Research Article
BibTex RIS Cite

Çift Bantlı Değiştirilmiş Tamamlayıcı Ayrık Halka Rezonatör Yüklü Alttaş Entegre Dalga Kılavuzu Tabanlı Bant Geçiren Filtre

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1512729

Abstract

Bu çalışma, ışıma kayıplarını azaltmak için alttaş entegre dalga kılavuzu (AED) geçişini mikroşeritten uygulayan çift bantlı bir bant geçiren filtre tasarımı sunmaktadır. Önerilen filtre, boyutunu en aza indirmek ve çift negatif özellik kazanmak için tamamlayıcı ayrık halka rezonatörü (TAHR) ile yüklenmiştir. İstenilen ikinci frekansta rezonansa sahip olmak için TAHR'ın içine papyon şeklinde bir yuva kazınmıştır. Benzetim sonuçları gerçekleştirildikten sonra, tasarlanan filtre Rogers RT5880 dielektrik alttaş üzerinde üretilmiş ve deneysel sonuçlar benzetim sonuçlarıyla karşılaştırılmıştır. Önerilen filtre, sırasıyla %22,05 ve %26,29 kesirli bant genişliği değerleri ile 6,57 ve 12,55 GHz'de merkez frekanslara sahiptir. Ayrıca sunulan filtre, 0,327λg×0,352λg (burada λg, ilk geçiş bandının merkez frekansında yönlendirilen dalga boyudur) boyutuyla en iyi bant genişliği-boyut sonucunu sunmaktadır.

Ethical Statement

Bu makalenin yazarı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal özel bir izin gerektirmediğini beyan ederler.

References

  • [1] Choudhury A., & Maity S., “Design and fabrication of CSRR based tunable mechanically and electrically efficient band pass filter for K-band application”, AEU‐International Journal of Electronics and Communications, 72: 134-148, (2017).
  • [2] Fu S-H. & Tong C-M., “A novel CSRR-based defected ground structure with dual-bandgap characteristics”, Microwave Optical Technology Letters, 51(12): 2908-2910, (2009).
  • [3] Khaled E.E.M., Saad A.A.R. & Salem D.A., “A proximity-fed annular slot antenna with different a band-notch manipulations for ultra-wide band applications”, Progr Electromagn Res B, 37: 289-306, (2012). [4] Öznazı V., Ertürk V.B., “A comparative investigation of SRR- and CSRR-based band-reject filters: Simulations, experiments, and discussions”, Microwave Optical Technology Letters, 50(2): 519-523, (2008).
  • [5] Zhang H., Kang W. & Wu W., “Dual-band substrate integrated waveguide bandpass filter utilising complementary split-ring resonators”, Electronics Letters, 57(2): 85-87, (2018).
  • [6] Bonache J., Gil I., Garcia-Garcia J. & Martin F., “Novel microstrip bandpass filters based on complementary split-ring resonators”, IEEE Trans Microwave Theory Tech., 54(1): 265-271, (2006). [7] He X., Qiu L., Wang Y., Geng Z., Wang J. & Gui T., “A Compact Thin-Film Sensor Based on Nested Split-Ring-Resonator (SRR) Metamaterials for Microwave Applications”, Journal of Infrared, Millimeter, and Terahertz Waves, 32(7): 902-913, (2011).
  • [8] Liu J., Lin H., Zeng B., Yeh K. & Chang D., “An Improved Equivalent Circuit Model for CSRR-Based Bandpass Filter Design With Even and Odd Modes”, IEEE Microwwave and Wireless Components Letters, 20(4): 93-195, (2010).
  • [9] Hu X., Zhang Q. & He S., “Dual-band-rejection filter based on split ring resonator (SRR) and complimentary SRR”, Microwave Optical Technology Letters, 51(10): 2519-2522, (2009).
  • [10] Ates S.H., Akcam N. & Okan T., “Bandwidth and Gain Enhancement using FSS on CPW-fed Rectangular Patch Antenna for 5G mm-Wave Applications”, International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 09-11 June, (2022).
  • [11] Karahan M., Aksoy E., “Design and analysis of angular stable antipodal F‐type frequency selective surface with multi‐band characteristics. International Journal of RF and Microwave Computer‐Aided Engineering, 30(12): e22466, (2020).
  • [12] Can S., “Dual‐band sub‐6‐GHz frequency filtering with optically transparent single‐layer dual‐polarized smart surface”, Microwave and Optical Technology Letters, 66(1): e33959, (2024).
  • [13] Doken B., Koç A. B., Koç İ. G. & Altan M., “Effectively Optimized Dual-band Frequency Selective Surface Design for GSM Shielding Applications”, IETE Journal of Research, 70(1), 199–205, (2022).
  • [14] Gürdal S., Aksimsek S. & Tokan N.T., “A triple‐band frequency selective surfacefor 5G millimeter‐wave communications”, Microwave Optical Technology Letters, 65: 2697‐2703, (2023).
  • [15] Sondas A., “An FSSstructure with a band‐stop performance for UWB applications”, Microwave Optical Technology Letters, 65: 480‐485, (2023).
  • [16] Shi L-F, Sun C-Y., Chen S., Liu G-X. & Shi Y-F. Dual-band substrate integrated waveguide bandpass filter based on CSRRs and multimode resonator”, International Journal of RF and Microwave Computure Aided Engineering, 28(9): e21412, (2018).
  • [17] Yin B. & Lin Z., “A Novel Dual-Band Bandpass SIW Filter Loaded with Modified Dual-CSRRs and Z-Shaped Slot”, AEU‐International Journal of Electronics and Communications, 121: 153261, (2020).
  • [18] Xu S., Ma K., Meng F. & Yeo K.S., “Novel Defected Ground Structure and Two-Side Loading Scheme for Miniaturized Dual-Band SIW Bandpass Filter Designs”, IEEE Microwave and Wireless Componenets Letters, 25(4): 217-219, (2015).
  • [19] Danaeian M., Moznebi A-R. & Afrooz K., “Super Compact Dual-Band Substrate Integrated Waveguide Filters and Filtering Power Dividers Based on Evanescent-Mode Technique”, AEU‐International Journal of Electronics and Communications, 125:153348, (2020).
  • [20] Fu W., Li Z., Liu P., Cheng J. & Qiu X., “Modeling and Analysis of Novel CSRRs-Loaded Dual-Band Bandpass SIW Filters”, IEEE Transactions on Circuits and Systems II: Express Briefs, 68(7): 2352-2356, (2021).
  • [21] Duraisamy T., Kamakshy S., Karthikeyan S.S., Barik R.K. & Cheng Q.S., “Compact Wideband SIW Based Bandpass Filter for X, Ku and K Band Applications”, Radioengineering, 30(2): 288-295, (2021).
  • [22] Dokmetas B. & Akcam N., “Uydu haberleşme sistemleri için 8025-8400 MHz düşük gürültülü kuvvetlendirici tasarımı”, Journal of Polytechnic, 27(4), 1643-11648, (2024).
  • [23] Oz I., “GEO satellite orbit determination using spaceborn onboard receiver”, Journal of Polytechnic, 27(1): 101-108, (2022).
  • [24] Okan T., “Design and analysis of a quad‐band substrate‐integrated‐waveguide cavity backed slot antenna for 5G applications”, International Journal of RF and Microwave Computer-Aided Engineering, 30(7): e22236, (2020).
  • [25] Okan T. & Akçam N., “Wideband Low Cost FR4 Epoxy Based Antenna with H-shaped Slot for V-band Applications”, International Journal of RF and Microwave Computer-Aided Engineering, 31(2): e22348, (2021).
  • [26] Bhardwaj P., Deivalakshmi S. & Pandeeswari R., “Compact wideband substrate integrated waveguide bandpass filter for X/ Ku‐band application”, International Journal of RF and Microwave Computer-Aided Engineering, 31(6): e22634, (2021).
  • [27] Vineetha K.V., Siva Kumar M., Madhav B.T.P., Usha Devi Y. & Das S., “Flexible and Conformal Metamaterial based Microwave Absorber for WLAN, Wi-MAX and ISM Band Applications” Materials Technology, 37(8): 592-609, (2022).
  • [28] Ozkan R., Mert O., Yılmaz Y., Ramazan F. ve Duman M. “Attenuation of EM waves emitted from inset feed type microstrip rectangular patch antenna by wet snow”, Journal of Polytechnic, 27(2): 455-459, (2024).
  • [29] Chu P., Zhu P., Feng J., Guo L., Zhang L., Zhu F., ... & Wu K., “Substrate integrated waveguide filter with flexible mixed coupling”, IEEE Transactions on Microwave Theory and Techniques, 71(9): 4003-4011, (2023).
  • [30] Akgun O. & Tokan N. T., "H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications”, Turkish Journal of Electrical Engineering and Computer Sciences, 31(2), 249-262, (2023).
  • [31] García R., Coves Á., Herraiz D., San-Blas Á. A. & Bozzi, M., “Low-Loss Periodically Air-Filled Substrate Integrated Waveguide (SIW) Band-Pass Filters”, IEEE Access, 12: 3617- 3628, (2024).
  • [32] Guvenli K., Yenikaya, S. & Secmen, M., “A Parallel Connected Hybrid Microstrip-Substrate Integrated Waveguide Bandstop Filter”, Elektronika ir Elektrotechnika, 29(6), 26-32, (2023).
  • [33] Nasser M., Celik, A. R. & Helhel, S., “SIW-DGS bandpass filter design for C band satellite communications”, Sādhanā, 48(2): 55, (2023).
  • [34] Jiao M. R., Zhu F., Chu P., Yu W. & Luo G. Q., “Compact hybrid bandpass filters using substrate-integrated waveguide and stripline resonators”, IEEE Transactions on Microwave Theory and Techniques, 72(1): 391-400, (2023).
  • [35] Gorur A. K., Dogan, E. & Gorur A., “Single-wideband and dual-band bandpass filters based on compact quadruple-mode resonator”, Journal of Electromagnetic Waves and Applications, 38(3): 327-344, (2024).
  • [36] Messaoudi E. M., Perez J. D. M. & Boria V. E., “Compact substrate integrated waveguide wideband bandpass filter with post-manufacturing tuning capabilities”, IEEE Access, 11: 2327-2341, (2023).
  • [37] Lin G., Dong Y. & Luo X., “Miniaturized quarter-mode SIW filters loaded by dual-mode microstrip resonator with high selectivity and flexible response”, IEEE Microwave and Wireless Components Letters, 32(6): 660-663, (2022).
  • [38] Qu L., Zhang Y., Jing H., Liu J. & Fan Y., “Compact filtering crossover design based on SIW quintuple‐mode resonators”, Microwave and Optical Technology Letters, 64(2): 218-222, (2022).

Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1512729

Abstract

This study presents a dual-band bandpass filter design that implements microstrip to substrate integrated waveguide (SIW) transition to decrease radiation losses. The proposed filter is designed with using four complementary split ring resonators (CSRR) to minimize its size and to gain double negative property. A bowtie shaped slot is etched inside CSRR to have a second resonance at the spectrum. After the simulation results are performed the designed filter is fabricated on a Rogers RT5880 dielectric substrate and the experimental results are compared with the simulation results. The proposed filter has center frequencies at 6.57 and 12.55 GHz with fractional bandwidth (FBW) of 22.05% and 26.29%, respectively. Moreover, the presented filter offers the best bandwidth-to-size result with the size of 0.327λg×0.352λg (where λg is the wavelength at the first passband’s center frequency).

Ethical Statement

The author of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

References

  • [1] Choudhury A., & Maity S., “Design and fabrication of CSRR based tunable mechanically and electrically efficient band pass filter for K-band application”, AEU‐International Journal of Electronics and Communications, 72: 134-148, (2017).
  • [2] Fu S-H. & Tong C-M., “A novel CSRR-based defected ground structure with dual-bandgap characteristics”, Microwave Optical Technology Letters, 51(12): 2908-2910, (2009).
  • [3] Khaled E.E.M., Saad A.A.R. & Salem D.A., “A proximity-fed annular slot antenna with different a band-notch manipulations for ultra-wide band applications”, Progr Electromagn Res B, 37: 289-306, (2012). [4] Öznazı V., Ertürk V.B., “A comparative investigation of SRR- and CSRR-based band-reject filters: Simulations, experiments, and discussions”, Microwave Optical Technology Letters, 50(2): 519-523, (2008).
  • [5] Zhang H., Kang W. & Wu W., “Dual-band substrate integrated waveguide bandpass filter utilising complementary split-ring resonators”, Electronics Letters, 57(2): 85-87, (2018).
  • [6] Bonache J., Gil I., Garcia-Garcia J. & Martin F., “Novel microstrip bandpass filters based on complementary split-ring resonators”, IEEE Trans Microwave Theory Tech., 54(1): 265-271, (2006). [7] He X., Qiu L., Wang Y., Geng Z., Wang J. & Gui T., “A Compact Thin-Film Sensor Based on Nested Split-Ring-Resonator (SRR) Metamaterials for Microwave Applications”, Journal of Infrared, Millimeter, and Terahertz Waves, 32(7): 902-913, (2011).
  • [8] Liu J., Lin H., Zeng B., Yeh K. & Chang D., “An Improved Equivalent Circuit Model for CSRR-Based Bandpass Filter Design With Even and Odd Modes”, IEEE Microwwave and Wireless Components Letters, 20(4): 93-195, (2010).
  • [9] Hu X., Zhang Q. & He S., “Dual-band-rejection filter based on split ring resonator (SRR) and complimentary SRR”, Microwave Optical Technology Letters, 51(10): 2519-2522, (2009).
  • [10] Ates S.H., Akcam N. & Okan T., “Bandwidth and Gain Enhancement using FSS on CPW-fed Rectangular Patch Antenna for 5G mm-Wave Applications”, International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 09-11 June, (2022).
  • [11] Karahan M., Aksoy E., “Design and analysis of angular stable antipodal F‐type frequency selective surface with multi‐band characteristics. International Journal of RF and Microwave Computer‐Aided Engineering, 30(12): e22466, (2020).
  • [12] Can S., “Dual‐band sub‐6‐GHz frequency filtering with optically transparent single‐layer dual‐polarized smart surface”, Microwave and Optical Technology Letters, 66(1): e33959, (2024).
  • [13] Doken B., Koç A. B., Koç İ. G. & Altan M., “Effectively Optimized Dual-band Frequency Selective Surface Design for GSM Shielding Applications”, IETE Journal of Research, 70(1), 199–205, (2022).
  • [14] Gürdal S., Aksimsek S. & Tokan N.T., “A triple‐band frequency selective surfacefor 5G millimeter‐wave communications”, Microwave Optical Technology Letters, 65: 2697‐2703, (2023).
  • [15] Sondas A., “An FSSstructure with a band‐stop performance for UWB applications”, Microwave Optical Technology Letters, 65: 480‐485, (2023).
  • [16] Shi L-F, Sun C-Y., Chen S., Liu G-X. & Shi Y-F. Dual-band substrate integrated waveguide bandpass filter based on CSRRs and multimode resonator”, International Journal of RF and Microwave Computure Aided Engineering, 28(9): e21412, (2018).
  • [17] Yin B. & Lin Z., “A Novel Dual-Band Bandpass SIW Filter Loaded with Modified Dual-CSRRs and Z-Shaped Slot”, AEU‐International Journal of Electronics and Communications, 121: 153261, (2020).
  • [18] Xu S., Ma K., Meng F. & Yeo K.S., “Novel Defected Ground Structure and Two-Side Loading Scheme for Miniaturized Dual-Band SIW Bandpass Filter Designs”, IEEE Microwave and Wireless Componenets Letters, 25(4): 217-219, (2015).
  • [19] Danaeian M., Moznebi A-R. & Afrooz K., “Super Compact Dual-Band Substrate Integrated Waveguide Filters and Filtering Power Dividers Based on Evanescent-Mode Technique”, AEU‐International Journal of Electronics and Communications, 125:153348, (2020).
  • [20] Fu W., Li Z., Liu P., Cheng J. & Qiu X., “Modeling and Analysis of Novel CSRRs-Loaded Dual-Band Bandpass SIW Filters”, IEEE Transactions on Circuits and Systems II: Express Briefs, 68(7): 2352-2356, (2021).
  • [21] Duraisamy T., Kamakshy S., Karthikeyan S.S., Barik R.K. & Cheng Q.S., “Compact Wideband SIW Based Bandpass Filter for X, Ku and K Band Applications”, Radioengineering, 30(2): 288-295, (2021).
  • [22] Dokmetas B. & Akcam N., “Uydu haberleşme sistemleri için 8025-8400 MHz düşük gürültülü kuvvetlendirici tasarımı”, Journal of Polytechnic, 27(4), 1643-11648, (2024).
  • [23] Oz I., “GEO satellite orbit determination using spaceborn onboard receiver”, Journal of Polytechnic, 27(1): 101-108, (2022).
  • [24] Okan T., “Design and analysis of a quad‐band substrate‐integrated‐waveguide cavity backed slot antenna for 5G applications”, International Journal of RF and Microwave Computer-Aided Engineering, 30(7): e22236, (2020).
  • [25] Okan T. & Akçam N., “Wideband Low Cost FR4 Epoxy Based Antenna with H-shaped Slot for V-band Applications”, International Journal of RF and Microwave Computer-Aided Engineering, 31(2): e22348, (2021).
  • [26] Bhardwaj P., Deivalakshmi S. & Pandeeswari R., “Compact wideband substrate integrated waveguide bandpass filter for X/ Ku‐band application”, International Journal of RF and Microwave Computer-Aided Engineering, 31(6): e22634, (2021).
  • [27] Vineetha K.V., Siva Kumar M., Madhav B.T.P., Usha Devi Y. & Das S., “Flexible and Conformal Metamaterial based Microwave Absorber for WLAN, Wi-MAX and ISM Band Applications” Materials Technology, 37(8): 592-609, (2022).
  • [28] Ozkan R., Mert O., Yılmaz Y., Ramazan F. ve Duman M. “Attenuation of EM waves emitted from inset feed type microstrip rectangular patch antenna by wet snow”, Journal of Polytechnic, 27(2): 455-459, (2024).
  • [29] Chu P., Zhu P., Feng J., Guo L., Zhang L., Zhu F., ... & Wu K., “Substrate integrated waveguide filter with flexible mixed coupling”, IEEE Transactions on Microwave Theory and Techniques, 71(9): 4003-4011, (2023).
  • [30] Akgun O. & Tokan N. T., "H-plane SIW horn antenna with enhanced front-to-back ratio for 5G applications”, Turkish Journal of Electrical Engineering and Computer Sciences, 31(2), 249-262, (2023).
  • [31] García R., Coves Á., Herraiz D., San-Blas Á. A. & Bozzi, M., “Low-Loss Periodically Air-Filled Substrate Integrated Waveguide (SIW) Band-Pass Filters”, IEEE Access, 12: 3617- 3628, (2024).
  • [32] Guvenli K., Yenikaya, S. & Secmen, M., “A Parallel Connected Hybrid Microstrip-Substrate Integrated Waveguide Bandstop Filter”, Elektronika ir Elektrotechnika, 29(6), 26-32, (2023).
  • [33] Nasser M., Celik, A. R. & Helhel, S., “SIW-DGS bandpass filter design for C band satellite communications”, Sādhanā, 48(2): 55, (2023).
  • [34] Jiao M. R., Zhu F., Chu P., Yu W. & Luo G. Q., “Compact hybrid bandpass filters using substrate-integrated waveguide and stripline resonators”, IEEE Transactions on Microwave Theory and Techniques, 72(1): 391-400, (2023).
  • [35] Gorur A. K., Dogan, E. & Gorur A., “Single-wideband and dual-band bandpass filters based on compact quadruple-mode resonator”, Journal of Electromagnetic Waves and Applications, 38(3): 327-344, (2024).
  • [36] Messaoudi E. M., Perez J. D. M. & Boria V. E., “Compact substrate integrated waveguide wideband bandpass filter with post-manufacturing tuning capabilities”, IEEE Access, 11: 2327-2341, (2023).
  • [37] Lin G., Dong Y. & Luo X., “Miniaturized quarter-mode SIW filters loaded by dual-mode microstrip resonator with high selectivity and flexible response”, IEEE Microwave and Wireless Components Letters, 32(6): 660-663, (2022).
  • [38] Qu L., Zhang Y., Jing H., Liu J. & Fan Y., “Compact filtering crossover design based on SIW quintuple‐mode resonators”, Microwave and Optical Technology Letters, 64(2): 218-222, (2022).
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics
Journal Section Research Article
Authors

Galip Orkun Arıcan 0000-0002-9375-886X

Early Pub Date January 4, 2025
Publication Date
Submission Date July 8, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2025 EARLY VIEW

Cite

APA Arıcan, G. O. (2025). Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1512729
AMA Arıcan GO. Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter. Politeknik Dergisi. Published online January 1, 2025:1-1. doi:10.2339/politeknik.1512729
Chicago Arıcan, Galip Orkun. “Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter”. Politeknik Dergisi, January (January 2025), 1-1. https://doi.org/10.2339/politeknik.1512729.
EndNote Arıcan GO (January 1, 2025) Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter. Politeknik Dergisi 1–1.
IEEE G. O. Arıcan, “Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter”, Politeknik Dergisi, pp. 1–1, January 2025, doi: 10.2339/politeknik.1512729.
ISNAD Arıcan, Galip Orkun. “Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter”. Politeknik Dergisi. January 2025. 1-1. https://doi.org/10.2339/politeknik.1512729.
JAMA Arıcan GO. Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter. Politeknik Dergisi. 2025;:1–1.
MLA Arıcan, Galip Orkun. “Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1512729.
Vancouver Arıcan GO. Dual Band Modified Complementary Split Ring Resonator Loaded Substrate Integrated Waveguide Based Bandpass Filter. Politeknik Dergisi. 2025:1-.