Kalsiyum Fosfat ve Bitki Özüt Karışımlarının Diş Macununda Etkinlikleri
Year 2025,
EARLY VIEW, 1 - 1
Erdem Sahin
Abstract
Bu çalışmada diş macunu formülasyonlarında kullanılmak üzere doğal kaynaklardan kolaylıkla elde edilebilen kalsiyum fosfatların ve lokal bitki özütlerinin ağız florası üzerindeki etkisi incelenmiştir. Doğal hammaddelerle hazırlanan diş macunlarında aşındırıcı mineral olarak kullanılan iki kalsiyum fosfat fazının (hidroksiapatit ve monetit) optimum karışım kompozisyonu ve Ege bölgesinden çeşitli bitkilerin (zeytin, incir, ardıç, sakız, ıtır, yaban mersini yaprakları, nar kabuğu ve ardıç meyvesi) özütlerinin diş macunu antibakteriyel komponenti olarak etken konsantrasyonları mekanik (Vickers mikrosertlik) ve biyolojik (UV-spektrofotometre ile minimum inhibe edici konsantrasyon tespiti) testlerle incelenmiştir. Bu çerçevede ağız ortamını temsil eden Laktobasilus kasei bakteri ortamı içinde tutulan sentetik hidroksiapatit dişlere taşıyıcı macun vasıtası ile periyodik şekilde uygulanan kompozisyonların süreç sonunda diş sertliklerine etkisi belirlenmiştir. Ayrıca bitki özütlerinin yine ağız ortamında bulunan Streptokok mutans bakterisi üzerinde antibakteriyel etkileri seri seyreltme yöntemiyle belirlenmiştir. Sonuç olarak diş sertliği, dolayısıyla çürüme üzerinde en etkili diş macunları 3’e 1 monetit/hidroksiapatit karışımı ile yaban mersini veya ıtır yaprağı özütleri içeren formülasyonlar olarak bulunmuştur.
References
-
[1] Tenerelli M. J., “Multifunctional Oral Care Products, Chapter 8”, Multifunctional Cosmetics, Cosmetic Science and Technology Series, CRC Press, Volume 26, 151-156 New York, (2002).
-
[2] Newbrun E., “Current Regulations and Recommendations Concerning Water Fluoridation, Fluoride Supplements and Topical Fluoride Agents”, J. Dent Res 71: 1255, (1992).
-
[3] Burt B.A., “The Changing Patterns of Systemic Fluoride Intake”, J Dent Res, 71: 1228, (1992).
-
[4] Lewis R., Dwyer-Joyce R.S., Pickles M.J., “Interaction between toothbrushes and dentifrice abrasive particles in simulated tooth cleaning”, Wear 257, 368–376, (2004).
-
[5] Joiner A., "Whitening dentifrices: a review of the literature." Journal of dentistry 38,: e17-e24, (2010).
-
[6] Enax, J., Meyer, F., Schulze zur Wiesche, E., Fuhrmann, I. C., and Fabritius, H. O., “Toothpaste abrasion and abrasive particle content: correlating high-resolution profilometric analysis with relative dentin abrasivity (RDA)”. Dentistry Journal, 11(3), 79, (2023).
-
[7] Dawson P. L., Walsh J. E. and Morrison T., "Dental stain prevention by abrasive dentifrices: a new in vitro test and its correlation with clinical observations." J Cosmet Sci 49, 275-283, (1998).
-
[8] Valkenburg, C., van der Weijden, F., and Slot, D. E., “Dentifrices. Part 2: the evidence behind their formulation”. Dental Update, 51(3), 171-175, (2024).
-
[9] Dorozhkin S. V., "Calcium orthophosphates in dentistry." Journal of Materials Science: Materials in Medicine 24.6, 1335-1363, (2013).
-
[10] Şahin E., "Calcium Phosphate Bone Cements." Cement Based Materials. IntechOpen, (2018).
-
[11] Elkassas D. and Abla A., "Remineralizing efficacy of different calcium-phosphate and fluoride based delivery vehicles on artificial caries like enamel lesions." Journal of dentistry 42.4, 466-474, (2014).
-
[12] Van Loveren C., Buijs J. F. and Ten Cate J. M., "The effect of triclosan dentifrice on enamel demineralization in a bacterial demineralization model." Journal of antimicrobial chemotherapy 45.2, 153-158, (2000).
-
[13] Young A., Jonski G., Rolla G., “Inhibition of orally produced volatile sulfur compounds by zinc, chlorhexidine or cetylpyridinium chloride – effect of concentration”. Eur J Oral Sci; 111: 400–404, (2003).
-
[14] Sanz M., Serrano J., Iniesta M., Santa Cruz I., and Herrera D., "Antiplaque and Antigingivitis Toothpastes", Toothpastes 23, 27-44, (2013).
-
[15] Tzimas, K., Antoniadou, M., Varzakas, T., and Voidarou, C., “Plant-derived compounds: A promising tool for dental caries prevention” Current Issues in Molecular Biology, 46(6), 5257-5290, (2024).
-
[16] Schestakow, A., Meyer-Probst, C. T., Hannig, C., and Hannig, M., “Prevention of dental biofilm formation with polyphenols: a systematic review” Planta Medica, 89(11), 1026-1033, (2023).
-
[17] Wang, L., Li, T., Wu, C., Fan, G., Zhou, D., and Li, X., “Unlocking the potential of plant polyphenols: advances in extraction, antibacterial mechanisms, and future applications” Food Science and Biotechnology, 1-25, (2024).
-
[18] Iqbal, N., and Poór, P., “Plant protection by tannins depends on defence-related phytohormones” Journal of Plant Growth Regulation, 44(1), 22-39, (2025).
-
[19] Zhang, Q., Peng, Y., Xu, Y., Li, F., Liu, S., Bukvicki, D., ... and Qin, W., “Extraction, characterization, and in Vitro Biological activity of polyphenols from discarded young fig fruits based on deep Eutectic solvents”. Antioxidants, 13(9), 1084, (2024).
-
[20] Bayçin D., Altıok E., Ülkü S., Bayraktar O., “Adsorption of Olive Leaf (Olea europaea L.) Antioxidants on Silk Fibroin”, J. Agric. Food Chem., 55, 1227-1236, (2007).
-
[21] Bayçin D., Altıok E., Ülkü S., Bayraktar O., “Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin”, Separation and Purification Technology 62, 342–348, (2008).
-
[22] Kontogianni, V. G., and Gerothanassis I. P., "Phenolic compounds and antioxidant activity of olive leaf extracts." Natural Product Research 26.2, 186-189, (2012).
-
[23] Singh R. P., Chidambara Murthy K. N., Jayaprakasha G. K., “Studies on the Antioxidant Activity of Pomegranate (Punica granatum) Peel and Seed Extracts Using in Vitro Models”, J. Agric. Food Chem., 50, 81-86, (2002).
-
[24] Noda Y., Kaneyuki T., Mori A., Packer L., “Antioxidant Activities of Pomegranate Fruit Extract and Its Anthocyanidins: Delphinidin, Cyanidin, and Pelargonidin”, J. Agric. Food Chem., 50, 166-171, (2002).
-
[25] Teixeira, D. M., Patão, R. F., Coelho, A. V., & da Costa, C. T., “Comparison between sample disruption methods and solid–liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves” Journal of Chromatography A, 1103(1), 22-28, (2006).
-
[26] Ao, C., Li, A., Elzaawely, A. A., Xuan, T. D., and Tawata, S., “Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract”, Food Control 19, 940–948, (2008).
-
[27] Peterson, A., Machmudah, S., Roy, B. C., Goto, M., Sasaki, M., and Hirose, T., “Extraction of essential oil from geranium (Pelargonium graveolens) with supercritical carbon dioxide”, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(2), 167-172, (2006).
-
[28] Rosato, A., Vitali, C., De Laurentis, N., Armenise, D., and Milillo, M. A., “Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin”, Phytomedicine 14, 727–732, (2007).
-
[29] Stassi, V., Verykokidou, E., Loukis, A., Harvala, C., and Philianos, S., “The antimicrobial activity of the essential oils of four Juniperus species growing wild in Greece”. Flavour and fragrance journal, 11(1), 71-74, (1996).
-
[30] Boztok, Ş., “Doğal sakız bitkileri (Pistacia lentiscus L.)’nin ekonomiye kazandırılması” Ege Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi, Yayım Bülteni, (51), (2007).
-
[31] Koutsoudaki, C., Krsek, M., and Rodger, A., “Chemical Composition and Antibacterial Activity of the Essential Oil and the Gum of Pistacia lentiscus Var. chia”, J. Agric. Food Chem., 53, 7681-7685, (2005).
-
[32] Iauk, L., Ragusa, S., Rapisarda, A., Franco, S., & Nicolosi, V. M., “In vitro antimicrobial activity of Pistacia lentiscus L. extracts: Preliminary report” Journal of chemotherapy, 8(3), 207-209, (1996).
-
[33] Martín‐Aragón, S., Basabe, B., Benedí, J. M., & Villar, A. M., “Antioxidant action of Vaccinium myrtillus L.” Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 12(S1), S104-S106, (1998).
-
[34] Silva, S., Costa, E. M., Machado, M., Morais, R. M., Calhau, C., & Pintado, M., “Selective activity of an anthocyanin-rich, purified blueberry extract upon pathogenic and probiotic bacteria”. Foods, 12(4), 734, (2023).
-
[35] Tada, K., Kakuta, K., Ogura, H., & Sato, S., “Effect of particle diameter on air polishing of dentin surfaces” Odontology, 98, 31-36, (2010).
-
[36] De Boer, P., Duinkerke, A. S. H., & Arends, J., “Influence of tooth paste particle size and tooth brush stiffness on dentine abrasion in vitro” Caries Research, 19(3), 232-239, (1985).
-
[37] Da Rocha, D. N., Da Silva, M. H. P., De Campos, J. B., Marçal, R. L. S. B., Mijares, D. Q., Coelho, P. G., and Cruz, L. R., “Kinetics of conversion of brushite coatings to hydroxyapatite in alkaline solution” Journal of materials research and technology, 7(4), 479-486, (2018).
-
[38] Wang, L., and Nancollas, G. H., “Dynamics of biomineralization and biodemineralization” Metal ions in life sciences, 4, 413, (2010).
-
[39] Şahin, E., "Enhanced injectability of aqueous β-tricalcium phosphate suspensions through PAA incorporation, gelling and preshearing." Journal of the Mechanical Behavior of Biomedical Materials 145, 106026, (2023).
-
[40] Lin, G. S. S., Cher, C. Y., Goh, Y. H., Chan, D. Z. K., Karobari, M. I., Lai, J. C. H., & Noorani, T. Y., “An insight into the role of marine biopolymer alginate in endodontics: a review” Marine Drugs, 20(8), 539, (2022).
-
[41] Pagliaro, M., and Rossi, M., “Glycerol: Properties and Production, Chapter 1.” The future of glycerol (Vol. 8)., Royal Society of Chemistry, (2010).
Effectiveness of Calcium Phosphate and Plant Extract Mixtures as Natural Dentifrices
Year 2025,
EARLY VIEW, 1 - 1
Erdem Sahin
Abstract
This study investigates the effects of calcium phosphates and local plant extracts on the oral flora as naturally available ingredients for dentifrices. Effective compositions of two calcium phosphate minerals (hydroxyapatite and monetite) to serve as abrasive particles and extracts of plants (olive, fig, juniper, mastic, geranium, blueberry leaves, pomegranate peel and juniper fruit) obtained from Aegean region to serve as antibacterial agents in the as prepared natural dentifrices were investigated by mechanical (Vickers microhardness) and biological (minimum inhibitory concentrations from UV-spectrophotometry) tests. Within this framework, surface hardness of synthetic hydroxyapatite disks immersed in Lactobacillus casei cell culture was measured before and after periodic brushing with dentifrices containing calcium phosphates and plant extracts. Also in vitro serial dilution test was applied to plant extracts using Streptococcus mutans cell culture to determine their antibacterial activity. The results point to an optimum composition of 3 part monetite to 1 part hydroxyapatite powder mixtures and blueberry or geranium leaf extracts at their minimum inhibitory concentrations for highest hardness, i.e. lowest caries formation.
Ethical Statement
The author of this article declares that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Thanks
The author is grateful to Mrs. Gizem Dikici and Mr. Ahmet Erkin Ermiş for their assistance during the biological testing. Support of the Biochemistry laboratory staff at the Department of Chemical Engineering in İzmir Institute of Technology is also appreciated.
References
-
[1] Tenerelli M. J., “Multifunctional Oral Care Products, Chapter 8”, Multifunctional Cosmetics, Cosmetic Science and Technology Series, CRC Press, Volume 26, 151-156 New York, (2002).
-
[2] Newbrun E., “Current Regulations and Recommendations Concerning Water Fluoridation, Fluoride Supplements and Topical Fluoride Agents”, J. Dent Res 71: 1255, (1992).
-
[3] Burt B.A., “The Changing Patterns of Systemic Fluoride Intake”, J Dent Res, 71: 1228, (1992).
-
[4] Lewis R., Dwyer-Joyce R.S., Pickles M.J., “Interaction between toothbrushes and dentifrice abrasive particles in simulated tooth cleaning”, Wear 257, 368–376, (2004).
-
[5] Joiner A., "Whitening dentifrices: a review of the literature." Journal of dentistry 38,: e17-e24, (2010).
-
[6] Enax, J., Meyer, F., Schulze zur Wiesche, E., Fuhrmann, I. C., and Fabritius, H. O., “Toothpaste abrasion and abrasive particle content: correlating high-resolution profilometric analysis with relative dentin abrasivity (RDA)”. Dentistry Journal, 11(3), 79, (2023).
-
[7] Dawson P. L., Walsh J. E. and Morrison T., "Dental stain prevention by abrasive dentifrices: a new in vitro test and its correlation with clinical observations." J Cosmet Sci 49, 275-283, (1998).
-
[8] Valkenburg, C., van der Weijden, F., and Slot, D. E., “Dentifrices. Part 2: the evidence behind their formulation”. Dental Update, 51(3), 171-175, (2024).
-
[9] Dorozhkin S. V., "Calcium orthophosphates in dentistry." Journal of Materials Science: Materials in Medicine 24.6, 1335-1363, (2013).
-
[10] Şahin E., "Calcium Phosphate Bone Cements." Cement Based Materials. IntechOpen, (2018).
-
[11] Elkassas D. and Abla A., "Remineralizing efficacy of different calcium-phosphate and fluoride based delivery vehicles on artificial caries like enamel lesions." Journal of dentistry 42.4, 466-474, (2014).
-
[12] Van Loveren C., Buijs J. F. and Ten Cate J. M., "The effect of triclosan dentifrice on enamel demineralization in a bacterial demineralization model." Journal of antimicrobial chemotherapy 45.2, 153-158, (2000).
-
[13] Young A., Jonski G., Rolla G., “Inhibition of orally produced volatile sulfur compounds by zinc, chlorhexidine or cetylpyridinium chloride – effect of concentration”. Eur J Oral Sci; 111: 400–404, (2003).
-
[14] Sanz M., Serrano J., Iniesta M., Santa Cruz I., and Herrera D., "Antiplaque and Antigingivitis Toothpastes", Toothpastes 23, 27-44, (2013).
-
[15] Tzimas, K., Antoniadou, M., Varzakas, T., and Voidarou, C., “Plant-derived compounds: A promising tool for dental caries prevention” Current Issues in Molecular Biology, 46(6), 5257-5290, (2024).
-
[16] Schestakow, A., Meyer-Probst, C. T., Hannig, C., and Hannig, M., “Prevention of dental biofilm formation with polyphenols: a systematic review” Planta Medica, 89(11), 1026-1033, (2023).
-
[17] Wang, L., Li, T., Wu, C., Fan, G., Zhou, D., and Li, X., “Unlocking the potential of plant polyphenols: advances in extraction, antibacterial mechanisms, and future applications” Food Science and Biotechnology, 1-25, (2024).
-
[18] Iqbal, N., and Poór, P., “Plant protection by tannins depends on defence-related phytohormones” Journal of Plant Growth Regulation, 44(1), 22-39, (2025).
-
[19] Zhang, Q., Peng, Y., Xu, Y., Li, F., Liu, S., Bukvicki, D., ... and Qin, W., “Extraction, characterization, and in Vitro Biological activity of polyphenols from discarded young fig fruits based on deep Eutectic solvents”. Antioxidants, 13(9), 1084, (2024).
-
[20] Bayçin D., Altıok E., Ülkü S., Bayraktar O., “Adsorption of Olive Leaf (Olea europaea L.) Antioxidants on Silk Fibroin”, J. Agric. Food Chem., 55, 1227-1236, (2007).
-
[21] Bayçin D., Altıok E., Ülkü S., Bayraktar O., “Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin”, Separation and Purification Technology 62, 342–348, (2008).
-
[22] Kontogianni, V. G., and Gerothanassis I. P., "Phenolic compounds and antioxidant activity of olive leaf extracts." Natural Product Research 26.2, 186-189, (2012).
-
[23] Singh R. P., Chidambara Murthy K. N., Jayaprakasha G. K., “Studies on the Antioxidant Activity of Pomegranate (Punica granatum) Peel and Seed Extracts Using in Vitro Models”, J. Agric. Food Chem., 50, 81-86, (2002).
-
[24] Noda Y., Kaneyuki T., Mori A., Packer L., “Antioxidant Activities of Pomegranate Fruit Extract and Its Anthocyanidins: Delphinidin, Cyanidin, and Pelargonidin”, J. Agric. Food Chem., 50, 166-171, (2002).
-
[25] Teixeira, D. M., Patão, R. F., Coelho, A. V., & da Costa, C. T., “Comparison between sample disruption methods and solid–liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves” Journal of Chromatography A, 1103(1), 22-28, (2006).
-
[26] Ao, C., Li, A., Elzaawely, A. A., Xuan, T. D., and Tawata, S., “Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract”, Food Control 19, 940–948, (2008).
-
[27] Peterson, A., Machmudah, S., Roy, B. C., Goto, M., Sasaki, M., and Hirose, T., “Extraction of essential oil from geranium (Pelargonium graveolens) with supercritical carbon dioxide”, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(2), 167-172, (2006).
-
[28] Rosato, A., Vitali, C., De Laurentis, N., Armenise, D., and Milillo, M. A., “Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin”, Phytomedicine 14, 727–732, (2007).
-
[29] Stassi, V., Verykokidou, E., Loukis, A., Harvala, C., and Philianos, S., “The antimicrobial activity of the essential oils of four Juniperus species growing wild in Greece”. Flavour and fragrance journal, 11(1), 71-74, (1996).
-
[30] Boztok, Ş., “Doğal sakız bitkileri (Pistacia lentiscus L.)’nin ekonomiye kazandırılması” Ege Üniversitesi Tarımsal Uygulama ve Araştırma Merkezi, Yayım Bülteni, (51), (2007).
-
[31] Koutsoudaki, C., Krsek, M., and Rodger, A., “Chemical Composition and Antibacterial Activity of the Essential Oil and the Gum of Pistacia lentiscus Var. chia”, J. Agric. Food Chem., 53, 7681-7685, (2005).
-
[32] Iauk, L., Ragusa, S., Rapisarda, A., Franco, S., & Nicolosi, V. M., “In vitro antimicrobial activity of Pistacia lentiscus L. extracts: Preliminary report” Journal of chemotherapy, 8(3), 207-209, (1996).
-
[33] Martín‐Aragón, S., Basabe, B., Benedí, J. M., & Villar, A. M., “Antioxidant action of Vaccinium myrtillus L.” Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 12(S1), S104-S106, (1998).
-
[34] Silva, S., Costa, E. M., Machado, M., Morais, R. M., Calhau, C., & Pintado, M., “Selective activity of an anthocyanin-rich, purified blueberry extract upon pathogenic and probiotic bacteria”. Foods, 12(4), 734, (2023).
-
[35] Tada, K., Kakuta, K., Ogura, H., & Sato, S., “Effect of particle diameter on air polishing of dentin surfaces” Odontology, 98, 31-36, (2010).
-
[36] De Boer, P., Duinkerke, A. S. H., & Arends, J., “Influence of tooth paste particle size and tooth brush stiffness on dentine abrasion in vitro” Caries Research, 19(3), 232-239, (1985).
-
[37] Da Rocha, D. N., Da Silva, M. H. P., De Campos, J. B., Marçal, R. L. S. B., Mijares, D. Q., Coelho, P. G., and Cruz, L. R., “Kinetics of conversion of brushite coatings to hydroxyapatite in alkaline solution” Journal of materials research and technology, 7(4), 479-486, (2018).
-
[38] Wang, L., and Nancollas, G. H., “Dynamics of biomineralization and biodemineralization” Metal ions in life sciences, 4, 413, (2010).
-
[39] Şahin, E., "Enhanced injectability of aqueous β-tricalcium phosphate suspensions through PAA incorporation, gelling and preshearing." Journal of the Mechanical Behavior of Biomedical Materials 145, 106026, (2023).
-
[40] Lin, G. S. S., Cher, C. Y., Goh, Y. H., Chan, D. Z. K., Karobari, M. I., Lai, J. C. H., & Noorani, T. Y., “An insight into the role of marine biopolymer alginate in endodontics: a review” Marine Drugs, 20(8), 539, (2022).
-
[41] Pagliaro, M., and Rossi, M., “Glycerol: Properties and Production, Chapter 1.” The future of glycerol (Vol. 8)., Royal Society of Chemistry, (2010).