Research Article
BibTex RIS Cite

Investigation of Dynamic Behaviors In Grooving Operations with Saw Milling Machines

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1509422

Abstract

Chatter encountered during slot milling operations is one of the factors that affects manufacturing. Vibration in this process; parameters such as material structure, machinability parameters, spindle, cutting tool, tool holder and rigidity are affected. As a result, machine life, surface and dimensional quality of the workpiece, tool wear, etc. It is of critical importance in terms of outputs such as in this study, test samples made of AISI D2 hot work tool steel and AISI H13 cold work tool steel, prepared in accordance with TS ISO 8688 standard, were subjected to slot milling using HSS circular saw milling cutters (in accordance with DIN 1837A standard). Slot milling experiments were carried out at five different table feed rates without using coolant, keeping the speed and depth of cut constant. In this study, analytical, simulation and experimental stability analyzes were carried out on the test sample material processed with a circular saw tool using the same directional milling technique, taking into account the properties of the cutting tool. The workpiece frequency response response was evaluated as the basic parameter and each chip removal, frequency response response and stability diagrams were compared with the experimental results. In the study; Using a two-degree-of-freedom experimental setup, data were obtained from the change in workpiece and tool behavior resulting from machining through slot milling experiments. The data obtained as a result of the theoretical, simulation and experimental studies were interpreted. While the analytical and mathematical modeling results largely overlap, deviations have been observed in the experimental results

References

  • [1] Insperger, T.; Mann, B.P.; Stépán, G. and Bayly, P.V., “Stability of up-milling and down-milling. Part 1: Alternative analytical methods”, International Journal of Machine Tools and Manufacture, Vol. 43, No. 1, pp. 25-34, (2003).
  • [2] Insperger, T.; Mann, B.P.; Stépán, G. and Bayly, P.V., “Stability of up-milling and down-milling. Part 2: Experimental verification”, International Journal of Machine Tools and Manufacture, Vol. 43, No. 1, pp. 35-40, (2003).
  • [3] Altintas, Y., "Metal cutting mechanics, machine tool vibrations, and CNC design." Manufacturing Automation (2000).
  • [4] Altintas, Y. and Budak, E., “Analytical prediction of stability lobes in milling”, Annals of the CIRP, Vol. 44, No. 1, pp. 357-362, (1995).
  • [5] Bediaga, I., Igor, E., and Jokin M., "Time and frequency domain models for chatter prediction in milling." DAAAM International Scientific Book 2005: 33-48., (2005).
  • [6] Wiercigroch, M., and Budak, E., "Sources of nonlinearities, chatter generation and suppression in metal cutting." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 663-693, (2001).
  • [7] Budak, E., Altintas Y. "Prediction of milling force coefficients from orthogonal cutting data." ASME Prod. Eng. Div Publ. Ped., 453-460: 64 (1993).
  • [8] Quintana B.G., “Stability lobes diagram identification and surface roughness monitoring in milling processes”, Doctoral dissertation, Universitat de Girona., (2010).
  • [9] Faassen, R., Petrus H., "Chatter prediction and control for high-speed milling: modelling and experiments", Phd. Thesis (2007).
  • [10] Wiercigroch, M. and Anton M. K., "Frictional chatter in orthogonal metal cutting" Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences: 713-738, (2001).
  • [11] Tlusty, J., and Polacek, M.. “The stability of machine tools against self-excited vibrations in machining”, International Research in Production Engineering, 465-474, (1963).
  • [12] Ganguli, A. B., et al. "Active damping of chatter in machine tools-demonstration with a ‘hardware-in-the-loop’simulator." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 359-369, (2005).
  • [13] Faassen, R. P. H., et al. "Prediction of regenerative chatter by modelling and analysis of high-speed milling." International Journal of Machine Tools and Manufacture, 1437-1446,(2003).
  • [14] Kline, W.A., and Richard E.D., "The effect of runout on cutting geometry and forces in end milling." International Journal of Machine Tool Design and Research, 123-140, (1983).
  • [15] Altintaş, Y., and Budak, E., "Analytical prediction of stability lobes in milling." CIRP Annals, 357-362, (1995).
  • [16] Schmitz, T.L., and Donalson, R. R., "Predicting high-speed machining dynamics by substructure analysis." CIRP Annals, 303-308, 49.1 (2000).
  • [17] Kıvanç, E.B., “Modeling statics and dynamics of milling machine components”, Phd. Thesis, (2003).
  • [18] Boothroyd, Geoffrey, Fundamentals of metal machining and machine tools. Vol. 28. Crc Press, (1988).
  • [19] Sarı, Hüseyin. "Frezelemede takım geometrisi ve tırlama titreşimlerinin yüzey pürüzlülüğüne etkileri", Msc Thesis, (2008).
  • [20] Mihmat, Fürğan, “Farklı çeliklerin testere freze çakılarıyla işlenebilirliklerinin incelenmesi”, Msc Thesis. E.Ü. Fen Bilimleri Enstitüsü, (2009).
  • [21] Ulaş, H.B., Mihmat, F., and Demiri H., "DIN 1.2344 sıcak iş takım çeliğinin testere freze çakılarıyla işlenebilirliğinin araştırılması." Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 170-178, (2010).
  • [22] Mendi, F., Takım Tezgahları Teori ve Hesapları, Gazi Kitabevi, Ankara, (2006).
  • [23] Tschätsch, Heinz. Applied machining technology. Springer Science & Business Media, (2010).
  • [24] Huda, Zainul. Manufacturing: mathematical models, problems, and solutions. CRC Press, (2018).
  • [25] Akkurt, Mustafa.Talaş kaldırma yöntemleri ve takım tezgâhları. Birsen Yayınevi, (1992).
  • [26] Shaw, Milton Clayton, and J. O. Cookson, Metal cutting principles. Vol. 2. No. 3. New York: Oxford university press, (2005).
  • [27] Tlusty, J., and F. Ismail. "Basic non-linearity in machining chatter." CIRP Annals 30.1: 299-304, (1981).
  • [28] Minis, Ioannis, and Rafael Yanushevsky. "A new theoretical approach for the prediction of machine tool chatter in milling." J. Eng. Ind. 1-8. (1993).
  • [29] Budak, Erhan, Yusuf Altintas, and E. J. A. Armarego. "Prediction of milling force coefficients from orthogonal cutting data". J. Manuf. Sci. Eng., 216-224 (1996).
  • [30] Smith, S. and Tlusty, J. “Efficient simulation programs for chatter in milling”, Annals of the CIRP, Vol. 42, No.1, pp. 463-466, (1993).
  • [31] Smith, S., and J. Tlusty. "Efficient simulation programs for chatter in milling." CIRP annals 42.1 463-466, (1993).
  • [32] Bediaga, Iñigo, Igor Egana, and Jokin Munoa. "Time and frequency domain models for chatter prediction in milling." DAAAM International Scientific Book 2005 33-48, (2005).
  • [33] Sanz-Calle, Markel, et al. "On the effect of radial engagement on the milling stability of modes perpendicular to the feed direction." CIRP Journal of Manufacturing Science and Technology 49 111-127, (2024).
  • [34] Tlusty, J., and F. Ismail. "Basic non-linearity in machining chatter." CIRP Annals, 299-304, (1981).
  • [35] Smith, S., and J. Tlusty. "Efficient simulation programs for chatter in milling." CIRP annals 463-466, (1993).
  • [36] Minis, Ioannis, and Rafael Yanushevsky. "A new theoretical approach for the prediction of machine tool chatter in milling", J. Eng. Ind., 1-8, Feb (1993).
  • [37] Budak, Erhan, and Yusuf Altintas. "Analytical prediction of chatter stability in milling—part I: general formulation. J. Dyn. Sys., Meas., Control. " 22-30, (1998).
  • [38] Davies, Matthew A., et al. "Stability prediction for low radial immersion milling." J. Manuf. Sci. Eng. 124.2 217-225., (2002).
  • [39] Insperger, Tamás, et al. "Multiple chatter frequencies in milling processes." Journal of sound and vibration 333-345, (2003).
  • [40] Altıntas, Y., et al. "Analytical prediction of stability lobes in ball end milling." J. Manuf. Sci. Eng. 586-592, (1999).
  • [41] Sastry, Sridhar, Shiv G. Kapoor, and Richard E. DeVor. "Floquet theory based approach for stability analysis of the variable speed face-milling process." J. Manuf. Sci. Eng. 10-17, (2002).
  • [42] Altintas, Y., Manufacturing automation metal cutting mechanics, machine tool vibrations, and CNC design, 2nd Edition, (2012).
  • [43] Sanz-Calle, Markel, et al. "On the effect of radial engagement on the milling stability of modes perpendicular to the feed direction." CIRP Journal of Manufacturing Science and Technology 49: 111-127, (2024).
  • [44] Kline, W. A., R. E. DeVor, and I. A. Shareef. "The prediction of surface accuracy in end milling." J. Eng. Ind. 272-278, Aug (1982).
  • [45] Engin, Serafettin, and Yusuf Altintas. "Mechanics and dynamics of general milling cutters.: Part I: helical end mills." International journal of machine tools and manufacture 2195-2212, (2001).
  • [46] Altintas, Yusuf. "Technology of manufacturing automation." Manufacturing automation (2012).
  • [47] Yoon, M. C., and Y. G. Kim. "Cutting dynamic force modelling of endmilling operation." Journal of materials processing technology, 1383-1389, (2004).
  • [48] Ko, Jeong Hoon, et al. "Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction." International Journal of Machine Tools and Manufacture, 1595-1605, (2002).
  • [49] Schmitz, Tony L., Matthew A. Davies, and Michael D. Kennedy. "Tool point frequency response prediction for high-speed machining by RCSA." J. Manuf. Sci. Eng. 700-707, (2001).

Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1509422

Abstract

Kanal açma işlemlerinde karşılaşılan tırlama, imalatı olumsuz yönde etkileyen faktörlerden birisidir. Bu süreçteki titreşim; malzeme yapısı, işlenebilirlik parametreleri, iş mili, kesici takım, takım tutucu ve rijitlik gibi parametreler etkilenmektedir. Elde edilen sonucunda tezgâh ömrü, iş parçasının yüzey ve boyut kalitesi, takım aşınması vb. gibi çıktılar yönünden kritik bir önem taşımaktadır. Bu çalışmada, TS-ISO-8688 standardına uygun olarak hazırlanan AISI-D2 sıcak iş takım çeliği ve AISI-H13 soğuk iş takım çeliği malzemeden deney numuneleri, HSS dairesel freze çakıları (DIN-1837A standardına uygun) kullanılarak, kanal frezeleme işlemine tabi tutulmuştur. Kanal frezeleme deneyleri, devir sayısı ve talaş derinliği sabit tutularak beş farklı tabla ilerleme hızı soğutma sıvısı kullanılmadan gerçekleştirilmiştir. Bu çalışmada, aynı yönlü frezeleme tekniği kullanılarak testere freze ile işlenen deney numunesi malzemesinin, kesici takımın özellikleri dikkate alınarak analitik, simülasyon ve deneysel kararlılık analizleri yapılmıştır. İş parçası frekans tepki cevabı temel parametre olarak değerlendirilerek oluşturulan, her talaş kaldırma, frekans tepki cevabı ve kararlılık diyagramları deney sonuçları ile kıyaslanmıştır. Çalışmada; iki serbestlik derecesine sahip deney düzeneğinde kanal frezeleme deneyleri ile de talaş kaldırmayla ortaya çıkan iş parçası ve takım davranışlarındaki değişiminden veriler elde edilmiştir. Yapılan teorik, simülasyon ve deneysel çalışmalar sonucunda elde edilen veriler yorumlanmıştır. Analitik ve matematiksel modelleme sonuçları büyük oranda örtüşürken, deneysel sonuçlarda sapmalar gözlemlenmiştir

References

  • [1] Insperger, T.; Mann, B.P.; Stépán, G. and Bayly, P.V., “Stability of up-milling and down-milling. Part 1: Alternative analytical methods”, International Journal of Machine Tools and Manufacture, Vol. 43, No. 1, pp. 25-34, (2003).
  • [2] Insperger, T.; Mann, B.P.; Stépán, G. and Bayly, P.V., “Stability of up-milling and down-milling. Part 2: Experimental verification”, International Journal of Machine Tools and Manufacture, Vol. 43, No. 1, pp. 35-40, (2003).
  • [3] Altintas, Y., "Metal cutting mechanics, machine tool vibrations, and CNC design." Manufacturing Automation (2000).
  • [4] Altintas, Y. and Budak, E., “Analytical prediction of stability lobes in milling”, Annals of the CIRP, Vol. 44, No. 1, pp. 357-362, (1995).
  • [5] Bediaga, I., Igor, E., and Jokin M., "Time and frequency domain models for chatter prediction in milling." DAAAM International Scientific Book 2005: 33-48., (2005).
  • [6] Wiercigroch, M., and Budak, E., "Sources of nonlinearities, chatter generation and suppression in metal cutting." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 663-693, (2001).
  • [7] Budak, E., Altintas Y. "Prediction of milling force coefficients from orthogonal cutting data." ASME Prod. Eng. Div Publ. Ped., 453-460: 64 (1993).
  • [8] Quintana B.G., “Stability lobes diagram identification and surface roughness monitoring in milling processes”, Doctoral dissertation, Universitat de Girona., (2010).
  • [9] Faassen, R., Petrus H., "Chatter prediction and control for high-speed milling: modelling and experiments", Phd. Thesis (2007).
  • [10] Wiercigroch, M. and Anton M. K., "Frictional chatter in orthogonal metal cutting" Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences: 713-738, (2001).
  • [11] Tlusty, J., and Polacek, M.. “The stability of machine tools against self-excited vibrations in machining”, International Research in Production Engineering, 465-474, (1963).
  • [12] Ganguli, A. B., et al. "Active damping of chatter in machine tools-demonstration with a ‘hardware-in-the-loop’simulator." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 359-369, (2005).
  • [13] Faassen, R. P. H., et al. "Prediction of regenerative chatter by modelling and analysis of high-speed milling." International Journal of Machine Tools and Manufacture, 1437-1446,(2003).
  • [14] Kline, W.A., and Richard E.D., "The effect of runout on cutting geometry and forces in end milling." International Journal of Machine Tool Design and Research, 123-140, (1983).
  • [15] Altintaş, Y., and Budak, E., "Analytical prediction of stability lobes in milling." CIRP Annals, 357-362, (1995).
  • [16] Schmitz, T.L., and Donalson, R. R., "Predicting high-speed machining dynamics by substructure analysis." CIRP Annals, 303-308, 49.1 (2000).
  • [17] Kıvanç, E.B., “Modeling statics and dynamics of milling machine components”, Phd. Thesis, (2003).
  • [18] Boothroyd, Geoffrey, Fundamentals of metal machining and machine tools. Vol. 28. Crc Press, (1988).
  • [19] Sarı, Hüseyin. "Frezelemede takım geometrisi ve tırlama titreşimlerinin yüzey pürüzlülüğüne etkileri", Msc Thesis, (2008).
  • [20] Mihmat, Fürğan, “Farklı çeliklerin testere freze çakılarıyla işlenebilirliklerinin incelenmesi”, Msc Thesis. E.Ü. Fen Bilimleri Enstitüsü, (2009).
  • [21] Ulaş, H.B., Mihmat, F., and Demiri H., "DIN 1.2344 sıcak iş takım çeliğinin testere freze çakılarıyla işlenebilirliğinin araştırılması." Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 170-178, (2010).
  • [22] Mendi, F., Takım Tezgahları Teori ve Hesapları, Gazi Kitabevi, Ankara, (2006).
  • [23] Tschätsch, Heinz. Applied machining technology. Springer Science & Business Media, (2010).
  • [24] Huda, Zainul. Manufacturing: mathematical models, problems, and solutions. CRC Press, (2018).
  • [25] Akkurt, Mustafa.Talaş kaldırma yöntemleri ve takım tezgâhları. Birsen Yayınevi, (1992).
  • [26] Shaw, Milton Clayton, and J. O. Cookson, Metal cutting principles. Vol. 2. No. 3. New York: Oxford university press, (2005).
  • [27] Tlusty, J., and F. Ismail. "Basic non-linearity in machining chatter." CIRP Annals 30.1: 299-304, (1981).
  • [28] Minis, Ioannis, and Rafael Yanushevsky. "A new theoretical approach for the prediction of machine tool chatter in milling." J. Eng. Ind. 1-8. (1993).
  • [29] Budak, Erhan, Yusuf Altintas, and E. J. A. Armarego. "Prediction of milling force coefficients from orthogonal cutting data". J. Manuf. Sci. Eng., 216-224 (1996).
  • [30] Smith, S. and Tlusty, J. “Efficient simulation programs for chatter in milling”, Annals of the CIRP, Vol. 42, No.1, pp. 463-466, (1993).
  • [31] Smith, S., and J. Tlusty. "Efficient simulation programs for chatter in milling." CIRP annals 42.1 463-466, (1993).
  • [32] Bediaga, Iñigo, Igor Egana, and Jokin Munoa. "Time and frequency domain models for chatter prediction in milling." DAAAM International Scientific Book 2005 33-48, (2005).
  • [33] Sanz-Calle, Markel, et al. "On the effect of radial engagement on the milling stability of modes perpendicular to the feed direction." CIRP Journal of Manufacturing Science and Technology 49 111-127, (2024).
  • [34] Tlusty, J., and F. Ismail. "Basic non-linearity in machining chatter." CIRP Annals, 299-304, (1981).
  • [35] Smith, S., and J. Tlusty. "Efficient simulation programs for chatter in milling." CIRP annals 463-466, (1993).
  • [36] Minis, Ioannis, and Rafael Yanushevsky. "A new theoretical approach for the prediction of machine tool chatter in milling", J. Eng. Ind., 1-8, Feb (1993).
  • [37] Budak, Erhan, and Yusuf Altintas. "Analytical prediction of chatter stability in milling—part I: general formulation. J. Dyn. Sys., Meas., Control. " 22-30, (1998).
  • [38] Davies, Matthew A., et al. "Stability prediction for low radial immersion milling." J. Manuf. Sci. Eng. 124.2 217-225., (2002).
  • [39] Insperger, Tamás, et al. "Multiple chatter frequencies in milling processes." Journal of sound and vibration 333-345, (2003).
  • [40] Altıntas, Y., et al. "Analytical prediction of stability lobes in ball end milling." J. Manuf. Sci. Eng. 586-592, (1999).
  • [41] Sastry, Sridhar, Shiv G. Kapoor, and Richard E. DeVor. "Floquet theory based approach for stability analysis of the variable speed face-milling process." J. Manuf. Sci. Eng. 10-17, (2002).
  • [42] Altintas, Y., Manufacturing automation metal cutting mechanics, machine tool vibrations, and CNC design, 2nd Edition, (2012).
  • [43] Sanz-Calle, Markel, et al. "On the effect of radial engagement on the milling stability of modes perpendicular to the feed direction." CIRP Journal of Manufacturing Science and Technology 49: 111-127, (2024).
  • [44] Kline, W. A., R. E. DeVor, and I. A. Shareef. "The prediction of surface accuracy in end milling." J. Eng. Ind. 272-278, Aug (1982).
  • [45] Engin, Serafettin, and Yusuf Altintas. "Mechanics and dynamics of general milling cutters.: Part I: helical end mills." International journal of machine tools and manufacture 2195-2212, (2001).
  • [46] Altintas, Yusuf. "Technology of manufacturing automation." Manufacturing automation (2012).
  • [47] Yoon, M. C., and Y. G. Kim. "Cutting dynamic force modelling of endmilling operation." Journal of materials processing technology, 1383-1389, (2004).
  • [48] Ko, Jeong Hoon, et al. "Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction." International Journal of Machine Tools and Manufacture, 1595-1605, (2002).
  • [49] Schmitz, Tony L., Matthew A. Davies, and Michael D. Kennedy. "Tool point frequency response prediction for high-speed machining by RCSA." J. Manuf. Sci. Eng. 700-707, (2001).
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Dynamics, Vibration and Vibration Control, Machine Theory and Dynamics, Manufacturing Processes and Technologies (Excl. Textiles)
Journal Section Research Article
Authors

Hasan Basri Ulaş 0000-0002-9754-6055

Fürğan Mihmat 0009-0003-6044-2206

Halil Demir 0000-0002-9802-083X

Early Pub Date May 22, 2025
Publication Date October 14, 2025
Submission Date July 2, 2024
Acceptance Date April 16, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Ulaş, H. B., Mihmat, F., & Demir, H. (2025). Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1509422
AMA Ulaş HB, Mihmat F, Demir H. Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi. Politeknik Dergisi. Published online May 1, 2025:1-1. doi:10.2339/politeknik.1509422
Chicago Ulaş, Hasan Basri, Fürğan Mihmat, and Halil Demir. “Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi”. Politeknik Dergisi, May (May 2025), 1-1. https://doi.org/10.2339/politeknik.1509422.
EndNote Ulaş HB, Mihmat F, Demir H (May 1, 2025) Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi. Politeknik Dergisi 1–1.
IEEE H. B. Ulaş, F. Mihmat, and H. Demir, “Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi”, Politeknik Dergisi, pp. 1–1, May2025, doi: 10.2339/politeknik.1509422.
ISNAD Ulaş, Hasan Basri et al. “Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi”. Politeknik Dergisi. May2025. 1-1. https://doi.org/10.2339/politeknik.1509422.
JAMA Ulaş HB, Mihmat F, Demir H. Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi. Politeknik Dergisi. 2025;:1–1.
MLA Ulaş, Hasan Basri et al. “Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1509422.
Vancouver Ulaş HB, Mihmat F, Demir H. Testere Frezelerle Kanal Açma İşlemlerinde Dinamik Davranışların İncelenmesi. Politeknik Dergisi. 2025:1-.