Research Article
BibTex RIS Cite

DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1509329

Abstract

Moleküler seviyede genetik verinin oluşum, aktarım ve düzenlenme süreçleri anlaşılması zor karmaşık kombinasyonel süreçlerden oluşmaktadır. Bu süreçlerin temelini oluşturan transkripsiyon faktörleri genetik bilginin DNA'dan RNA'ya kopyalanmasını sağlayarak hücrelerin özellik ve fonksiyonlarını belirlemede kritik rol oynar. Özellikle sinir sistemi gibi karmaşık yapıları kontrol eden transkripsiyon faktörleri, gen ifadesini düzenleyerek hastalık, sağlık gibi durumların belirlenmesinde hayati rol oynarlar. Proteinlerin DNA üzerinde bağlandıkları bölgeler, gen ifadelerinin kritik noktalarını belirler ve hücrelerin çeşitli koşullara uyum sağlamasına katkıda bulunur. Genetik hastalıkların teşhis edilmesi ve tedavi edilmesi süreçleri için önemli bir adım olan transkripsiyon faktörü bağlanma bölgelerinin tahmini amacıyla literatürde çeşitli yöntemler geliştirilmiştir. DNA’nın dizi ve şekil özelliklerinin beraber kullanımıyla başarılı sonuçlar elde edilen çeşitli çalışmalar geliştirilmiştir. Bu çalışmada DNA dizileri ve şekillerine dayalı olarak transkripsiyon faktörü etkileşimlerini belirlemek için farklı derin öğrenme teknolojileri birleştirilerek hibrit bir yöntem önerilmiştir. Çalışmada 165 doğrulanmış CHIP-Seq veri kümesi kullanılmıştır.

References

  • [1] Angermueller, C., Pärnamaa, T., Parts, L. and Stegle, O., “Deep learning for computational biology”, Molecular systems biology, 12(7), 878, (2016).
  • [2] Min, S., Lee, B. and Yoon, S., “Deep learning in bioinformatics”, Briefings in bioinformatics, 18(5), 851-869, (2017).
  • [3] Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., ... and Xie, Z., “Deep learning and its applications in Biomedicine”, Genomics, proteomics and bioinformatics, 16(1), 17-32, (2018).
  • [4] Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., ... and Weirauch, M. T., “The human transcription factors”, Cell, 172(4), 650-665, (2018).
  • [5] Tariq, S. and Amin, A., “Detection of DNA-Protein Binding Using Deep Learning”, 2023 IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T) (pp. 1-4). IEEE, (2023).
  • [6] Johnson, D.S., Mortazavi, A., Myers, R.M. and Wold, B., “Genome-wide mapping of in vivo protein-DNA interactions”, Science, 316(5830), 1497-1502, (2007).
  • [7] Zeng, Y., Gong, M., Lin, M., Gao, D. and Zhang, Y., “A review about transcription factor binding sites prediction based on deep learning”, Ieee Access, 8, 219256-219274, (2020).
  • [8] Clark, S. J., Argelaguet, R., Kapourani, C. A., Stubbs, T. M., Lee, H. J., Alda-Catalinas, C., ... and Reik, W., “scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells”, Nature communications, 9(1), 781, (2018).
  • [9] Song, Y., Chi, A. Y. and Qu, J., “A graph theoretic approach for the feature extraction of transcription factor binding sites”, Intelligent Computing Theories and Methodologies: 11th International Conference, ICIC 2015, Fuzhou, China, August 20-23, 2015, Proceedings, Part II 11 (pp. 445-455). Springer International Publishing, (2015).
  • [10] Keilwagen, J. and Grau, J., “Varying levels of complexity in transcription factor binding motifs”, Nucleic acids research, 43(18), e119-e119, (2015).
  • [11] Alipanahi, B., Delong, A., Weirauch, M. T. and Frey, B. J., “Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning”, Nature biotechnology, 33(8), 831-838, (2015).
  • [12] Hassanzadeh, H. R. and Wang, M. D., “DeeperBind: Enhancing prediction of sequence specificities of DNA binding proteins”, 2016 IEEE International conference on bioinformatics and biomedicine (BIBM) (pp. 178-183). IEEE, (2016).
  • [13] Li, Z., Liu, F., Yang, W., Peng, S. and Zhou, J., “A survey of convolutional neural networks: analysis, applications, and prospects”, IEEE transactions on neural networks and learning systems, 33(12), 6999-7019, (2021).
  • [14] Zhang, Q., Zhu, L. and Huang, D. S., “High-order convolutional neural network architecture for predicting DNA-protein binding sites”, IEEE/ACM transactions on computational biology and bioinformatics, 16(4), 1184-1192, (2018).
  • [15] Trabelsi, A., Chaabane, M. and Ben-Hur, A., “Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities”, Bioinformatics, 35(14), i269-i277, (2019).
  • [16] Abdollahyan, M., Elgar, G. and Smeraldi, F., “Identifying potential regulatory elements by transcription factor binding site alignment using partial order graphs”, International Journal of Foundations of Computer Science, 29(08), 1345-1354, (2018).
  • [17] Zhang, Q., Zhu, L., Bao, W. and Huang, D. S., “Weakly-supervised convolutional neural network architecture for predicting protein-DNA binding”, IEEE/ACM transactions on computational biology and bioinformatics, 17(2), 679-689, (2018).
  • [18] Zhang, Q., Shen, Z. and Huang, D. S., “Modeling in-vivo protein-DNA binding by combining multiple-instance learning with a hybrid deep neural network”, Scientific reports, 9(1), 8484, (2019).
  • [19] Chen, C., Hou, J., Shi, X., Yang, H., Birchler, J. A. and Cheng, J., “Interpretable attention model in transcription factor binding site prediction with deep neural networks”, bioRxiv, 648691, (2019).
  • [20] Zhou, J., Lu, Q., Xu, R., Gui, L. and Wang, H., “Prediction of TF-binding site by inclusion of higher order position dependencies”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(4), 1383-1393, (2019).
  • [21] Zhang, Y., Qiao, S., Ji, S. and Li, Y., “DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding”, International Journal of Machine Learning and Cybernetics, 11, 841-851, (2020).
  • [22] Aziz, F. A. and Al-Rashid, S. Z., “Prediction of DNA binding sites bound to specific transcription factors by the SVM algorithm”, Iraqi Journal of Science, 5024-5036, (2022).
  • [23] Wang, W., Jiao, X., Sun, B., Liang, S., Wang, X. and Zhou, Y., “DeepGenBind: a novel deep learning model for predicting transcription factor binding sites”, 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 3629-3635). IEEE, (2022).
  • [24] Song, R. and Du, X., “Predicting transcription factor binding sites by dual-stream multiple instance learning network”, 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 3391-3398). IEEE, (2022).
  • [25] Cheng, J., Xu, M., Liu, Y. and Huang, W., “AttBind: Prediction of Transcription Factor Binding Sites Across Cell-types Based on Attention Mechanism”, 2022 7th International Conference on Computer and Communication Systems (ICCCS) (pp. 135-139). IEEE, (2022).
  • [26] Li, B., Wang, Z., Xiong, S. and Zhang, Y., “Densely convolutional neural network for transcription factor binding sites prediction using DNA sequence and histone modification”, 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 179-183). IEEE, (2022).
  • [27] Cao, L., Liu, P., Chen, J. and Deng, L., “Prediction of transcription factor binding sites using a combined deep learning approach”, Frontiers in Oncology, 12, 893520, (2022).
  • [28] Yu, Y., Ding, P., Gao, H., Liu, G., Zhang, F. and Yu, B., “Cooperation of local features and global representations by a dual-branch network for transcription factor binding sites prediction”, Briefings in Bioinformatics, 24(2), bbad036, (2023).
  • [29] Rhee, H. S. and Pugh, B. F., “Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution”, Cell, 147(6), 1408-1419, (2011).
  • [30] [30] Mardis, E. R., “DNA sequencing technologies: 2006–2016”, Nature protocols, 12(2), 213-218, (2017).
  • [31] Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A. and Waterston, R. H., “DNA sequencing at 40: past, present and future”, Nature, 550(7676), 345-353, (2017).
  • [32] Abe, N., Dror, I., Yang, L., Slattery, M., Zhou, T., Bussemaker, H. J., ... and Mann, R. S., “Deconvolving the recognition of DNA shape from sequence”, Cell, 161(2), 307-318, (2015).
  • [33] DNAShaper, https://www.bioconductor.org/
  • [34] Fletez-Brant, C., Lee, D., McCallion, A. S. and Beer, M. A., “kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets”, Nucleic acids research, 41(W1), W544-W556, (2013).
  • [35] https://en.wikipedia.org/wiki/K-mer
  • [36] Dey, R. and Salem, F. M., “Gate-variants of gated recurrent unit (GRU) neural networks”, 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS) (pp. 1597-1600). IEEE, (2017).
  • [37] Bakır H. and Eker S. B., “An experimental study for evaluating the performance of CNN pre-trained models in noisy environments”, Journal of Polytechnic, 27(1): 355-369, (2024).
  • [38] Gençaslan S., Utku A. and Akcayol M.A., “Derin Öğrenme Tabanlı Video Üzerinde Olay Sınıflandırma”, Journal of Polytechnic, 26(3): 1155-1165, (2023).
  • [39] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I., “Attention Is All You Need”, Advances in Neural Information Processing Systems, (2017).
  • [40] https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc
  • [41] https://builtin.com/data-science/roc-curves-auc
  • [42] https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
  • [43] Zeng, H., Edwards, M. D., Liu, G. and Gifford, D. K., “Convolutional neural network architectures for predicting DNA–protein binding”, Bioinformatics, 32(12), i121-i127, (2016).
  • [44] Kribelbauer, J. F., Rastogi, C., Bussemaker, H. J. and Mann, R. S., “Low-affinity binding sites and the transcription factor specificity paradox in eukaryotes”, Annual review of cell and developmental biology, 35(1), 357-379, (2019).
  • [45] Dittmer, J. and Nordheim, A., “Ets transcription factors and human disease”, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1377(2), F1-F11, (1998).
  • [46] Ji, Y., Zhou, Z., Liu, H. and Davuluri, R. V., “DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome”, Bioinformatics, 37(15), 2112-2120, (2021).
  • [47] Wang, K., Zeng, X., Zhou, J., Liu, F., Luan, X. and Wang, X., “BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning”, Briefings in Bioinformatics, 25(3), bbae195, (2024).
  • [48] Tariq, S. and Amin, A., “DeepCTF: transcription factor binding specificity prediction using DNA sequence plus shape in an attention-based deep learning model”, Signal, Image and Video Processing, 1-13, (2024).
  • [49] Wang, Z., Gong, M., Liu, Y., Xiong, S., Wang, M., Zhou, J. and Zhang, Y., “Towards a better understanding of TF-DNA binding prediction from genomic features”, Computers in Biology and Medicine, 149, 105993, (2022).
  • [50] Yang, J., Ma, A., Hoppe, A. D., Wang, C., Li, Y., Zhang, C., ... and Ma, Q., “Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework”, Nucleic acids research, 47(15), 7809-7824, (2019).
  • [51] Zhang, Q., Shen, Z. and Huang, D. S., “Predicting in-vitro transcription factor binding sites using DNA sequence+ shape”, IEEE/ACM transactions on computational biology and bioinformatics, 18(2), 667-676, (2019).
  • [52] Wang, S., Zhang, Q., Shen, Z., He, Y., Chen, Z. H., Li, J., and Huang, D. S., “Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture”, Molecular Therapy-Nucleic Acids, 24, 154-163, (2021).
  • [53] Zhou, T., Shen, N., Yang, L., Abe, N., Horton, J., Mann, R. S., ... and Rohs, R., “Quantitative modeling of transcription factor binding specificities using DNA shape”, Proceedings of the National Academy of Sciences, 112(15), 4654-4659, (2015).
  • [54] Wang, X., Qiao, L., Qu, P. and Yang, Q., “TBCA: Prediction of transcription factor binding sites using a deep neural network with lightweight attention mechanism”, IEEE Journal of Biomedical and Health Informatics, (2024).
  • [55] Ding, P., Wang, Y., Zhang, X., Gao, X., Liu, G. and Yu, B., “DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape”, Briefings in bioinformatics, 24(4), bbad231, (2023).
  • [56] Wei, Y., Zhang, Q. and Liu, L., “Predicting transcription factor binding sites by a multi-modal representation learning method based on cross-attention network”, Applied Soft Computing, 166, 112134, (2024).
  • [57] Mathelier, A., Xin, B., Chiu, T. P., Yang, L., Rohs, R. and Wasserman, W. W., “DNA shape features improve transcription factor binding site predictions in vivo”, Cell systems, 3(3), 278-286, (2016).
  • [58] Gordân, R., Shen, N., Dror, I., Zhou, T., Horton, J., Rohs, R. and Bulyk, M. L., “Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape”, Cell reports, 3(4), 1093-1104, (2013).
  • [59] Rohs, R., West, S. M., Sosinsky, A., Liu, P., Mann, R. S. and Honig, B., “The role of DNA shape in protein–DNA recognition”, Nature, 461(7268), 1248-1253, (2009).
  • [60] Gordân, R., Shen, N., Dror, I., Zhou, T., Horton, J., Rohs, R. and Bulyk, M. L., “Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape”, Cell reports, 3(4), 1093-1104, (2013).
  • [61] Lazarovici, A., Zhou, T., Shafer, A., Dantas Machado, A. C., Riley, T. R., Sandstrom, R., ... and Bussemaker, H. J., “Probing DNA shape and methylation state on a genomic scale with DNase I”, Proceedings of the National Academy of Sciences, 110(16), 6376-6381, (2013).

DeepTFBS: A Hybrid Model Using Deep Learning Methods for Transcription Factor Binding Sites Prediction

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1509329

Abstract

The formation, transmission and regulation of genetic data at the molecular level are complex combinatorial processes that are difficult to understand. Transcription factors, which form the basis of these processes, play a critical role in determining the properties and functions of cells by copying genetic information from DNA to RNA. Transcription factors, which control complex structures such as the nervous system, play a vital role in determining conditions such as disease and health by regulating gene expression. The binding sites of proteins on DNA determine the critical points of gene expression and contribute to the adaptation of cells to various conditions. Various methods have been developed in the literature for the prediction of transcription factor binding sites, which is an important step for the diagnosis and treatment of genetic diseases. Several studies have been developed with successful results obtained by using DNA sequence and shape features together. In this study, a hybrid method is proposed by combining different deep learning technologies to identify transcription factor interactions based on DNA sequences and shapes. 165 validated CHIP-Seq datasets were used in the study.

References

  • [1] Angermueller, C., Pärnamaa, T., Parts, L. and Stegle, O., “Deep learning for computational biology”, Molecular systems biology, 12(7), 878, (2016).
  • [2] Min, S., Lee, B. and Yoon, S., “Deep learning in bioinformatics”, Briefings in bioinformatics, 18(5), 851-869, (2017).
  • [3] Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., ... and Xie, Z., “Deep learning and its applications in Biomedicine”, Genomics, proteomics and bioinformatics, 16(1), 17-32, (2018).
  • [4] Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., ... and Weirauch, M. T., “The human transcription factors”, Cell, 172(4), 650-665, (2018).
  • [5] Tariq, S. and Amin, A., “Detection of DNA-Protein Binding Using Deep Learning”, 2023 IEEE International Conference on Emerging Trends in Engineering, Sciences and Technology (ICES&T) (pp. 1-4). IEEE, (2023).
  • [6] Johnson, D.S., Mortazavi, A., Myers, R.M. and Wold, B., “Genome-wide mapping of in vivo protein-DNA interactions”, Science, 316(5830), 1497-1502, (2007).
  • [7] Zeng, Y., Gong, M., Lin, M., Gao, D. and Zhang, Y., “A review about transcription factor binding sites prediction based on deep learning”, Ieee Access, 8, 219256-219274, (2020).
  • [8] Clark, S. J., Argelaguet, R., Kapourani, C. A., Stubbs, T. M., Lee, H. J., Alda-Catalinas, C., ... and Reik, W., “scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells”, Nature communications, 9(1), 781, (2018).
  • [9] Song, Y., Chi, A. Y. and Qu, J., “A graph theoretic approach for the feature extraction of transcription factor binding sites”, Intelligent Computing Theories and Methodologies: 11th International Conference, ICIC 2015, Fuzhou, China, August 20-23, 2015, Proceedings, Part II 11 (pp. 445-455). Springer International Publishing, (2015).
  • [10] Keilwagen, J. and Grau, J., “Varying levels of complexity in transcription factor binding motifs”, Nucleic acids research, 43(18), e119-e119, (2015).
  • [11] Alipanahi, B., Delong, A., Weirauch, M. T. and Frey, B. J., “Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning”, Nature biotechnology, 33(8), 831-838, (2015).
  • [12] Hassanzadeh, H. R. and Wang, M. D., “DeeperBind: Enhancing prediction of sequence specificities of DNA binding proteins”, 2016 IEEE International conference on bioinformatics and biomedicine (BIBM) (pp. 178-183). IEEE, (2016).
  • [13] Li, Z., Liu, F., Yang, W., Peng, S. and Zhou, J., “A survey of convolutional neural networks: analysis, applications, and prospects”, IEEE transactions on neural networks and learning systems, 33(12), 6999-7019, (2021).
  • [14] Zhang, Q., Zhu, L. and Huang, D. S., “High-order convolutional neural network architecture for predicting DNA-protein binding sites”, IEEE/ACM transactions on computational biology and bioinformatics, 16(4), 1184-1192, (2018).
  • [15] Trabelsi, A., Chaabane, M. and Ben-Hur, A., “Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities”, Bioinformatics, 35(14), i269-i277, (2019).
  • [16] Abdollahyan, M., Elgar, G. and Smeraldi, F., “Identifying potential regulatory elements by transcription factor binding site alignment using partial order graphs”, International Journal of Foundations of Computer Science, 29(08), 1345-1354, (2018).
  • [17] Zhang, Q., Zhu, L., Bao, W. and Huang, D. S., “Weakly-supervised convolutional neural network architecture for predicting protein-DNA binding”, IEEE/ACM transactions on computational biology and bioinformatics, 17(2), 679-689, (2018).
  • [18] Zhang, Q., Shen, Z. and Huang, D. S., “Modeling in-vivo protein-DNA binding by combining multiple-instance learning with a hybrid deep neural network”, Scientific reports, 9(1), 8484, (2019).
  • [19] Chen, C., Hou, J., Shi, X., Yang, H., Birchler, J. A. and Cheng, J., “Interpretable attention model in transcription factor binding site prediction with deep neural networks”, bioRxiv, 648691, (2019).
  • [20] Zhou, J., Lu, Q., Xu, R., Gui, L. and Wang, H., “Prediction of TF-binding site by inclusion of higher order position dependencies”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(4), 1383-1393, (2019).
  • [21] Zhang, Y., Qiao, S., Ji, S. and Li, Y., “DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding”, International Journal of Machine Learning and Cybernetics, 11, 841-851, (2020).
  • [22] Aziz, F. A. and Al-Rashid, S. Z., “Prediction of DNA binding sites bound to specific transcription factors by the SVM algorithm”, Iraqi Journal of Science, 5024-5036, (2022).
  • [23] Wang, W., Jiao, X., Sun, B., Liang, S., Wang, X. and Zhou, Y., “DeepGenBind: a novel deep learning model for predicting transcription factor binding sites”, 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 3629-3635). IEEE, (2022).
  • [24] Song, R. and Du, X., “Predicting transcription factor binding sites by dual-stream multiple instance learning network”, 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 3391-3398). IEEE, (2022).
  • [25] Cheng, J., Xu, M., Liu, Y. and Huang, W., “AttBind: Prediction of Transcription Factor Binding Sites Across Cell-types Based on Attention Mechanism”, 2022 7th International Conference on Computer and Communication Systems (ICCCS) (pp. 135-139). IEEE, (2022).
  • [26] Li, B., Wang, Z., Xiong, S. and Zhang, Y., “Densely convolutional neural network for transcription factor binding sites prediction using DNA sequence and histone modification”, 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 179-183). IEEE, (2022).
  • [27] Cao, L., Liu, P., Chen, J. and Deng, L., “Prediction of transcription factor binding sites using a combined deep learning approach”, Frontiers in Oncology, 12, 893520, (2022).
  • [28] Yu, Y., Ding, P., Gao, H., Liu, G., Zhang, F. and Yu, B., “Cooperation of local features and global representations by a dual-branch network for transcription factor binding sites prediction”, Briefings in Bioinformatics, 24(2), bbad036, (2023).
  • [29] Rhee, H. S. and Pugh, B. F., “Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution”, Cell, 147(6), 1408-1419, (2011).
  • [30] [30] Mardis, E. R., “DNA sequencing technologies: 2006–2016”, Nature protocols, 12(2), 213-218, (2017).
  • [31] Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A. and Waterston, R. H., “DNA sequencing at 40: past, present and future”, Nature, 550(7676), 345-353, (2017).
  • [32] Abe, N., Dror, I., Yang, L., Slattery, M., Zhou, T., Bussemaker, H. J., ... and Mann, R. S., “Deconvolving the recognition of DNA shape from sequence”, Cell, 161(2), 307-318, (2015).
  • [33] DNAShaper, https://www.bioconductor.org/
  • [34] Fletez-Brant, C., Lee, D., McCallion, A. S. and Beer, M. A., “kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets”, Nucleic acids research, 41(W1), W544-W556, (2013).
  • [35] https://en.wikipedia.org/wiki/K-mer
  • [36] Dey, R. and Salem, F. M., “Gate-variants of gated recurrent unit (GRU) neural networks”, 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS) (pp. 1597-1600). IEEE, (2017).
  • [37] Bakır H. and Eker S. B., “An experimental study for evaluating the performance of CNN pre-trained models in noisy environments”, Journal of Polytechnic, 27(1): 355-369, (2024).
  • [38] Gençaslan S., Utku A. and Akcayol M.A., “Derin Öğrenme Tabanlı Video Üzerinde Olay Sınıflandırma”, Journal of Polytechnic, 26(3): 1155-1165, (2023).
  • [39] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I., “Attention Is All You Need”, Advances in Neural Information Processing Systems, (2017).
  • [40] https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc
  • [41] https://builtin.com/data-science/roc-curves-auc
  • [42] https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
  • [43] Zeng, H., Edwards, M. D., Liu, G. and Gifford, D. K., “Convolutional neural network architectures for predicting DNA–protein binding”, Bioinformatics, 32(12), i121-i127, (2016).
  • [44] Kribelbauer, J. F., Rastogi, C., Bussemaker, H. J. and Mann, R. S., “Low-affinity binding sites and the transcription factor specificity paradox in eukaryotes”, Annual review of cell and developmental biology, 35(1), 357-379, (2019).
  • [45] Dittmer, J. and Nordheim, A., “Ets transcription factors and human disease”, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1377(2), F1-F11, (1998).
  • [46] Ji, Y., Zhou, Z., Liu, H. and Davuluri, R. V., “DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome”, Bioinformatics, 37(15), 2112-2120, (2021).
  • [47] Wang, K., Zeng, X., Zhou, J., Liu, F., Luan, X. and Wang, X., “BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning”, Briefings in Bioinformatics, 25(3), bbae195, (2024).
  • [48] Tariq, S. and Amin, A., “DeepCTF: transcription factor binding specificity prediction using DNA sequence plus shape in an attention-based deep learning model”, Signal, Image and Video Processing, 1-13, (2024).
  • [49] Wang, Z., Gong, M., Liu, Y., Xiong, S., Wang, M., Zhou, J. and Zhang, Y., “Towards a better understanding of TF-DNA binding prediction from genomic features”, Computers in Biology and Medicine, 149, 105993, (2022).
  • [50] Yang, J., Ma, A., Hoppe, A. D., Wang, C., Li, Y., Zhang, C., ... and Ma, Q., “Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework”, Nucleic acids research, 47(15), 7809-7824, (2019).
  • [51] Zhang, Q., Shen, Z. and Huang, D. S., “Predicting in-vitro transcription factor binding sites using DNA sequence+ shape”, IEEE/ACM transactions on computational biology and bioinformatics, 18(2), 667-676, (2019).
  • [52] Wang, S., Zhang, Q., Shen, Z., He, Y., Chen, Z. H., Li, J., and Huang, D. S., “Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture”, Molecular Therapy-Nucleic Acids, 24, 154-163, (2021).
  • [53] Zhou, T., Shen, N., Yang, L., Abe, N., Horton, J., Mann, R. S., ... and Rohs, R., “Quantitative modeling of transcription factor binding specificities using DNA shape”, Proceedings of the National Academy of Sciences, 112(15), 4654-4659, (2015).
  • [54] Wang, X., Qiao, L., Qu, P. and Yang, Q., “TBCA: Prediction of transcription factor binding sites using a deep neural network with lightweight attention mechanism”, IEEE Journal of Biomedical and Health Informatics, (2024).
  • [55] Ding, P., Wang, Y., Zhang, X., Gao, X., Liu, G. and Yu, B., “DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape”, Briefings in bioinformatics, 24(4), bbad231, (2023).
  • [56] Wei, Y., Zhang, Q. and Liu, L., “Predicting transcription factor binding sites by a multi-modal representation learning method based on cross-attention network”, Applied Soft Computing, 166, 112134, (2024).
  • [57] Mathelier, A., Xin, B., Chiu, T. P., Yang, L., Rohs, R. and Wasserman, W. W., “DNA shape features improve transcription factor binding site predictions in vivo”, Cell systems, 3(3), 278-286, (2016).
  • [58] Gordân, R., Shen, N., Dror, I., Zhou, T., Horton, J., Rohs, R. and Bulyk, M. L., “Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape”, Cell reports, 3(4), 1093-1104, (2013).
  • [59] Rohs, R., West, S. M., Sosinsky, A., Liu, P., Mann, R. S. and Honig, B., “The role of DNA shape in protein–DNA recognition”, Nature, 461(7268), 1248-1253, (2009).
  • [60] Gordân, R., Shen, N., Dror, I., Zhou, T., Horton, J., Rohs, R. and Bulyk, M. L., “Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape”, Cell reports, 3(4), 1093-1104, (2013).
  • [61] Lazarovici, A., Zhou, T., Shafer, A., Dantas Machado, A. C., Riley, T. R., Sandstrom, R., ... and Bussemaker, H. J., “Probing DNA shape and methylation state on a genomic scale with DNase I”, Proceedings of the National Academy of Sciences, 110(16), 6376-6381, (2013).
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Deep Learning, Artificial Intelligence (Other)
Journal Section Research Article
Authors

Ayşegül Hatipoğlu 0000-0003-1584-0945

Volkan Altuntaş 0000-0003-3144-8724

Early Pub Date November 28, 2024
Publication Date
Submission Date July 2, 2024
Acceptance Date November 26, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Hatipoğlu, A., & Altuntaş, V. (2024). DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1509329
AMA Hatipoğlu A, Altuntaş V. DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model. Politeknik Dergisi. Published online November 1, 2024:1-1. doi:10.2339/politeknik.1509329
Chicago Hatipoğlu, Ayşegül, and Volkan Altuntaş. “DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model”. Politeknik Dergisi, November (November 2024), 1-1. https://doi.org/10.2339/politeknik.1509329.
EndNote Hatipoğlu A, Altuntaş V (November 1, 2024) DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model. Politeknik Dergisi 1–1.
IEEE A. Hatipoğlu and V. Altuntaş, “DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model”, Politeknik Dergisi, pp. 1–1, November 2024, doi: 10.2339/politeknik.1509329.
ISNAD Hatipoğlu, Ayşegül - Altuntaş, Volkan. “DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model”. Politeknik Dergisi. November 2024. 1-1. https://doi.org/10.2339/politeknik.1509329.
JAMA Hatipoğlu A, Altuntaş V. DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model. Politeknik Dergisi. 2024;:1–1.
MLA Hatipoğlu, Ayşegül and Volkan Altuntaş. “DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1509329.
Vancouver Hatipoğlu A, Altuntaş V. DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini İçin Derin Öğrenme Yöntemleri Kullanan Hibrit Bir Model. Politeknik Dergisi. 2024:1-.