Research Article
BibTex RIS Cite

Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek için Algoritma ve YBM Yazılımı Geliştirilmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1501300

Abstract

İnşaat süreci kısıtlı zaman ve ağır baskı altında gerçekleştiği için malzeme zayiatının değerlendirilmesi ve belirtilen zayiatın en aza indirilmesi çalışmaları ihmal edilmektedir. Literatürde YBM yazılımları kullanılarak kısıtlı düzeyde karo zayiatını azaltan çalışmalar mevcuttur. Mevcut YBM yazılımlarının tam doğru karo metrajı hesaplayamaması başarılı sonuçların elde edilmesi üzerindeki en büyük engeldir. Bu çalışmada yer kaplama imalatlarında en az malzeme zayiatının hangi malzeme boyutu ve yerleştirme örüntüsü ile sağlandığını kaplanan yüzeyin geometrisi, kolon dişleri, mekândaki yapısal veya mimari elemanlar ile malzeme boyutları dikkate alınarak belirleyen bir algoritma ve algoritmayı çalıştıran YBM tabanlı yazılım geliştirilmiştir. Geliştirilen algoritma ve yazılım iki adet vaka çalışmasında denenmiş ve malzeme zayiatını en aza indirecek şekilde kesilen karoların en yüksek oranda kullanımını sağladığı görülmüştür. Geliştirilen algoritmanın uygulanması ile zayiat ve işçilik miktarları düşecek ve inşaat giderlerinden tasarruf elde edilebilecektir.

References

  • [1] S. Wu, N. Zhang, Y. Xiang, D. Wu, D. Qiao, X. Luo, W.-Z. Lu, Automated Layout Design Approach of Floor Tiles: Based on Building Information Modeling (BIM) via Parametric Design (PD) Platform, Buildings, Vol:12:250, (2022).
  • [2] Azhar, S. “Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry”, Leadership and management in engineering, 11(3): 241-252, (2011).
  • [3] Azhar, S., Khalfan, M., Maqsood, T. “Building information modelling (BIM): now and beyond”, Construction Economics and Building, 12(4): 15-28, (2012).
  • [4] Hardin, B. “BIM and Construction Management: proven Tools, Methods, and Workflows” Wiley Publishing Inc. Indianapolis, Indiana, (2009).
  • [5] Shen, Z., & Issa, R. R. “Quantitative evaluation of the BIM-assisted construction detailed cost estimates.” DigitalCommons@University of Nebraska – Lincoln., (2010).
  • [6] Kim, K., ve Teizer, J. “Automatic design and planning of scaffolding systems using building information modeling”, Advanced Engineering Informatics, 28(1): 66-80, (2014).
  • [7] Olsen, D. ve Taylor, J. M. “Quantity take-off using building information modeling (BIM), and its limiting factors”, Procedia engineering, 196: pp. 1098-1105, (2017).
  • [8] Yang, B., Zhang, B., Wu, J., Liu, B. ve Wang, Z., “A BIM-based Quantity Calculation Framework for Frame-shear Wall Structure”, Structural Engineering International, 29(2): 282-291 (2019).
  • [9] Alathamneh, S., Collins, W., & Azhar, S. “BIM-based quantity takeoff: Current state and future opportunities.” Automation in Construction, 165, 105549. (2024).
  • [10] H. Liu, J.C.P. Cheng, V.J.L. Gan, S. Zhou, A knowledge model-based BIM framework for automatic code-compliant quantity take-off, Autom Constr, 133:104024., (2022).
  • [11] S.K. Lee, K.R. Kim, J.H. Yu, “BIM and ontology-based approach for building cost estimation,” Autom Constr, 41 96–105. (2014).
  • [12] J. Choi, H. Kim, I. Kim, “Open BIM-based quantity take-off system for schematic estimation of building frame in early design stage,” J Comput Des Eng 2 16–25., (2015).
  • [13] Temel, B., Basaga, H. “Investigation of IFC file format for BIM based automated code compliance checking.” Journal of Construction Engineering Management & Innovation, 3(2): 113-130, (2020).
  • [14] H. Liu, M. Lu, M. Al-Hussein, “Ontology-based semantic approach for construction-oriented quantity take-off from BIM models in the light-frame building industry,” Advanced Engineering Informatics 30:190–207. (2016).
  • [15] S. Kim, S. Chin, S. Kwon, “A discrepancy analysis of BIM-based quantity take-off for building interior components.” Journal of Management in Engineering, 35(3):05019001, (2019).
  • [16] Ö.H. Bettemir, “Development of spreadsheet based quantity take-off and cost estimation application,” Journal of Construction Engineering, Management & Innovation 1:108–117., (2018).
  • [17] F. Ergen, Ö.H. Bettemir, “Development of BIM software with quantity take-off and visualization capabilities,” Journal of Construction Engineering, Management & Innovation 5:01–14., (2022).
  • [18] Ergen, F., & Bettemir, Ö. H. “Development of BIM-based prototype software for the accurate quantity take-off calculation of rough construction items.” Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(1), 86-105, (2023).
  • [19] Khosakitchalert, C., Yabuki, N. ve Fukuda, T. “The accuracy enhancement of architectural walls quantity takeoff for schematic BIM models” In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction Berlin, Almanya, 1-8, (2018).
  • [20] Khosakitchalert, C., Yabuki, N. ve Fukuda, T. “BIM-Based Wall Framing Calculation Algorithms For Detailed Quantity Takeoff”, Proceedings of the 4th International Conference on Civil and Building Engineering Informatics, Sendai, Miyagi, Japonya, 251-258, (2019).
  • [21] Khosakitchalert, C., Yabuki, N. ve Fukuda, T. “Improving the accuracy of BIM-based quantity takeoff for compound elements”, Automation in Construction, 106: 102891, 1-20, (2019).
  • [22] F. Ergen, Ö.H. Bettemir, Development of ontological algorithms for exact QTO of reinforced concrete construction items, Structures 60:105907., (2024).
  • [23] J.D. Manrique, M. Al-Hussein, A. Bouferguene, H. Safouhi, R. Nasseri, Combinatorial Algorithm for Optimizing Wood Waste in Framing Designs, J Constr Eng Manag 137:188–197., (2009).
  • [24] J. Won, J.C.P. Cheng, G. Lee, “Quantification of construction waste prevented by BIM-based design validation: Case studies in South Korea,” Waste Management, 49: 170–180., (2016).
  • [25] P.H. Chen, T.C. Nguyen, “A BIM-WMS integrated decision support tool for supply chain management in construction,” Autom Constr, 98: 289–301., (2019).
  • [26] S. Banihashemi, A. Tabadkani, M.R. Hosseini, “Integration of parametric design into modular coordination: A construction waste reduction workflow,” Autom Constr 88:1–12., (2018).
  • [27] H. Liu, G. Singh, M. Lu, A. Bouferguene, M. Al-Hussein, “BIM-based automated design and planning for boarding of light-frame residential buildings,” Autom Constr 89:235–249., (2018).
  • [28] M.T.H. Khondoker, “Automated reinforcement trim waste optimization in RC frame structures using building information modeling and mixed-integer linear programming”, Autom Constr 124:03599., (2021).
  • [29] S. Wu, W.Z. Lu, C. Qin, B. Wen, D. Wu, Y. Xiang, “A goal-oriented planning approach for two-dimensional cutting components in architectural design: Coupling BIM and Parametric design (PD),” Journal of Building Engineering 76:107156., (2023).
  • [30] S. Wu, N. Zhang, X. Luo, W.Z. Lu, “Multi-objective optimization in floor tile planning: Coupling BIM and parametric design,” Autom Constr 140:104384., (2022).
  • [31] S. Wu, N. Zhang, X. Luo, W.Z. Lu, “Intelligent optimal design of floor tiles: A goal-oriented approach based on BIM and parametric design platform,” J Clean Prod 299:126754., (2021).
  • [32] Y. Xu, J. Wang, Z. Yang, “Generic goal-oriented design for layout and cutting of floor tiles,” Autom Constr 152:104903., (2023).
  • [33] Bettemir, Ö. H., & Zafer, E. H. “Yer Kaplaması ve Betonarme Kalıbı İmalatlarının Atık Değerlemesi ve İnşaatının Yönetimi.” Journal of the Institute of Science and Technology, 12(4), 2276-2289., (2022).
  • [34] Ergen, F., & Bettemir, Ö. H. “BIM-driven software and algorithm for optimal floor tile layout minimizing material waste.” Automation in Construction, 173, 106115. (2025).

Development of an Algorithm and BIM Software to Minimize the Material Waste of Floor Covering Tasks

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1501300

Abstract

Construction processes are performed during restricted time and severe pressure, consequently assessment of material wastes and minimization of the aforementioned wastes are ignored. In the literature, minimization of material waste of floor covering tasks is studied by utilizing state-of-the-art BIM software. However, state-of-the-art BIM software is incapable of providing exact quantity take-off data which is the main hurdle to obtain successful results. In this study an algorithm and software which runs the algorithm, which provides the material dimension and the floor covering pattern that minimizes the material waste by taking into account the geometry of the surface to be covered, protrusion of columns, structural and architectural elements inside the surface to be covered, as well as dimensions of the floor covering surface are developed. Developed algorithm and software are tested on two case study problems and it is seen that the cut tile are reused at maximum rate to minimize the material waste. Implementation of the developed algorithm will reduce the material wastes and workmanships thus provide savings in terms of construction costs.

References

  • [1] S. Wu, N. Zhang, Y. Xiang, D. Wu, D. Qiao, X. Luo, W.-Z. Lu, Automated Layout Design Approach of Floor Tiles: Based on Building Information Modeling (BIM) via Parametric Design (PD) Platform, Buildings, Vol:12:250, (2022).
  • [2] Azhar, S. “Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry”, Leadership and management in engineering, 11(3): 241-252, (2011).
  • [3] Azhar, S., Khalfan, M., Maqsood, T. “Building information modelling (BIM): now and beyond”, Construction Economics and Building, 12(4): 15-28, (2012).
  • [4] Hardin, B. “BIM and Construction Management: proven Tools, Methods, and Workflows” Wiley Publishing Inc. Indianapolis, Indiana, (2009).
  • [5] Shen, Z., & Issa, R. R. “Quantitative evaluation of the BIM-assisted construction detailed cost estimates.” DigitalCommons@University of Nebraska – Lincoln., (2010).
  • [6] Kim, K., ve Teizer, J. “Automatic design and planning of scaffolding systems using building information modeling”, Advanced Engineering Informatics, 28(1): 66-80, (2014).
  • [7] Olsen, D. ve Taylor, J. M. “Quantity take-off using building information modeling (BIM), and its limiting factors”, Procedia engineering, 196: pp. 1098-1105, (2017).
  • [8] Yang, B., Zhang, B., Wu, J., Liu, B. ve Wang, Z., “A BIM-based Quantity Calculation Framework for Frame-shear Wall Structure”, Structural Engineering International, 29(2): 282-291 (2019).
  • [9] Alathamneh, S., Collins, W., & Azhar, S. “BIM-based quantity takeoff: Current state and future opportunities.” Automation in Construction, 165, 105549. (2024).
  • [10] H. Liu, J.C.P. Cheng, V.J.L. Gan, S. Zhou, A knowledge model-based BIM framework for automatic code-compliant quantity take-off, Autom Constr, 133:104024., (2022).
  • [11] S.K. Lee, K.R. Kim, J.H. Yu, “BIM and ontology-based approach for building cost estimation,” Autom Constr, 41 96–105. (2014).
  • [12] J. Choi, H. Kim, I. Kim, “Open BIM-based quantity take-off system for schematic estimation of building frame in early design stage,” J Comput Des Eng 2 16–25., (2015).
  • [13] Temel, B., Basaga, H. “Investigation of IFC file format for BIM based automated code compliance checking.” Journal of Construction Engineering Management & Innovation, 3(2): 113-130, (2020).
  • [14] H. Liu, M. Lu, M. Al-Hussein, “Ontology-based semantic approach for construction-oriented quantity take-off from BIM models in the light-frame building industry,” Advanced Engineering Informatics 30:190–207. (2016).
  • [15] S. Kim, S. Chin, S. Kwon, “A discrepancy analysis of BIM-based quantity take-off for building interior components.” Journal of Management in Engineering, 35(3):05019001, (2019).
  • [16] Ö.H. Bettemir, “Development of spreadsheet based quantity take-off and cost estimation application,” Journal of Construction Engineering, Management & Innovation 1:108–117., (2018).
  • [17] F. Ergen, Ö.H. Bettemir, “Development of BIM software with quantity take-off and visualization capabilities,” Journal of Construction Engineering, Management & Innovation 5:01–14., (2022).
  • [18] Ergen, F., & Bettemir, Ö. H. “Development of BIM-based prototype software for the accurate quantity take-off calculation of rough construction items.” Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(1), 86-105, (2023).
  • [19] Khosakitchalert, C., Yabuki, N. ve Fukuda, T. “The accuracy enhancement of architectural walls quantity takeoff for schematic BIM models” In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction Berlin, Almanya, 1-8, (2018).
  • [20] Khosakitchalert, C., Yabuki, N. ve Fukuda, T. “BIM-Based Wall Framing Calculation Algorithms For Detailed Quantity Takeoff”, Proceedings of the 4th International Conference on Civil and Building Engineering Informatics, Sendai, Miyagi, Japonya, 251-258, (2019).
  • [21] Khosakitchalert, C., Yabuki, N. ve Fukuda, T. “Improving the accuracy of BIM-based quantity takeoff for compound elements”, Automation in Construction, 106: 102891, 1-20, (2019).
  • [22] F. Ergen, Ö.H. Bettemir, Development of ontological algorithms for exact QTO of reinforced concrete construction items, Structures 60:105907., (2024).
  • [23] J.D. Manrique, M. Al-Hussein, A. Bouferguene, H. Safouhi, R. Nasseri, Combinatorial Algorithm for Optimizing Wood Waste in Framing Designs, J Constr Eng Manag 137:188–197., (2009).
  • [24] J. Won, J.C.P. Cheng, G. Lee, “Quantification of construction waste prevented by BIM-based design validation: Case studies in South Korea,” Waste Management, 49: 170–180., (2016).
  • [25] P.H. Chen, T.C. Nguyen, “A BIM-WMS integrated decision support tool for supply chain management in construction,” Autom Constr, 98: 289–301., (2019).
  • [26] S. Banihashemi, A. Tabadkani, M.R. Hosseini, “Integration of parametric design into modular coordination: A construction waste reduction workflow,” Autom Constr 88:1–12., (2018).
  • [27] H. Liu, G. Singh, M. Lu, A. Bouferguene, M. Al-Hussein, “BIM-based automated design and planning for boarding of light-frame residential buildings,” Autom Constr 89:235–249., (2018).
  • [28] M.T.H. Khondoker, “Automated reinforcement trim waste optimization in RC frame structures using building information modeling and mixed-integer linear programming”, Autom Constr 124:03599., (2021).
  • [29] S. Wu, W.Z. Lu, C. Qin, B. Wen, D. Wu, Y. Xiang, “A goal-oriented planning approach for two-dimensional cutting components in architectural design: Coupling BIM and Parametric design (PD),” Journal of Building Engineering 76:107156., (2023).
  • [30] S. Wu, N. Zhang, X. Luo, W.Z. Lu, “Multi-objective optimization in floor tile planning: Coupling BIM and parametric design,” Autom Constr 140:104384., (2022).
  • [31] S. Wu, N. Zhang, X. Luo, W.Z. Lu, “Intelligent optimal design of floor tiles: A goal-oriented approach based on BIM and parametric design platform,” J Clean Prod 299:126754., (2021).
  • [32] Y. Xu, J. Wang, Z. Yang, “Generic goal-oriented design for layout and cutting of floor tiles,” Autom Constr 152:104903., (2023).
  • [33] Bettemir, Ö. H., & Zafer, E. H. “Yer Kaplaması ve Betonarme Kalıbı İmalatlarının Atık Değerlemesi ve İnşaatının Yönetimi.” Journal of the Institute of Science and Technology, 12(4), 2276-2289., (2022).
  • [34] Ergen, F., & Bettemir, Ö. H. “BIM-driven software and algorithm for optimal floor tile layout minimizing material waste.” Automation in Construction, 173, 106115. (2025).
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Research Article
Authors

Faruk Ergen 0000-0002-1509-8720

Önder Halis Bettemir 0000-0002-5692-7708

Enes Hakan Zafer 0000-0003-2664-021X

Early Pub Date December 1, 2025
Publication Date December 1, 2025
Submission Date June 14, 2024
Acceptance Date November 3, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Ergen, F., Bettemir, Ö. H., & Zafer, E. H. (2025). Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek için Algoritma ve YBM Yazılımı Geliştirilmesi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1501300
AMA Ergen F, Bettemir ÖH, Zafer EH. Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek için Algoritma ve YBM Yazılımı Geliştirilmesi. Politeknik Dergisi. Published online December 1, 2025:1-1. doi:10.2339/politeknik.1501300
Chicago Ergen, Faruk, Önder Halis Bettemir, and Enes Hakan Zafer. “Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek Için Algoritma Ve YBM Yazılımı Geliştirilmesi”. Politeknik Dergisi, December (December 2025), 1-1. https://doi.org/10.2339/politeknik.1501300.
EndNote Ergen F, Bettemir ÖH, Zafer EH (December 1, 2025) Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek için Algoritma ve YBM Yazılımı Geliştirilmesi. Politeknik Dergisi 1–1.
IEEE F. Ergen, Ö. H. Bettemir, and E. H. Zafer, “Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek için Algoritma ve YBM Yazılımı Geliştirilmesi”, Politeknik Dergisi, pp. 1–1, December2025, doi: 10.2339/politeknik.1501300.
ISNAD Ergen, Faruk et al. “Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek Için Algoritma Ve YBM Yazılımı Geliştirilmesi”. Politeknik Dergisi. December2025. 1-1. https://doi.org/10.2339/politeknik.1501300.
JAMA Ergen F, Bettemir ÖH, Zafer EH. Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek için Algoritma ve YBM Yazılımı Geliştirilmesi. Politeknik Dergisi. 2025;:1–1.
MLA Ergen, Faruk et al. “Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek Için Algoritma Ve YBM Yazılımı Geliştirilmesi”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1501300.
Vancouver Ergen F, Bettemir ÖH, Zafer EH. Yer Kaplaması İşlerinde Malzeme İsrafını En Aza İndirmek için Algoritma ve YBM Yazılımı Geliştirilmesi. Politeknik Dergisi. 2025:1-.