Research Article
BibTex RIS Cite

PC-PBT Karışımlarının Hibrit ÇDKNT-GNP Nanodolgularla Takviyesi Sonucunda Isısal ve Elektriksel İletkenlik İyileştirmelerinin Değerlendirilmesi

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1517052

Abstract

Bu çalışmada eriyik-karıştırma yöntemi kullanılarak ÇDKNT-GNP hibrit nanodolgu ile katkılanmış PC-PBT karışımlarının termal özellikleri ve elektriksel iletkenliklerindeki iyileşmelerin incelenmesi amaçlanmıştır. Diferansiyel tarama kalorimetresi (DSC) ve termogravimetrik analiz (TGA) sonuçları nano-katkı ilavesinin karışım kristalliklerini arttırdığını göstermiştir. Bunun yanında, yüksek katkı oranlarında numunelerin termal kararlılığında önemli bir düşüş gözlemlenmiş olup bu durum polimer matriks içindeki faz geçişlerine bağlanmıştır. Ağ. %5 katkı oranına sahip numunede iletken bir ağ elde edilmiş olup, %7'lik ağırlıkça katkı oranında elektriksel iletkenlikte düşüş gözlemlenmiş ve bu durum topaklaşma (aglomerasyon) etkisine bağlanmıştır. Elde edilen deneysel sonuçlar hibrit nanokompozitlerde üstün termal ve elektriksel performans elde edilmesi için nano-katkı kompozisyonunun optimizasyonunun önemini vurgulamaktadır.

Supporting Institution

Tübitak (1002-A)

Project Number

123M666

Thanks

This research was funded by the TUBİTAK 1002-A project (grant no. 123M666). The author gratefully acknowledges the financial support provided by TÜBİTAK.

References

  • [1] Maruzhenko, O., Mamunya, Y., Boiteux, G., Pusz, S., Szeluga, U., Pruvost, S., “Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers”, Int J Heat Mass Transf., 138: 75–84, (2019).
  • [2] Chen, J., Gao, X.: “Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminum-based particles”. Diam Relat Mater., 100: 107571, (2019).
  • [3] Kiran, M.D., Govindaraju, H.K., Lokesh Yadhav, B.R., Kumar, N., “Effect of various parameters on fracture toughness of polymer composites: A review”. Mater Today Proc., 92: 1–5, (2023).
  • [4] Khanam, P.N., AlMaadeed, M.A.A., “Processing and characterization of polyethylene-based composites”, Advanced Manufacturing: Polymer & Composites Science, 1, 63–79, (2015).
  • [5] Nagaraja, K.C., Rajanna, S., Prakash, G.S., Rajeshkumar, G., “Mechanical properties of polymer matrix composites: Effect of hybridization”, Mater Today Proc. 34: 536–538, (2021).
  • [6] Abbasi, S., Ladani, R.B., Wang, C.H., Mouritz, A.P., “Boosting the electrical conductivity of polymer matrix composites using low resistivity Z-filaments”, Mater Des. 195: 109014, (2020).
  • [7] Chen, Q., Yang, K., Feng, Y., Liang, L., Chi, M., Zhang, Z., Chen, X., “Recent advances in thermal-conductive insulating polymer composites with various fillers”. Compos Part A Appl Sci Manuf., 178: 107998, (2024).
  • [8] Braga, A.R.C., Lemes, A.C., De Rosso, V.V., “Polymer nanocomposite’s applications in food and bioprocessing industry”, Elsevier, (2020).
  • [9] Agboola, O., Popoola, P.A.P., Sadiku, R., Sanni, S.E., Babatunde, D.E., Abatan, O.G., Fayomi, S.O., Fasiku, O. V., “Polymer Nanocomposites for Advanced Automobile Applications”, Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials. 96–130, (2021).
  • [10] Filippi, S., Mameli, E., Marazzato, C., Magagnini, P., “Comparison of solution-blending and melt-intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites”, Eur Polym J., 43: 1645–1659, (2007).
  • [11] Shen, Z., Simon, G.P., Cheng, Y.B., “Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites”, Polymer (Guildf). 43: 4251–4260, (2002).
  • [12] Albdiry, M., “Effect of melt blending processing on mechanical properties of polymer nanocomposites: a review”. Polymer Bulletin., 81: 5793–5821, (2024).
  • [13] Nasir, R., Hasan, M.R., Chowdhury, S., “Synthesis and Applications of Polymer Nanocomposite Matrices: A Perspective”, Handbook of Polymer and ceramic Nanotechnology, 543–563, (2021).
  • [14] Fawaz, J., Mittal, V., “Synthesis of Polymer Nanocomposites: Review of Various Techniques”, Synthesis Techniques for Polymer Nanocomposites, 1–30, (2014).
  • [15] Varghese, N., Francis, T., Shelly, M., Nair, A.B., “Nanocomposites of polymer matrices: Nanoscale processing”, Nanoscale Processing, 383–406, (2021).
  • [16] Xu, Z., Deng, J., Lai, Y., Chen, J., Chen, Y., Huang, S., Chen, A., Zhang, J., Lei, C., “Study on the exfoliation mechanism of graphene nanoplatelets in the polypropylene/graphene nanoplatelets composites under the elongational flow generated by convergent-divergent channels”, J Mater Sci., 57: 5467–5481, (2022).
  • [17] Sahoo, B.P., Tripathy, D.K., “Properties and applications of polymer nanocomposites”, Clay and Carbon Based Polymer Nanocomposites, 1–222, (2017).
  • [18] Meng, C., Qu, J.P., “Mechanical and thermal properties of polybutylene terephthalate/ethylene-vinyl acetate blends using vane extruder”, E-Polymers, 18: 67–73, (2018).
  • [19] Polycarbonate - an overview - Prospector Knowledge Center, https://www.ulprospector.com/knowledge/11442/pe-polycarbonate-an-overview/, last accessed 2024/07/15.
  • [20] Sanchez, E.M.S., “Ageing of PC/PBT blend: Mechanical properties and recycling possibility”, Polym Test., 26: 378–387, (2007).
  • [21] Al Sheheri, S.Z., Al-Amshany, Z.M., Al Sulami, Q.A., Tashkandi, N.Y., Hussein, M.A., El-Shishtawy, R.M., “The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites”, Des Monomers Polym., 22: 8–53, (2019).
  • [22] Raffaelle, R.P., “Nanostructured Photovoltaics Materials Fabrication and Characterization”, Nanostructured Materials for Solar Energy Conversion, 567–594, (2006).
  • [23] Yongli, L., “Nanophase ceramic composites”, Ceramic-Matrix Composites, Microstructure, Properties and Applications, 243–259, (2006).
  • [24] Yenigün Elif Özden., “Multi-Scale modelling of interface in carbon nanotube-polymer nanocomposites”, Politeknik, (2017).
  • [25] Taşyürek, M., Tarakçioğlu, N., Üniversitesi, S., Fakültesi, T., Ve, M., Mühendisliği Bölümü, M., Mühendisliği, M., Kat, B., “Damage Behavior of Filament Winding Pipes Modified with Carbon Nanotubes Under Internal Pressure”, Journal of Polytechnic., 18: 211–217, (2015).
  • [26] Rathinavel, S., Priyadharshini, K., Panda, D., “A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application”, Materials Science and Engineering: B., 268: 115095, (2021).
  • [27] Mehra, N.K., Mishra, V., Jain, N.K., “A review of ligand tethered surface engineered carbon nanotubes”, Biomaterials, 35: 1267–1283, (2014).
  • [28] Manzetti, S., Andersen, O., “Toxicological aspects of nanomaterials used in energy harvesting consumer electronics”, Renewable and Sustainable Energy Reviews, 16: 2102–2110, (2012).
  • [29] Sehrawat, M., Rani, M., Sharma, S., Bharadwaj, S., Falzon, B.G., Singh, B.P., “Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review”, Carbon N Y, 219: 118747, (2024).
  • [30] Alexander, R., Khausal, A., Bahadur, J., Dasgupta, K., “Bi-directional catalyst injection in floating catalyst chemical vapor deposition for enhanced carbon nanotube fiber yield”, Carbon Trends, 9: 100211, (2022).
  • [31] YILMAZ, H., ALTIN, Y., BEDELOĞLU, A., “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”, Politeknik Dergisi, 24: 1719–1727, (2021).
  • [32] Yee, K., Ghayesh, M.H., “A review on the mechanics of graphene nanoplatelets reinforced structures”, Int J Eng Sci., 186: 103831, (2023).
  • [33] Nag, A., Simorangkir, R.B.V.B., Gawade, D.R., Nuthalapati, S., Buckley, J.L., O’Flynn, B., Altinsoy, M.E., Mukhopadhyay, S.C., “Graphene-based wearable temperature sensors: A review”, Mater Des., 221: 110971, (2022).
  • [34] Bahiraei, M., Heshmatian, S., “Graphene family nanofluids: A critical review and future research directions”, Energy Convers Manag., 196: 1222–1256, (2019).
  • [35] Wang, L., Aslani, F., “A review on material design, performance, and practical application of electrically conductive cementitious composites”, Constr Build Mater., 229: 116892, (2019).
  • [36] Ezika, A.C., Adekoya, G.J., Sadiku, E.R., Ray, S.S., Hamam, Y., “Effect of hybrid nanofillers in polymer blends”, Nanofillers for Binary Polymer Blends, 465–481, (2024).
  • [37] Li, L., Xu, L., Ding, W., Lu, H., Zhang, C., Liu, T., “Molecular-engineered hybrid carbon nanofillers for thermoplastic polyurethane nanocomposites with high mechanical strength and toughness”, Compos B Eng. 177: 107381, (2019).
  • [38] Yazik, M.H.M., Sultan, M.T.H., Mazlan, N., Talib, A.R.A., Naveen, J., Shah, A.U.M., Safri, S.N.A., “Effect of hybrid multi-walled carbon nanotube and montmorillonite nanoclay content on mechanical properties of shape memory epoxy nanocomposite”, Journal of Materials Research and Technology, 9: 6085–6100, (2020).
  • [39] Raimondo, M., Donati, G., Milano, G., Guadagno, L., “Hybrid composites based on carbon nanotubes and graphene nanosheets outperforming their single-nanofiller counterparts”, FlatChem., 36: 100431, (2022).
  • [40] Huang, T., Li, J. Le, Yang, J.H., Zhang, N., Wang, Y., Zhou, Z.W., “Carbon nanotubes induced microstructure and property changes of polycarbonate/poly(butylene terephthalate) blend”, Compos B Eng., 133: 177–184, (2018).
  • [41] Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D.N., Chrissafis, K., Vourlias, G., “Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study”, J Mater Sci., 58: 1621–1639, (2023).
  • [42] Li, Y.J., Xu, M., Feng, J.Q., Cao, X.L., Yu, Y.F., Dang, Z.M., “Effect of the matrix crystallinity on the percolation threshold and dielectric behavior in percolative composites”, J Appl Polym Sci., 106: 3359–3365, (2007).
  • [43] Qureshi, N., Dhand, V., Subhani, S., Kumar, R.S., Raghavan, N., Kim, S., Doh, J., “Exploring Conductive Filler-Embedded Polymer Nanocomposite for Electrical Percolation via Electromagnetic Shielding-Based Additive Manufacturing”, Adv. Mater. Technol., 9: 2400250, (2024).
  • [44] Markandan, K., Lai, C.Q., “Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: A review”, Compos B Eng., 256: 110661, (2023).

Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced with Hybrid MWCNT-GNP Nanofillers

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1517052

Abstract

This study aims to examine the improvement of thermal properties and electrical conductivity of PC-PBT blends through reinforcement with hybrid MWCNT-GNP nanofillers via melt-mixing. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the incorporation of nanofillers increased the crystallinity of the blends. On the other hand, a marginal decline in thermal stability was observed in the case of higher filler concentrations which was ascribed to the phase transitions within the polymer matrix. A conductive network was achieved with 5% wt. MWCNT-GNP weight fraction, and a notable reduction of 7 % was observed which was attributed to agglomeration effects. These findings reveal the importance of optimizing nanofiller concentration to achieve superior thermal and electrical performance in hybrid nanocomposites.

Project Number

123M666

References

  • [1] Maruzhenko, O., Mamunya, Y., Boiteux, G., Pusz, S., Szeluga, U., Pruvost, S., “Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers”, Int J Heat Mass Transf., 138: 75–84, (2019).
  • [2] Chen, J., Gao, X.: “Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminum-based particles”. Diam Relat Mater., 100: 107571, (2019).
  • [3] Kiran, M.D., Govindaraju, H.K., Lokesh Yadhav, B.R., Kumar, N., “Effect of various parameters on fracture toughness of polymer composites: A review”. Mater Today Proc., 92: 1–5, (2023).
  • [4] Khanam, P.N., AlMaadeed, M.A.A., “Processing and characterization of polyethylene-based composites”, Advanced Manufacturing: Polymer & Composites Science, 1, 63–79, (2015).
  • [5] Nagaraja, K.C., Rajanna, S., Prakash, G.S., Rajeshkumar, G., “Mechanical properties of polymer matrix composites: Effect of hybridization”, Mater Today Proc. 34: 536–538, (2021).
  • [6] Abbasi, S., Ladani, R.B., Wang, C.H., Mouritz, A.P., “Boosting the electrical conductivity of polymer matrix composites using low resistivity Z-filaments”, Mater Des. 195: 109014, (2020).
  • [7] Chen, Q., Yang, K., Feng, Y., Liang, L., Chi, M., Zhang, Z., Chen, X., “Recent advances in thermal-conductive insulating polymer composites with various fillers”. Compos Part A Appl Sci Manuf., 178: 107998, (2024).
  • [8] Braga, A.R.C., Lemes, A.C., De Rosso, V.V., “Polymer nanocomposite’s applications in food and bioprocessing industry”, Elsevier, (2020).
  • [9] Agboola, O., Popoola, P.A.P., Sadiku, R., Sanni, S.E., Babatunde, D.E., Abatan, O.G., Fayomi, S.O., Fasiku, O. V., “Polymer Nanocomposites for Advanced Automobile Applications”, Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials. 96–130, (2021).
  • [10] Filippi, S., Mameli, E., Marazzato, C., Magagnini, P., “Comparison of solution-blending and melt-intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites”, Eur Polym J., 43: 1645–1659, (2007).
  • [11] Shen, Z., Simon, G.P., Cheng, Y.B., “Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites”, Polymer (Guildf). 43: 4251–4260, (2002).
  • [12] Albdiry, M., “Effect of melt blending processing on mechanical properties of polymer nanocomposites: a review”. Polymer Bulletin., 81: 5793–5821, (2024).
  • [13] Nasir, R., Hasan, M.R., Chowdhury, S., “Synthesis and Applications of Polymer Nanocomposite Matrices: A Perspective”, Handbook of Polymer and ceramic Nanotechnology, 543–563, (2021).
  • [14] Fawaz, J., Mittal, V., “Synthesis of Polymer Nanocomposites: Review of Various Techniques”, Synthesis Techniques for Polymer Nanocomposites, 1–30, (2014).
  • [15] Varghese, N., Francis, T., Shelly, M., Nair, A.B., “Nanocomposites of polymer matrices: Nanoscale processing”, Nanoscale Processing, 383–406, (2021).
  • [16] Xu, Z., Deng, J., Lai, Y., Chen, J., Chen, Y., Huang, S., Chen, A., Zhang, J., Lei, C., “Study on the exfoliation mechanism of graphene nanoplatelets in the polypropylene/graphene nanoplatelets composites under the elongational flow generated by convergent-divergent channels”, J Mater Sci., 57: 5467–5481, (2022).
  • [17] Sahoo, B.P., Tripathy, D.K., “Properties and applications of polymer nanocomposites”, Clay and Carbon Based Polymer Nanocomposites, 1–222, (2017).
  • [18] Meng, C., Qu, J.P., “Mechanical and thermal properties of polybutylene terephthalate/ethylene-vinyl acetate blends using vane extruder”, E-Polymers, 18: 67–73, (2018).
  • [19] Polycarbonate - an overview - Prospector Knowledge Center, https://www.ulprospector.com/knowledge/11442/pe-polycarbonate-an-overview/, last accessed 2024/07/15.
  • [20] Sanchez, E.M.S., “Ageing of PC/PBT blend: Mechanical properties and recycling possibility”, Polym Test., 26: 378–387, (2007).
  • [21] Al Sheheri, S.Z., Al-Amshany, Z.M., Al Sulami, Q.A., Tashkandi, N.Y., Hussein, M.A., El-Shishtawy, R.M., “The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites”, Des Monomers Polym., 22: 8–53, (2019).
  • [22] Raffaelle, R.P., “Nanostructured Photovoltaics Materials Fabrication and Characterization”, Nanostructured Materials for Solar Energy Conversion, 567–594, (2006).
  • [23] Yongli, L., “Nanophase ceramic composites”, Ceramic-Matrix Composites, Microstructure, Properties and Applications, 243–259, (2006).
  • [24] Yenigün Elif Özden., “Multi-Scale modelling of interface in carbon nanotube-polymer nanocomposites”, Politeknik, (2017).
  • [25] Taşyürek, M., Tarakçioğlu, N., Üniversitesi, S., Fakültesi, T., Ve, M., Mühendisliği Bölümü, M., Mühendisliği, M., Kat, B., “Damage Behavior of Filament Winding Pipes Modified with Carbon Nanotubes Under Internal Pressure”, Journal of Polytechnic., 18: 211–217, (2015).
  • [26] Rathinavel, S., Priyadharshini, K., Panda, D., “A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application”, Materials Science and Engineering: B., 268: 115095, (2021).
  • [27] Mehra, N.K., Mishra, V., Jain, N.K., “A review of ligand tethered surface engineered carbon nanotubes”, Biomaterials, 35: 1267–1283, (2014).
  • [28] Manzetti, S., Andersen, O., “Toxicological aspects of nanomaterials used in energy harvesting consumer electronics”, Renewable and Sustainable Energy Reviews, 16: 2102–2110, (2012).
  • [29] Sehrawat, M., Rani, M., Sharma, S., Bharadwaj, S., Falzon, B.G., Singh, B.P., “Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review”, Carbon N Y, 219: 118747, (2024).
  • [30] Alexander, R., Khausal, A., Bahadur, J., Dasgupta, K., “Bi-directional catalyst injection in floating catalyst chemical vapor deposition for enhanced carbon nanotube fiber yield”, Carbon Trends, 9: 100211, (2022).
  • [31] YILMAZ, H., ALTIN, Y., BEDELOĞLU, A., “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”, Politeknik Dergisi, 24: 1719–1727, (2021).
  • [32] Yee, K., Ghayesh, M.H., “A review on the mechanics of graphene nanoplatelets reinforced structures”, Int J Eng Sci., 186: 103831, (2023).
  • [33] Nag, A., Simorangkir, R.B.V.B., Gawade, D.R., Nuthalapati, S., Buckley, J.L., O’Flynn, B., Altinsoy, M.E., Mukhopadhyay, S.C., “Graphene-based wearable temperature sensors: A review”, Mater Des., 221: 110971, (2022).
  • [34] Bahiraei, M., Heshmatian, S., “Graphene family nanofluids: A critical review and future research directions”, Energy Convers Manag., 196: 1222–1256, (2019).
  • [35] Wang, L., Aslani, F., “A review on material design, performance, and practical application of electrically conductive cementitious composites”, Constr Build Mater., 229: 116892, (2019).
  • [36] Ezika, A.C., Adekoya, G.J., Sadiku, E.R., Ray, S.S., Hamam, Y., “Effect of hybrid nanofillers in polymer blends”, Nanofillers for Binary Polymer Blends, 465–481, (2024).
  • [37] Li, L., Xu, L., Ding, W., Lu, H., Zhang, C., Liu, T., “Molecular-engineered hybrid carbon nanofillers for thermoplastic polyurethane nanocomposites with high mechanical strength and toughness”, Compos B Eng. 177: 107381, (2019).
  • [38] Yazik, M.H.M., Sultan, M.T.H., Mazlan, N., Talib, A.R.A., Naveen, J., Shah, A.U.M., Safri, S.N.A., “Effect of hybrid multi-walled carbon nanotube and montmorillonite nanoclay content on mechanical properties of shape memory epoxy nanocomposite”, Journal of Materials Research and Technology, 9: 6085–6100, (2020).
  • [39] Raimondo, M., Donati, G., Milano, G., Guadagno, L., “Hybrid composites based on carbon nanotubes and graphene nanosheets outperforming their single-nanofiller counterparts”, FlatChem., 36: 100431, (2022).
  • [40] Huang, T., Li, J. Le, Yang, J.H., Zhang, N., Wang, Y., Zhou, Z.W., “Carbon nanotubes induced microstructure and property changes of polycarbonate/poly(butylene terephthalate) blend”, Compos B Eng., 133: 177–184, (2018).
  • [41] Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D.N., Chrissafis, K., Vourlias, G., “Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study”, J Mater Sci., 58: 1621–1639, (2023).
  • [42] Li, Y.J., Xu, M., Feng, J.Q., Cao, X.L., Yu, Y.F., Dang, Z.M., “Effect of the matrix crystallinity on the percolation threshold and dielectric behavior in percolative composites”, J Appl Polym Sci., 106: 3359–3365, (2007).
  • [43] Qureshi, N., Dhand, V., Subhani, S., Kumar, R.S., Raghavan, N., Kim, S., Doh, J., “Exploring Conductive Filler-Embedded Polymer Nanocomposite for Electrical Percolation via Electromagnetic Shielding-Based Additive Manufacturing”, Adv. Mater. Technol., 9: 2400250, (2024).
  • [44] Markandan, K., Lai, C.Q., “Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: A review”, Compos B Eng., 256: 110661, (2023).
There are 44 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Polymers and Plastics
Journal Section Research Article
Authors

Tuba Özdemir Öge 0000-0001-6690-7199

Project Number 123M666
Early Pub Date November 25, 2024
Publication Date
Submission Date July 16, 2024
Acceptance Date November 17, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Özdemir Öge, T. (2024). Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced with Hybrid MWCNT-GNP Nanofillers. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1517052
AMA Özdemir Öge T. Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced with Hybrid MWCNT-GNP Nanofillers. Politeknik Dergisi. Published online November 1, 2024:1-1. doi:10.2339/politeknik.1517052
Chicago Özdemir Öge, Tuba. “Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced With Hybrid MWCNT-GNP Nanofillers”. Politeknik Dergisi, November (November 2024), 1-1. https://doi.org/10.2339/politeknik.1517052.
EndNote Özdemir Öge T (November 1, 2024) Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced with Hybrid MWCNT-GNP Nanofillers. Politeknik Dergisi 1–1.
IEEE T. Özdemir Öge, “Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced with Hybrid MWCNT-GNP Nanofillers”, Politeknik Dergisi, pp. 1–1, November 2024, doi: 10.2339/politeknik.1517052.
ISNAD Özdemir Öge, Tuba. “Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced With Hybrid MWCNT-GNP Nanofillers”. Politeknik Dergisi. November 2024. 1-1. https://doi.org/10.2339/politeknik.1517052.
JAMA Özdemir Öge T. Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced with Hybrid MWCNT-GNP Nanofillers. Politeknik Dergisi. 2024;:1–1.
MLA Özdemir Öge, Tuba. “Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced With Hybrid MWCNT-GNP Nanofillers”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1517052.
Vancouver Özdemir Öge T. Assessment of Thermal and Electrical Conductivity Enhancements in PC-PBT Blends Reinforced with Hybrid MWCNT-GNP Nanofillers. Politeknik Dergisi. 2024:1-.