K., Xin, B., Li, M. & Newton, M.A.A. “The formation mechanism of electrospun beaded fibers: experiment and simulation study”. AATCC Journal of Research, 10(1): 3-9, (2022).
  • [35] Kolahi, P., Shekarchizadeh, H. & Nasirpour, A. “Effect of combination of ultrasonic treatment and anti-solvent methods as a high-efficiency method of nanoparticle production on the tragacanth gum properties”, Journal of Food Science Technology, 59(3): 1131-1139, (2022).
  • [36] Wang, B., Wu, J., Yuan, Z.Y., Li, N. & Xiang, S. “Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure”, Ultrasonic Sonochemistry, 15: 334–338, (2008).
  • [37] Zhu, L., Zhu, W., Hu, X., Lin, Y., Machmudah, S., Wahyudiono, Kanda, H. & Goto, M. “PVP/Highly dispersed AgNPs nanofibers using ultrasonic-assisted electrospinning”, Polymers, 14(3): 599, (2022).
  • [38] Zhang, F., Si, Y., Yu, J. & Ding, B. “Electrospun porous engineered nanofiber materials: a versatile medium for energy and environmental applications”, Chemical Engineering Journal, 456(7822): 140989, (2022).
  • [39] Calhoun, M., Chowdhury, S.S., Nelson, T., Lannutti, J., Dupaix, R. & Winter, J. “Effect of Electrospun Fiber Mat Thickness and Support Method on Cell Morphology”, Nanomaterials, 9(4): 644, (2019).
  • [40] Bidhar, S., Goss, V., Chen, W.Y., Stanishevsky, A., Li, M., Kuksenko, S., Calviani, M. & Zwaska, R. “Production and qualification of an electrospun ceramic nanofiber material as a candidate future high power target”, Physical Review Accelerators and Beams, 24(12): 123001, (2021).
  • [41] Akduman, C. “Cellulose acetate and polyvinylidene fluoride nanofiber mats for N95 respirators”, Journal of Industrial Textiles, 50(8): 1239-1261, (2021).
  • [42] Opálková Šišková, A., Mosnáčková, K., Hrůza, J., Frajová, J., Opálek, A., Bučková, M., Kozics, K., Peer, P. & Eckstein Andicsová, A. “Electrospun poly(ethylene terephthalate)/silk fibroin composite for filtration application”, Polymers (Basel), 13(15): 2499, (2021).
  • [43] Yokoyama, Y., Hattori, S., Yoshikawa, C., Yasuda, Y., Koyama, H., Takato, T. & Kobayashi, H. “Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric”, Materials Letters, 63: 754–756, (2009).
  • [44] Sonseca, A., Sahay, R., Stepien, K., Bukala, J., Wcislek, A., McClain, A., Sobolewski, P., Sui, X., Puskas, J.E., Kohn, J., Wagner, H.D. & El Fray, M. “Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning”, Materials Science and Engineering C: Materials for Biological Applications, 108:110505, (2020).
  • [45] Bhardwaj, N. & Kundu, S.C.“Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances, 28(3): 325–347, (2010).
  • [46] Zulfi, A., Hartati, S., Nuraini, S., Noviyanto, A. & Nasir, M. “Electrospun nanofibers from waste polyvinyl chloride loaded silver and titanium dioxide for water treatment applications”, ACS Omega, 8(26): 23622–23632, (2023).
  • [47] Huang, C., Niu, H., Wu, J., Ke, Q., Mo, X. & Lin, T. “Needleless electrospinning of polystyrene fibers with an oriented surface line texture”, Journal of Nanomaterials, 2012(16): 1-7, (2012).
  • [48] Taha, T.A. “Optical properties of PVC/Al2O3 nanocomposite films”, Polymer Bulletin, 76: 903-918, (2018).
  • [49] Jabeen Faatima, M.J., Niveditha, C.V. & Sindhu, S. “α-Bi2O3 photoanode in DSSC and study of the electrode-electrolyte interface”, RSC Advances, 95(5): 78299-78305, (2015).
  • [50] Martin, D. M., Ahmed, M.M., Rodriguez, M., Garcia, M. A. & Faccini, M. “Aminated polyethylene terephthalate (PET) nanofibers for the selective removal of PB(II) from polluted water”, Materials (Basel), 10(12): 1352-1359, (2017).
  • [51] Esmaeili, E., Deymeh, F. & Rounaghi, S.A., “Synthesis and characterization of the electrospun fibers prepared from waste polymeric materials”, International Journal of Nano Dimensions, 8(2): 171-181, (2017).
  • [52] Liang, C.Y. & Krimm, S. “Infrared spectra of high polymers-VI. Polystyrene”, Journal of Polymer Science, 27(115): 241-254, (1958).
  • [53] Imhof, A. “Preparation and characterization fo titania-coated polystyrene spheres and hollow titania shells”, Langmuir, 17(12): 3579-3585, (2002).
  • [54] Da Silva, M.A., Vieira, M.G.A., Maçumoto, A.C.G. & Beppu, M.M. “Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid”, Polymer Testing, 30(5): 478-484, (2011).
  • [55] Ul-Hamid, A., Al-Soufi, K.Y., Al-Hadhrami, L. & Shemsi, A. “Failure investigation of an underground low voltage XLPE insulated cable”, Anti-Corrosion Methods and Materials, 62(5): 281-287, (2015).
  • [56] Ramesh, S., Leen, K.H., Kumutha, K. & Arof, A.K. “FTIR studies of PVC/PMMA blend based polymer electrolytes”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66: 1237-1242, (2007).
  • [57] Le Quoc, P., Uspenskaya, M., Solovieva, A., Strelnikova, I., Olekhnovich, R., Kunakova, A. & Sitnikova, V. “High-porosity polymer composite for removing oil spills in cold regions”, ACS Omega, 6: 20512-20521, (2021).
  • [58] Meena, P., Surela, A., Saini, J. & Chhachhia, L. “Millettia pinnata plant pod extract-mediated synthesis of Bi2O3 for degradation of water pollutants”, Environmental Science and Pollution Research, 29(3): 1-19, (2022).

Islak Elektroeğirme ile PS/PVC/Bi2O3 Nanokompozit Liflerin Elektriksel Eğirilebilirliğinin Sağlanması

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1484990

Abstract

İşlem, çözelti ve çevresel parametrelerin elektrospun yüzeylerin karakteristik özellikleri üzerinde önemli etkilerinin olduğu bilinmektedir. Elektrospinning yöntemi, çeşitli katkı maddeleri ile takviyelendirilmiş polimer çözeltilerden lifsi yüzey üretimine olanak tanıdığından dolayı, fonksiyonel, hafif ve yenilikçi yüzeylerin üretimi açısından gelecek vaad eden bir tekniktir. Bu çalışmada yüksek ve orta düzeyde radyasyon kalkanlama etkinliklerine sahip olan PS ve PVC polimeri ve bu polimerlerin çözücüleri ile hazırlanan ikili polimer çözeltisine Bi2O3 tozu ilave edilmiştir. Elektrospun yüzeylerin karakterizasyonu sonucunda, hazırlanan polimer çözeltisinin işlem, çözelti ve çevresel parametreler sabit tutularak ıslak elektroeğirme tekniği ile eğirilebilirliğinin mümkün olduğu gözlenmiştir. Islak elektroeğirme yöntemi ile üretilen yüzeylerde ortalama lif çapının 979.18 nm olduğu, daha kalın yüzey eldesinin sağlandığı ve sadece bir kaç boncuk oluşumunun var olduğu görülmüştür. Ancak kuru elektroeğirme tekniği ile üretilen yüzeylerde ortalama nanolif çapı daha ince (271.22 nm) olmasına karşın yoğun boncuk oluşumu tespit edilmiştir. Islak ve kuru elektroeğirme yöntemleri ile üretilen yüzeylerin benzer kristalin özellikler sergiledikleri tespit edilmiş ve moleküller arası yeni bağ oluşumuna rastlanmamıştır. Islak elektroeğirme tekniği ile üretilen yüzeylerin, kuru elektroeğirme ile üretilen yüzeylerden yaklaşık 65 kat daha kalın olduğu görülmüştür. Islak elektroeğirmede, kollektör içerisinde distile su gibi yüksek yüzey gerilimine sahip akışkan kullanımın üretilen yüzey düzgünsüzlüğünü geliştirdiği, boncuk oluşumunu azalttığı, lif-lif arası etkileşimi kolaylaştırdığı ve gözenek dağılımını olumlu yönde etkilediği tespit edilmiştir.

References

  • [1] Liu, W., Huang, C. & Jin, X. “Electrospinning of grooved polystyrene fibers: effect of solvent systems”, Nanoscale Research Letters, 10: 237, (2015).
  • [2] Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I.S. & Bechelany, M. “Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications”, Applied Materials Today, 17: 1–35, (2019).
  • [3] Lin, W., Chen, M., Qu, T., Li, J. & Man, Y. “Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(4): 1311–1321, (2020).
  • [4] Rahmati, M., Mills, D.K., Urbanska, A.M., Saeb, M.R., Venugopal, J.R., Ramakrishna, S. & Mozafari, M. “Electrospinning for tissue engineering applications”, Progress in Materials Science, 117: 100721, (2021).
  • [5] San Keskin, N.O. & Dinç, S.K. “Electrospinning techniques for encapsulation”, In: Micro- and Nano-containers for Smart Applications. Composites Science and Technology, Springer, Singapore, (2022).
  • [6] Kabay, G., Demirci, C., Kaleli Can, G., A. E. Meydan, A.E., Daşan, B.G. & Mutlu, M. “A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior”, International Journal of Biological Macromolecules, 114: 989–997, (2018).
  • [7] Nergis, F.B., Aral Yılmaz, N. & Pala Avcı, N. “The effect of polymer concentration on coaxial electrospinning of PVP/PCL core-sheath nanofibers”, Journal of Polytechnic, 1-1, (2023).
  • [8] Dos Santos, D.M., Correa, D.S., Medeiros, E.S., Oliveira, J.E. & Mattoso, L.H.C. “Advances in functional polymer nanofibers: from spinning fabrication techniques to recent biomedical applications”, ACS Applied Materials Interfaces, 12(41): 45673-45701, (2020).
  • [9] Fang, J., Wang, H., Niu, H. & Wang, X. “Evolution of fiber morphology during electrospinning”, Journal of Applied Polymer Science, 118: 2553-2561, (2010).
  • [10] Taskin, M.B., Klausen, L.H., Dong, M. & Chen, M. “Emerging wet electrohydrodynamic approaches for versatile bioactive 3D interfaces”, Nano Research, 13(2): 315–327, (2020).
  • [11] Mejía Suaza, M., Moncada, M. & Hurtado Henao, Y. “Wet electrospinning and its applications: a review”, TecnoLógicas, 25 (54): 1-26, (2022).
  • [12] Puppi, D. & Chiellini, F. “Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds”, Polymer International, 66(12): 1690–1696, (2017).
  • [13] Maio, A., Gammino, M., Gulino, E.F., Megna, B., Fara, P. & Scaffaro, R. “Rapid one-step fabrication of graphene oxide-decorated polycaprolactone three-dimensional templates for water treatment”, ACS Applied Polymer Materials, 2(11): 4993–5005, (2020).
  • [14] Jin, S., Chen, Z., Xin, B., Xi, T. & Meng, N. “An investigation on the comparison of wet spinning and electrospinning: Experimentation and simulation”, Fibers and Polymers, 18(6): 1160-1170, (2017).
  • [15] Kostakova, E., Lukas, D., Pokorny, P. & Seps, M. “Study of polycaprolactone wet electrospinning process”, eXPRESS Polymer Letters, 8(8): 554-564, (2014).
  • [16] Röcker, T. & Greiner, A. "Electrospinning of poly-L-lactide nanofibers on liquid reservoir collectors", e-Polymers, 8(1): 111, (2008).
  • [17] Rosário, J.D.S., Moreira, F.H., Rosa, L.H.F., Guerra, W. & Silva-Caldeira, P.P. “Biological activities of bismuth compounds: an overview of the new findings and the old challenges not yet overcome”, Molecules, 28(15): 5921, (2023).
  • [18] Abudayyak, M., Oztas, E., Arici, M. & Ozhan, G. “Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines” Chemosphere, 169(2017): 117-123, (2017).
  • [19] Wang, R., Li, H.& Sun, H. “Bismuth: Environmental pollution and health effects”, Encyclopedia of Environmental Health, Elsevier, London, (2019).
  • [20] Musa, F.H., Flayyih, A.O., Mahdi, W.K. & Abuzaid, Y.I.M. “Biosynthesis, characterization, and applications of bismuth oxide nanoparticles using aqueous extract of beta vulgaris”, Chemical Methodologies, 6(8): 620 – 628, (2022).
  • [21] Bedoya-Hincapie, C., Pinzón Cárdenas, M., Alfonso, E., Restrepo Parra, E. & Florez, J. “Physical-chemical properties of bismuth and bismuth oxides: synthesis, characterization and applications”, Dyna, 79(176): 139-148, (2012).
  • [22] Kashif, M., Muhammad, S., Ali, A., Ali, K., Khan, S., Zahoor, S. & Hamza, M. “Bismuth oxide nanoparticle fabrication and characterization for photocatalytic bromophenol blue degradation”, Journal of Xi’ab Shiyou University, 19(7): 521-544, (2023).
  • [23] Reddy, B., Seenappa, L., Manjunatha, H.C., Vidya, Y.S., Sridhar, K., Kumar, C. & Pasha, U. “Study of antimicrobial applications of Bismuth Oxide”, Materials Today: Proceedings, 57(9): 112-115, (2022).
  • [24] Guo, H., Chen, Y., Li, Y., Zhou, W., Xu, W., Pang, L., Fan, X. & Shaohua, J. “Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review”, Composites Part A: Applied Science and Manufacturing, 143(1): 106309, (2021).
  • [25] Wahyuni, F., Sakti, S.P., Santjojo, D.J.D.H. & Juswono, U.P. “Bismuth oxide filled polyester composites for X-ray radiation shielding applications”, Polish Journal of Environmental Studies, 31(4): 3985-3990, (2022).
  • [26] Ambika, M.R., Nagaih, N. & Suman, S.K. “Role of bismuth oxide as a reinforcer on gamma shielding ability of unstaturated polyester based polymer composites”, Journal of Applied Polymer Science, 134(13): 1-7, (2016).
  • [27] Hazritz, M., Munirah, H., Ramzun, J., Ramli, M., Zahirah, N. & Azman, N. “X-ray attenuation characterisation of electrospun Bi2O3/PVA and WO3/PVA nanofibre mats as potential X-ray shielding materials”, Applied Physics A, 124: 497, (2018).
  • [28] Ahmad, M., Mohd Zaki, U., Ramli, R.M., Abdul Rahman, A. & Noor Azman, N.Z. “Effect of combination of two different filler loadings of electrospun Bi2O3/WO3/ PVA nanofibre mats on X-ray attenuation study”, Chemical Physics Impact, 2: 100020, (2021).
  • [29] Jamil, M., Hazlan, M.H., Ramli, R.M. & Noor Azman, N.Z. “Study of electrospun PVA-based concentrations nanofibre filled with Bi2O3 or WO3 as potential x-ray shielding material”, Radiation Physics and Chemistry, 156: 272–282, (2019).
  • [30] Ivanov, V.S. “Radiation Chemistry of Polymers”, VSP Publishing, Wakefield, (1992).
  • [31] Huang, Z.M., Zhang, Y.Z., Kotaki, M. & Ramakrishna, S. “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Composites Science and Technology, 63: 2223–2253, (2003).
  • [32] Aygün, H.H. & Alma, M.H. "X-ray shielding performance and characterization of electrospun PVC/bismuth(III) oxide nanocomposites”, ChemistrySelect, 7: e202202118, (2022).
  • [33] Eda, G. & Shivkumar, S. “Bead structure variations during electrospinning of polystyrene”, Journal of Materials Science, 41: 5704–5708, (2006).
  • [34] Ge, C., Zheng, Y., Liu, K., Xin, B., Li, M. & Newton, M.A.A. “The formation mechanism of electrospun beaded fibers: experiment and simulation study”. AATCC Journal of Research, 10(1): 3-9, (2022).
  • [35] Kolahi, P., Shekarchizadeh, H. & Nasirpour, A. “Effect of combination of ultrasonic treatment and anti-solvent methods as a high-efficiency method of nanoparticle production on the tragacanth gum properties”, Journal of Food Science Technology, 59(3): 1131-1139, (2022).
  • [36] Wang, B., Wu, J., Yuan, Z.Y., Li, N. & Xiang, S. “Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure”, Ultrasonic Sonochemistry, 15: 334–338, (2008).
  • [37] Zhu, L., Zhu, W., Hu, X., Lin, Y., Machmudah, S., Wahyudiono, Kanda, H. & Goto, M. “PVP/Highly dispersed AgNPs nanofibers using ultrasonic-assisted electrospinning”, Polymers, 14(3): 599, (2022).
  • [38] Zhang, F., Si, Y., Yu, J. & Ding, B. “Electrospun porous engineered nanofiber materials: a versatile medium for energy and environmental applications”, Chemical Engineering Journal, 456(7822): 140989, (2022).
  • [39] Calhoun, M., Chowdhury, S.S., Nelson, T., Lannutti, J., Dupaix, R. & Winter, J. “Effect of Electrospun Fiber Mat Thickness and Support Method on Cell Morphology”, Nanomaterials, 9(4): 644, (2019).
  • [40] Bidhar, S., Goss, V., Chen, W.Y., Stanishevsky, A., Li, M., Kuksenko, S., Calviani, M. & Zwaska, R. “Production and qualification of an electrospun ceramic nanofiber material as a candidate future high power target”, Physical Review Accelerators and Beams, 24(12): 123001, (2021).
  • [41] Akduman, C. “Cellulose acetate and polyvinylidene fluoride nanofiber mats for N95 respirators”, Journal of Industrial Textiles, 50(8): 1239-1261, (2021).
  • [42] Opálková Šišková, A., Mosnáčková, K., Hrůza, J., Frajová, J., Opálek, A., Bučková, M., Kozics, K., Peer, P. & Eckstein Andicsová, A. “Electrospun poly(ethylene terephthalate)/silk fibroin composite for filtration application”, Polymers (Basel), 13(15): 2499, (2021).
  • [43] Yokoyama, Y., Hattori, S., Yoshikawa, C., Yasuda, Y., Koyama, H., Takato, T. & Kobayashi, H. “Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric”, Materials Letters, 63: 754–756, (2009).
  • [44] Sonseca, A., Sahay, R., Stepien, K., Bukala, J., Wcislek, A., McClain, A., Sobolewski, P., Sui, X., Puskas, J.E., Kohn, J., Wagner, H.D. & El Fray, M. “Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning”, Materials Science and Engineering C: Materials for Biological Applications, 108:110505, (2020).
  • [45] Bhardwaj, N. & Kundu, S.C.“Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances, 28(3): 325–347, (2010).
  • [46] Zulfi, A., Hartati, S., Nuraini, S., Noviyanto, A. & Nasir, M. “Electrospun nanofibers from waste polyvinyl chloride loaded silver and titanium dioxide for water treatment applications”, ACS Omega, 8(26): 23622–23632, (2023).
  • [47] Huang, C., Niu, H., Wu, J., Ke, Q., Mo, X. & Lin, T. “Needleless electrospinning of polystyrene fibers with an oriented surface line texture”, Journal of Nanomaterials, 2012(16): 1-7, (2012).
  • [48] Taha, T.A. “Optical properties of PVC/Al2O3 nanocomposite films”, Polymer Bulletin, 76: 903-918, (2018).
  • [49] Jabeen Faatima, M.J., Niveditha, C.V. & Sindhu, S. “α-Bi2O3 photoanode in DSSC and study of the electrode-electrolyte interface”, RSC Advances, 95(5): 78299-78305, (2015).
  • [50] Martin, D. M., Ahmed, M.M., Rodriguez, M., Garcia, M. A. & Faccini, M. “Aminated polyethylene terephthalate (PET) nanofibers for the selective removal of PB(II) from polluted water”, Materials (Basel), 10(12): 1352-1359, (2017).
  • [51] Esmaeili, E., Deymeh, F. & Rounaghi, S.A., “Synthesis and characterization of the electrospun fibers prepared from waste polymeric materials”, International Journal of Nano Dimensions, 8(2): 171-181, (2017).
  • [52] Liang, C.Y. & Krimm, S. “Infrared spectra of high polymers-VI. Polystyrene”, Journal of Polymer Science, 27(115): 241-254, (1958).
  • [53] Imhof, A. “Preparation and characterization fo titania-coated polystyrene spheres and hollow titania shells”, Langmuir, 17(12): 3579-3585, (2002).
  • [54] Da Silva, M.A., Vieira, M.G.A., Maçumoto, A.C.G. & Beppu, M.M. “Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid”, Polymer Testing, 30(5): 478-484, (2011).
  • [55] Ul-Hamid, A., Al-Soufi, K.Y., Al-Hadhrami, L. & Shemsi, A. “Failure investigation of an underground low voltage XLPE insulated cable”, Anti-Corrosion Methods and Materials, 62(5): 281-287, (2015).
  • [56] Ramesh, S., Leen, K.H., Kumutha, K. & Arof, A.K. “FTIR studies of PVC/PMMA blend based polymer electrolytes”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66: 1237-1242, (2007).
  • [57] Le Quoc, P., Uspenskaya, M., Solovieva, A., Strelnikova, I., Olekhnovich, R., Kunakova, A. & Sitnikova, V. “High-porosity polymer composite for removing oil spills in cold regions”, ACS Omega, 6: 20512-20521, (2021).
  • [58] Meena, P., Surela, A., Saini, J. & Chhachhia, L. “Millettia pinnata plant pod extract-mediated synthesis of Bi2O3 for degradation of water pollutants”, Environmental Science and Pollution Research, 29(3): 1-19, (2022).
There are 58 citations in total.

Details

Primary Language English
Subjects Functional Materials, Composite and Hybrid Materials, Material Characterization, Nanomanufacturing, Fiber Technology
Journal Section Research Article
Authors

Hayriye Hale Aygün 0000-0002-2812-8079

Early Pub Date August 20, 2024
Publication Date
Submission Date May 16, 2024
Acceptance Date August 13, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Aygün, H. H. (2024). Enabling the electrospinnability of PS/PVC/Bi2O3 nanocomposite fibers via wet electrospinning. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1484990
AMA Aygün HH. Enabling the electrospinnability of PS/PVC/Bi2O3 nanocomposite fibers via wet electrospinning. Politeknik Dergisi. Published online August 1, 2024:1-1. doi:10.2339/politeknik.1484990
Chicago Aygün, Hayriye Hale. “Enabling the Electrospinnability of PS/PVC/Bi2O3 Nanocomposite Fibers via Wet Electrospinning”. Politeknik Dergisi, August (August 2024), 1-1. https://doi.org/10.2339/politeknik.1484990.
EndNote Aygün HH (August 1, 2024) Enabling the electrospinnability of PS/PVC/Bi2O3 nanocomposite fibers via wet electrospinning. Politeknik Dergisi 1–1.
IEEE H. H. Aygün, “Enabling the electrospinnability of PS/PVC/Bi2O3 nanocomposite fibers via wet electrospinning”, Politeknik Dergisi, pp. 1–1, August 2024, doi: 10.2339/politeknik.1484990.
ISNAD Aygün, Hayriye Hale. “Enabling the Electrospinnability of PS/PVC/Bi2O3 Nanocomposite Fibers via Wet Electrospinning”. Politeknik Dergisi. August 2024. 1-1. https://doi.org/10.2339/politeknik.1484990.
JAMA Aygün HH. Enabling the electrospinnability of PS/PVC/Bi2O3 nanocomposite fibers via wet electrospinning. Politeknik Dergisi. 2024;:1–1.
MLA Aygün, Hayriye Hale. “Enabling the Electrospinnability of PS/PVC/Bi2O3 Nanocomposite Fibers via Wet Electrospinning”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1484990.
Vancouver Aygün HH. Enabling the electrospinnability of PS/PVC/Bi2O3 nanocomposite fibers via wet electrospinning. Politeknik Dergisi. 2024:1-.