PC-PBT Karışımlarının Hibrit ÇDKNT-GNP Nanodolgularla Takviyesi Sonucunda Isısal ve Elektriksel İletkenlik İyileştirmelerinin Değerlendirilmesi
Year 2025,
EARLY VIEW, 1 - 1
Tuba Özdemir Öge
Abstract
Bu çalışmada eriyik-karıştırma yöntemi kullanılarak ÇDKNT-GNP hibrit nanodolgu ile katkılanmış PC-PBT karışımlarının termal özellikleri ve elektriksel iletkenliklerindeki iyileşmelerin incelenmesi amaçlanmıştır. Diferansiyel tarama kalorimetresi (DSC) ve termogravimetrik analiz (TGA) sonuçları nano-katkı ilavesinin karışım kristalliklerini arttırdığını göstermiştir. Bunun yanında, yüksek katkı oranlarında numunelerin termal kararlılığında önemli bir düşüş gözlemlenmiş olup bu durum polimer matriks içindeki faz geçişlerine bağlanmıştır. Ağ. %5 katkı oranına sahip numunede iletken bir ağ elde edilmiş olup, %7'lik ağırlıkça katkı oranında elektriksel iletkenlikte düşüş gözlemlenmiş ve bu durum topaklaşma (aglomerasyon) etkisine bağlanmıştır. Elde edilen deneysel sonuçlar hibrit nanokompozitlerde üstün termal ve elektriksel performans elde edilmesi için nano-katkı kompozisyonunun optimizasyonunun önemini vurgulamaktadır.
Supporting Institution
Tübitak (1002-A)
Thanks
This research was funded by the TUBİTAK 1002-A project (grant no. 123M666). The author gratefully acknowledges the financial support provided by TÜBİTAK.
References
- [1] Maruzhenko, O., Mamunya, Y., Boiteux, G., Pusz, S., Szeluga, U., Pruvost, S., “Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers”, Int J Heat Mass Transf., 138: 75–84, (2019).
- [2] Chen, J., Gao, X.: “Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminum-based particles”. Diam Relat Mater., 100: 107571, (2019).
- [3] Kiran, M.D., Govindaraju, H.K., Lokesh Yadhav, B.R., Kumar, N., “Effect of various parameters on fracture toughness of polymer composites: A review”. Mater Today Proc., 92: 1–5, (2023).
- [4] Khanam, P.N., AlMaadeed, M.A.A., “Processing and characterization of polyethylene-based composites”, Advanced Manufacturing: Polymer & Composites Science, 1, 63–79, (2015).
- [5] Nagaraja, K.C., Rajanna, S., Prakash, G.S., Rajeshkumar, G., “Mechanical properties of polymer matrix composites: Effect of hybridization”, Mater Today Proc. 34: 536–538, (2021).
- [6] Abbasi, S., Ladani, R.B., Wang, C.H., Mouritz, A.P., “Boosting the electrical conductivity of polymer matrix composites using low resistivity Z-filaments”, Mater Des. 195: 109014, (2020).
- [7] Chen, Q., Yang, K., Feng, Y., Liang, L., Chi, M., Zhang, Z., Chen, X., “Recent advances in thermal-conductive insulating polymer composites with various fillers”. Compos Part A Appl Sci Manuf., 178: 107998, (2024).
- [8] Braga, A.R.C., Lemes, A.C., De Rosso, V.V., “Polymer nanocomposite’s applications in food and bioprocessing industry”, Elsevier, (2020).
- [9] Agboola, O., Popoola, P.A.P., Sadiku, R., Sanni, S.E., Babatunde, D.E., Abatan, O.G., Fayomi, S.O., Fasiku, O. V., “Polymer Nanocomposites for Advanced Automobile Applications”, Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials. 96–130, (2021).
- [10] Filippi, S., Mameli, E., Marazzato, C., Magagnini, P., “Comparison of solution-blending and melt-intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites”, Eur Polym J., 43: 1645–1659, (2007).
- [11] Shen, Z., Simon, G.P., Cheng, Y.B., “Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites”, Polymer (Guildf). 43: 4251–4260, (2002).
- [12] Albdiry, M., “Effect of melt blending processing on mechanical properties of polymer nanocomposites: a review”. Polymer Bulletin., 81: 5793–5821, (2024).
- [13] Nasir, R., Hasan, M.R., Chowdhury, S., “Synthesis and Applications of Polymer Nanocomposite Matrices: A Perspective”, Handbook of Polymer and ceramic Nanotechnology, 543–563, (2021).
- [14] Fawaz, J., Mittal, V., “Synthesis of Polymer Nanocomposites: Review of Various Techniques”, Synthesis Techniques for Polymer Nanocomposites, 1–30, (2014).
- [15] Varghese, N., Francis, T., Shelly, M., Nair, A.B., “Nanocomposites of polymer matrices: Nanoscale processing”, Nanoscale Processing, 383–406, (2021).
- [16] Xu, Z., Deng, J., Lai, Y., Chen, J., Chen, Y., Huang, S., Chen, A., Zhang, J., Lei, C., “Study on the exfoliation mechanism of graphene nanoplatelets in the polypropylene/graphene nanoplatelets composites under the elongational flow generated by convergent-divergent channels”, J Mater Sci., 57: 5467–5481, (2022).
- [17] Sahoo, B.P., Tripathy, D.K., “Properties and applications of polymer nanocomposites”, Clay and Carbon Based Polymer Nanocomposites, 1–222, (2017).
- [18] Meng, C., Qu, J.P., “Mechanical and thermal properties of polybutylene terephthalate/ethylene-vinyl acetate blends using vane extruder”, E-Polymers, 18: 67–73, (2018).
- [19] Polycarbonate - an overview - Prospector Knowledge Center, https://www.ulprospector.com/knowledge/11442/pe-polycarbonate-an-overview/, last accessed 2024/07/15.
- [20] Sanchez, E.M.S., “Ageing of PC/PBT blend: Mechanical properties and recycling possibility”, Polym Test., 26: 378–387, (2007).
- [21] Al Sheheri, S.Z., Al-Amshany, Z.M., Al Sulami, Q.A., Tashkandi, N.Y., Hussein, M.A., El-Shishtawy, R.M., “The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites”, Des Monomers Polym., 22: 8–53, (2019).
- [22] Raffaelle, R.P., “Nanostructured Photovoltaics Materials Fabrication and Characterization”, Nanostructured Materials for Solar Energy Conversion, 567–594, (2006).
- [23] Yongli, L., “Nanophase ceramic composites”, Ceramic-Matrix Composites, Microstructure, Properties and Applications, 243–259, (2006).
- [24] Yenigün Elif Özden., “Multi-Scale modelling of interface in carbon nanotube-polymer nanocomposites”, Politeknik, (2017).
- [25] Taşyürek, M., Tarakçioğlu, N., Üniversitesi, S., Fakültesi, T., Ve, M., Mühendisliği Bölümü, M., Mühendisliği, M., Kat, B., “Damage Behavior of Filament Winding Pipes Modified with Carbon Nanotubes Under Internal Pressure”, Journal of Polytechnic., 18: 211–217, (2015).
- [26] Rathinavel, S., Priyadharshini, K., Panda, D., “A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application”, Materials Science and Engineering: B., 268: 115095, (2021).
- [27] Mehra, N.K., Mishra, V., Jain, N.K., “A review of ligand tethered surface engineered carbon nanotubes”, Biomaterials, 35: 1267–1283, (2014).
- [28] Manzetti, S., Andersen, O., “Toxicological aspects of nanomaterials used in energy harvesting consumer electronics”, Renewable and Sustainable Energy Reviews, 16: 2102–2110, (2012).
- [29] Sehrawat, M., Rani, M., Sharma, S., Bharadwaj, S., Falzon, B.G., Singh, B.P., “Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review”, Carbon N Y, 219: 118747, (2024).
- [30] Alexander, R., Khausal, A., Bahadur, J., Dasgupta, K., “Bi-directional catalyst injection in floating catalyst chemical vapor deposition for enhanced carbon nanotube fiber yield”, Carbon Trends, 9: 100211, (2022).
- [31] YILMAZ, H., ALTIN, Y., BEDELOĞLU, A., “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”, Politeknik Dergisi, 24: 1719–1727, (2021).
- [32] Yee, K., Ghayesh, M.H., “A review on the mechanics of graphene nanoplatelets reinforced structures”, Int J Eng Sci., 186: 103831, (2023).
- [33] Nag, A., Simorangkir, R.B.V.B., Gawade, D.R., Nuthalapati, S., Buckley, J.L., O’Flynn, B., Altinsoy, M.E., Mukhopadhyay, S.C., “Graphene-based wearable temperature sensors: A review”, Mater Des., 221: 110971, (2022).
- [34] Bahiraei, M., Heshmatian, S., “Graphene family nanofluids: A critical review and future research directions”, Energy Convers Manag., 196: 1222–1256, (2019).
- [35] Wang, L., Aslani, F., “A review on material design, performance, and practical application of electrically conductive cementitious composites”, Constr Build Mater., 229: 116892, (2019).
- [36] Ezika, A.C., Adekoya, G.J., Sadiku, E.R., Ray, S.S., Hamam, Y., “Effect of hybrid nanofillers in polymer blends”, Nanofillers for Binary Polymer Blends, 465–481, (2024).
- [37] Li, L., Xu, L., Ding, W., Lu, H., Zhang, C., Liu, T., “Molecular-engineered hybrid carbon nanofillers for thermoplastic polyurethane nanocomposites with high mechanical strength and toughness”, Compos B Eng. 177: 107381, (2019).
- [38] Yazik, M.H.M., Sultan, M.T.H., Mazlan, N., Talib, A.R.A., Naveen, J., Shah, A.U.M., Safri, S.N.A., “Effect of hybrid multi-walled carbon nanotube and montmorillonite nanoclay content on mechanical properties of shape memory epoxy nanocomposite”, Journal of Materials Research and Technology, 9: 6085–6100, (2020).
- [39] Raimondo, M., Donati, G., Milano, G., Guadagno, L., “Hybrid composites based on carbon nanotubes and graphene nanosheets outperforming their single-nanofiller counterparts”, FlatChem., 36: 100431, (2022).
- [40] Huang, T., Li, J. Le, Yang, J.H., Zhang, N., Wang, Y., Zhou, Z.W., “Carbon nanotubes induced microstructure and property changes of polycarbonate/poly(butylene terephthalate) blend”, Compos B Eng., 133: 177–184, (2018).
- [41] Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D.N., Chrissafis, K., Vourlias, G., “Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study”, J Mater Sci., 58: 1621–1639, (2023).
- [42] Li, Y.J., Xu, M., Feng, J.Q., Cao, X.L., Yu, Y.F., Dang, Z.M., “Effect of the matrix crystallinity on the percolation threshold and dielectric behavior in percolative composites”, J Appl Polym Sci., 106: 3359–3365, (2007).
- [43] Qureshi, N., Dhand, V., Subhani, S., Kumar, R.S., Raghavan, N., Kim, S., Doh, J., “Exploring Conductive Filler-Embedded Polymer Nanocomposite for Electrical Percolation via Electromagnetic Shielding-Based Additive Manufacturing”, Adv. Mater. Technol., 9: 2400250, (2024).
- [44] Markandan, K., Lai, C.Q., “Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: A review”, Compos B Eng., 256: 110661, (2023).
Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced with Hybrid MWCNT-GNP Nanofillers
Year 2025,
EARLY VIEW, 1 - 1
Tuba Özdemir Öge
Abstract
This study aims to examine the improvement of thermal properties and electrical conductivity of PC-PBT blends through reinforcement with hybrid MWCNT-GNP nanofillers via melt-mixing. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the incorporation of nanofillers increased the crystallinity of the blends. On the other hand, a marginal decline in thermal stability was observed in the case of higher filler concentrations which was ascribed to the phase transitions within the polymer matrix. A conductive network was achieved with 5% wt. MWCNT-GNP weight fraction, and a notable reduction of 7 % was observed which was attributed to agglomeration effects. These findings reveal the importance of optimizing nanofiller concentration to achieve superior thermal and electrical performance in hybrid nanocomposites.
References
- [1] Maruzhenko, O., Mamunya, Y., Boiteux, G., Pusz, S., Szeluga, U., Pruvost, S., “Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers”, Int J Heat Mass Transf., 138: 75–84, (2019).
- [2] Chen, J., Gao, X.: “Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminum-based particles”. Diam Relat Mater., 100: 107571, (2019).
- [3] Kiran, M.D., Govindaraju, H.K., Lokesh Yadhav, B.R., Kumar, N., “Effect of various parameters on fracture toughness of polymer composites: A review”. Mater Today Proc., 92: 1–5, (2023).
- [4] Khanam, P.N., AlMaadeed, M.A.A., “Processing and characterization of polyethylene-based composites”, Advanced Manufacturing: Polymer & Composites Science, 1, 63–79, (2015).
- [5] Nagaraja, K.C., Rajanna, S., Prakash, G.S., Rajeshkumar, G., “Mechanical properties of polymer matrix composites: Effect of hybridization”, Mater Today Proc. 34: 536–538, (2021).
- [6] Abbasi, S., Ladani, R.B., Wang, C.H., Mouritz, A.P., “Boosting the electrical conductivity of polymer matrix composites using low resistivity Z-filaments”, Mater Des. 195: 109014, (2020).
- [7] Chen, Q., Yang, K., Feng, Y., Liang, L., Chi, M., Zhang, Z., Chen, X., “Recent advances in thermal-conductive insulating polymer composites with various fillers”. Compos Part A Appl Sci Manuf., 178: 107998, (2024).
- [8] Braga, A.R.C., Lemes, A.C., De Rosso, V.V., “Polymer nanocomposite’s applications in food and bioprocessing industry”, Elsevier, (2020).
- [9] Agboola, O., Popoola, P.A.P., Sadiku, R., Sanni, S.E., Babatunde, D.E., Abatan, O.G., Fayomi, S.O., Fasiku, O. V., “Polymer Nanocomposites for Advanced Automobile Applications”, Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials. 96–130, (2021).
- [10] Filippi, S., Mameli, E., Marazzato, C., Magagnini, P., “Comparison of solution-blending and melt-intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites”, Eur Polym J., 43: 1645–1659, (2007).
- [11] Shen, Z., Simon, G.P., Cheng, Y.B., “Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites”, Polymer (Guildf). 43: 4251–4260, (2002).
- [12] Albdiry, M., “Effect of melt blending processing on mechanical properties of polymer nanocomposites: a review”. Polymer Bulletin., 81: 5793–5821, (2024).
- [13] Nasir, R., Hasan, M.R., Chowdhury, S., “Synthesis and Applications of Polymer Nanocomposite Matrices: A Perspective”, Handbook of Polymer and ceramic Nanotechnology, 543–563, (2021).
- [14] Fawaz, J., Mittal, V., “Synthesis of Polymer Nanocomposites: Review of Various Techniques”, Synthesis Techniques for Polymer Nanocomposites, 1–30, (2014).
- [15] Varghese, N., Francis, T., Shelly, M., Nair, A.B., “Nanocomposites of polymer matrices: Nanoscale processing”, Nanoscale Processing, 383–406, (2021).
- [16] Xu, Z., Deng, J., Lai, Y., Chen, J., Chen, Y., Huang, S., Chen, A., Zhang, J., Lei, C., “Study on the exfoliation mechanism of graphene nanoplatelets in the polypropylene/graphene nanoplatelets composites under the elongational flow generated by convergent-divergent channels”, J Mater Sci., 57: 5467–5481, (2022).
- [17] Sahoo, B.P., Tripathy, D.K., “Properties and applications of polymer nanocomposites”, Clay and Carbon Based Polymer Nanocomposites, 1–222, (2017).
- [18] Meng, C., Qu, J.P., “Mechanical and thermal properties of polybutylene terephthalate/ethylene-vinyl acetate blends using vane extruder”, E-Polymers, 18: 67–73, (2018).
- [19] Polycarbonate - an overview - Prospector Knowledge Center, https://www.ulprospector.com/knowledge/11442/pe-polycarbonate-an-overview/, last accessed 2024/07/15.
- [20] Sanchez, E.M.S., “Ageing of PC/PBT blend: Mechanical properties and recycling possibility”, Polym Test., 26: 378–387, (2007).
- [21] Al Sheheri, S.Z., Al-Amshany, Z.M., Al Sulami, Q.A., Tashkandi, N.Y., Hussein, M.A., El-Shishtawy, R.M., “The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites”, Des Monomers Polym., 22: 8–53, (2019).
- [22] Raffaelle, R.P., “Nanostructured Photovoltaics Materials Fabrication and Characterization”, Nanostructured Materials for Solar Energy Conversion, 567–594, (2006).
- [23] Yongli, L., “Nanophase ceramic composites”, Ceramic-Matrix Composites, Microstructure, Properties and Applications, 243–259, (2006).
- [24] Yenigün Elif Özden., “Multi-Scale modelling of interface in carbon nanotube-polymer nanocomposites”, Politeknik, (2017).
- [25] Taşyürek, M., Tarakçioğlu, N., Üniversitesi, S., Fakültesi, T., Ve, M., Mühendisliği Bölümü, M., Mühendisliği, M., Kat, B., “Damage Behavior of Filament Winding Pipes Modified with Carbon Nanotubes Under Internal Pressure”, Journal of Polytechnic., 18: 211–217, (2015).
- [26] Rathinavel, S., Priyadharshini, K., Panda, D., “A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application”, Materials Science and Engineering: B., 268: 115095, (2021).
- [27] Mehra, N.K., Mishra, V., Jain, N.K., “A review of ligand tethered surface engineered carbon nanotubes”, Biomaterials, 35: 1267–1283, (2014).
- [28] Manzetti, S., Andersen, O., “Toxicological aspects of nanomaterials used in energy harvesting consumer electronics”, Renewable and Sustainable Energy Reviews, 16: 2102–2110, (2012).
- [29] Sehrawat, M., Rani, M., Sharma, S., Bharadwaj, S., Falzon, B.G., Singh, B.P., “Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review”, Carbon N Y, 219: 118747, (2024).
- [30] Alexander, R., Khausal, A., Bahadur, J., Dasgupta, K., “Bi-directional catalyst injection in floating catalyst chemical vapor deposition for enhanced carbon nanotube fiber yield”, Carbon Trends, 9: 100211, (2022).
- [31] YILMAZ, H., ALTIN, Y., BEDELOĞLU, A., “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”, Politeknik Dergisi, 24: 1719–1727, (2021).
- [32] Yee, K., Ghayesh, M.H., “A review on the mechanics of graphene nanoplatelets reinforced structures”, Int J Eng Sci., 186: 103831, (2023).
- [33] Nag, A., Simorangkir, R.B.V.B., Gawade, D.R., Nuthalapati, S., Buckley, J.L., O’Flynn, B., Altinsoy, M.E., Mukhopadhyay, S.C., “Graphene-based wearable temperature sensors: A review”, Mater Des., 221: 110971, (2022).
- [34] Bahiraei, M., Heshmatian, S., “Graphene family nanofluids: A critical review and future research directions”, Energy Convers Manag., 196: 1222–1256, (2019).
- [35] Wang, L., Aslani, F., “A review on material design, performance, and practical application of electrically conductive cementitious composites”, Constr Build Mater., 229: 116892, (2019).
- [36] Ezika, A.C., Adekoya, G.J., Sadiku, E.R., Ray, S.S., Hamam, Y., “Effect of hybrid nanofillers in polymer blends”, Nanofillers for Binary Polymer Blends, 465–481, (2024).
- [37] Li, L., Xu, L., Ding, W., Lu, H., Zhang, C., Liu, T., “Molecular-engineered hybrid carbon nanofillers for thermoplastic polyurethane nanocomposites with high mechanical strength and toughness”, Compos B Eng. 177: 107381, (2019).
- [38] Yazik, M.H.M., Sultan, M.T.H., Mazlan, N., Talib, A.R.A., Naveen, J., Shah, A.U.M., Safri, S.N.A., “Effect of hybrid multi-walled carbon nanotube and montmorillonite nanoclay content on mechanical properties of shape memory epoxy nanocomposite”, Journal of Materials Research and Technology, 9: 6085–6100, (2020).
- [39] Raimondo, M., Donati, G., Milano, G., Guadagno, L., “Hybrid composites based on carbon nanotubes and graphene nanosheets outperforming their single-nanofiller counterparts”, FlatChem., 36: 100431, (2022).
- [40] Huang, T., Li, J. Le, Yang, J.H., Zhang, N., Wang, Y., Zhou, Z.W., “Carbon nanotubes induced microstructure and property changes of polycarbonate/poly(butylene terephthalate) blend”, Compos B Eng., 133: 177–184, (2018).
- [41] Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D.N., Chrissafis, K., Vourlias, G., “Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study”, J Mater Sci., 58: 1621–1639, (2023).
- [42] Li, Y.J., Xu, M., Feng, J.Q., Cao, X.L., Yu, Y.F., Dang, Z.M., “Effect of the matrix crystallinity on the percolation threshold and dielectric behavior in percolative composites”, J Appl Polym Sci., 106: 3359–3365, (2007).
- [43] Qureshi, N., Dhand, V., Subhani, S., Kumar, R.S., Raghavan, N., Kim, S., Doh, J., “Exploring Conductive Filler-Embedded Polymer Nanocomposite for Electrical Percolation via Electromagnetic Shielding-Based Additive Manufacturing”, Adv. Mater. Technol., 9: 2400250, (2024).
- [44] Markandan, K., Lai, C.Q., “Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: A review”, Compos B Eng., 256: 110661, (2023).