Research Article
BibTex RIS Cite

Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1537109

Abstract

Salt crystallization caused by water absorption in ignimbrites used as building stones is one of the most important factors that cause the deterioration of historical buildings. Salt crystals accumulated in the pores of the stones cause deterioration such as cracks and efflorescence during drying due to the effect of internal pressure. In this study, it is aimed to use epoxy coatings on the surface of ignimbrites found in Nevsehir (Turkiye) and to prevent damage caused by salt crystallization. Epoxy coated (treated) and untreated samples; their resistance to salt was examined by performing water absorption, apparent density, open porosity and salt crystallization experiments with sodium chloride solutions. At the end of the salt crystallization test, it was determined that there was a 6.20% increase in the dry weight of the epoxy coated samples, while there was a 0.82% decrease in the untreated ignimbrite samples. It was observed that the epoxy coating fills the pores in the stones and is more resistant to salt crystallization damage than untreated stones. Since epoxy coatings are effective in protecting the surface of ignimbrites, it has been concluded that they can be used to prevent deterioration of historical buildings caused by salt crystallization.

References

  • [1] Salvadori B., Pinna D., Porcinai S., ‘‘Performance evaluation of two protective treatments on salt-laden limestones and marble after natural and artificial weathering’’, Environmental Science and Pollution Research, 21: 1884–1896, (2014).
  • [2] Corcione C.E., De Simone N., Santarelli M.L., Frigione M., ‘‘Protective properties and durability characteristics of experimental and commercial organic coatings for the preservation of porous stone’’, Progress in Organic Coatings, 103: 193–203, (2017).
  • [3] Cappelletti G., Fermo P., Camiloni M., ‘‘Smart hybrid coatings for natural stones conservation’’, Progress in Organic Coatings, 78: 511–516, (2015).
  • [4] Brus J., Kotlik P., ‘‘Consolidation of stone by mixtures of alkoxysilane and acrylic polymer’’, Studies in Conservation, 41(2): 109–119, (1996).
  • [5] da Fonseca B.S., Pinto A.P.F., Rucha M., Alves M.M., Montemor M.F., ‘‘Damaging effects of salt crystallization on a porous limestone after consolidation treatments’’, Construction and Building Materials, 374: 130967, (2023).
  • [6] Andreotti S., Franzoni E., Ruiz-Agudo E., Scherer G.W., Fabbri P., Sassoni E., Rodriguez-Navarro C., ‘‘New polymer-based treatments for the prevention of damage by salt crystallization in stone’’, Materials and Structures, 52: 17, (2019).
  • [7] Vázquez P., Luque A., Alonso F.J., Grossi C.M., ‘‘Surface changes on crystalline stones due to salt crystallisation’’, Environmental Earth Sciences, 69: 1237–1248, (2013).
  • [8] Khallaf M.K., El-Midany A.A., El-Mofty S.E., ‘‘Influence of acrylic coatings on the interfacial, physical, and mechanical properties of stone-based monuments’’, Progress in Organic Coatings, 72(3): 592–598, (2011).
  • [9] Pinna D., Salvadori B., Porcinai S., ‘‘Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble’’, Construction and Building Materials, 25(5): 2723–2732, (2011).
  • [10] Deniz B.E., Topal T., ‘‘Prediction of uniaxial compressive strength of the Kızılkaya ignimbrite with variable properties using MRA and ANN, Cappadocia (Turkey)’’, Discover Environment, 1: 12, (2023).
  • [11] Dinçer İ., Bostancı M., ‘‘Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration’’, Environmental Earth Sciences, 78: 7, (2019).
  • [12] Topal T., Doyuran V., ‘‘Engineering geological properties and durability assessment of the Cappadocian tuff’’, Engineering Geology, 47(1-2): 175–187, (1997).
  • [13] Özşen H., Bozdağ A., İnce İ., ‘‘Effect of salt crystallization on weathering of pyroclastic rocks from Cappadocia, Turkey’’, Arabian Journal of Geosciences, 10: 258, (2017).
  • [14] Aydar E., Akkaş E., ‘‘The emission of natural harmful particulate matters by wind erosion and possible impact areas, Cappadocia province, Central Anatolia, Turkey’’, Bulletin of Engineering Geology and the Environment, 81: 20, (2022).
  • [15] İnce İ., ‘‘Relationship between capillary water absorption value, capillary water absorption speed, and capillary rise height in pyroclastic rocks’’, Mining, Metallurgy & Exploration, 38: 841–853, (2021).
  • [16] Erguler Z.A., ‘‘Field-based experimental determination of the weathering rates of the Cappadocian tuffs’’, Engineering Geology, 105(3–4): 186-199, (2009).
  • [17] Korkanç M., Solak B., ‘‘Estimation of engineering properties of selected tuffs by using grain/matrix ratio’’, Journal of African Earth Sciences, 120: 160–172, (2016).
  • [18] Topal T., Doyuran V., ‘‘Analyses of deterioration of the Cappadocian tuff, Turkey’’, Environmental Geology, 34: 5–20, (1998).
  • [19] Aydan Ö., Ulusay R., ‘‘Geomechanical evaluation of Derinkuyu antique underground city and its implications in geoengineering’’, Rock Mechanics And Rock Engineering, 46: 731–754, (2013).
  • [20] Garcia-Vallès M., Topal T., Vendrell-Saz M., ‘‘Lichenic growth as a factor in the physical deterioration or protection of Cappadocian monuments’’, Environmental Geology, 43: 776–781, (2003).
  • [21] Aydar E., Schmitt A.K., Çubukçu H.E., Akin L., Ersoy O., Sen E., Duncan R.A., Atici G., ‘‘Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions’’, Journal of Volcanology and Geothermal Research, 213-214: 83–97, (2012).
  • [22] Korkanç M., ‘‘İgnimbiritlerin jeomekanik özelliklerinin yapı taşı olarak kullanımına etkisi: Nevşehir taşı’’, Jeoloji Mühendisliği Dergisi, 31(1): 49–60, (2007).
  • [23] TS-EN-12370, ‘‘Natural stone test methods-determination of resistance to salt crystallization’’, Turkish Standards Institute, Ankara, Turkey, (2001).
  • [24] Verma C., Olasunkanmi L.O., Akpan E.D., Quraishi M.A., Dagdag O., El Gouri M., Sherif E.-S.M., Ebenso E.E., ‘‘Epoxy resins as anticorrosive polymeric materials: A review’’, Reactive and Functional Polymers, 156: 104741, (2020).
  • [25] Pastarnokienė L., Jonikaitė-Švėgždienė J., Lapinskaitė N., Kulbokaitė R., Bočkuvienė A., Kochanė T., Makuška R., ‘‘The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings’’, Journal of Coatings Technology and Research, 20: 1207–1221, (2023).
  • [26] Francis L.F., McCormick A.V., Vaessen D.M., Payne J.A., ‘‘Development and measurement of stress in polymer coatings’’, Journal of Materials Science, 37: 4717–4731, (2002).
  • [27] RILEM, ‘‘Recommended test to measure the deterioration of stone and to assess the effectiveness of treatment methods’’, commission 25-PEM, Material and Structures, (1980).
  • [28] DIN-52111, ‘‘Testing of natural stone and mineral aggregates; crystallisation test with sodium sulfate’’, Deutsches Institut für Normung e.V., Berlin, German, (1990).
  • [29] ASTM-C-88, ‘‘Standard test method for soundness of aggregates by use of sodium sulfate and magnesium sulfate’’, Annual Book of ASTM Standards, West Conshohocken, Pennsylvania, USA, (1994).
  • [30] Bozdağ A., ‘‘Tuz (NaCl) kristallenmesinin kayaçların mühendislik parametreleri üzerine etkisi’’, Doktora, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (2013).
  • [31] Arı A.C., ‘‘Su itici kimyasal kaplama malzemesinin nevşehir taşinin mekanik özelliklerine etkisinin incelenmesi’’, Online Journal of Art and Design, 12(3): 21–34, (2024).
  • [32] Çelik M.Y., Güven Ö., ‘‘An assessment of the durability of untreated and water repellent-treated cultural heritage stone (Döğer tuff-Turkey) by salt mist and salt crystallization tests’’, Bulletin of Engineering Geology and the Environment, 83: 183, (2024).
  • [33] Çelik M.Y., Tığlı R., ‘‘The investigation of the water repellent chemical influence on salt crystallization in high porous building stones’’, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1): 535–552, (2019).
  • [34] ASTM-D570-98, ‘‘Standard test method for water absorption of plastics’’, American Society for Testing Materials, West Conshohocken, PA, (2005).
  • [35] TS-EN-1936, ‘‘Natural stone test methods-determination of real density and apparent density, and of total and open porosity’’, Turkish Standards Institute, Ankara, Turkey, (2010).
  • [36] Çelik M.Y., Sert M., ‘‘Accelerated aging laboratory tests for the evaluation of the durability of hydrophobic treated and untreated andesite with respect to salt crystallization, freezing–thawing, and thermal shock’’, Bulletin of Engineering Geology and the Environment, 79: 3751–3770, (2020).
  • [37] Vacchiano C.D., Incarnato L., Scarfato P., Acierno D., ‘‘Conservation of tuff-stone with polymeric resins’’, Construction and Building Materials, 22(5): 855–865, (2008).
  • [38] Striani R., Corcione C.E., Muia G.D.A., Frigione M., ‘‘Durability of a sunlight-curable organic–inorganic hybrid protective coating for porous stones in natural and artificial weathering conditions’’, Progress in Organic Coatings, 101: 1–14, (2016).
  • [39] Angeli M., Bigas J.-P., Benavente D., Menéndez B., Hébert R., David C., ‘‘Salt crystallization in pores: quantification and estimation of damage’’, Environmental Geology, 52: 205–213, (2007).
  • [40] Deniz B.E., Topal T., ‘‘Durability assessment of some Cappadocian tuffs using factor analysis, multiple regression analysis, and analytical hierarchy process’’, Bulletin of Engineering Geology and the Environment, 81: 6, (2022).
  • [41] Chen Z., Liu X., Chen H., Li J., Wang X., Zhu J., ‘‘Application of epoxy resin in cultural relics protection’’, Chinese Chemical Letters, 35(4): 109194, (2024).
  • [42] Zhang X.-Y., Wen W.-Y., Yu H.-Q., Chen Q., Xu J.-C., Yang D.-Y., Qiu F.-X., ‘‘Preparation and artificial ageing tests in stone conservation of fluorosilicone vinyl acetate/acrylic/epoxy polymers’’, Chemical Papers, 70: 1621–1631, (2016).
  • [43] Ban M., Mascha E., Weber J., Rohatsch A., Delgado Rodrigues J., ‘‘Efficiency and compatibility of selected alkoxysilanes on porous carbonate and silicate stones’’, Materials, 12(1): 156, (2019).
  • [44] Cardiano P., Ponterio R.C., Sergi S., Schiavo S.L., Piraino P., ‘‘Epoxy-silica polymers as stone conservation materials’’, Polymer, 46(6): 1857–1864, (2005).
  • [45] Urosevic M., Sebastián-Pardo E., Cardell C., ‘‘Rough and polished travertine building stone decay evaluated by a marine aerosol ageing test’’, Construction and Building Materials, 24(8): 1438–1448, (2010).
  • [46] Shilova O.A., Vlasov D.Y., Khamova T.V., Zelenskaya M.S., Frank-Kamenetskaya O.V., ‘‘Microbiologically induced deterioration and protection of outdoor stone monuments’’, In Biodegradation and Biodeterioration at the Nanoscale, 339–367, (2022).
  • [47] Karoglou M., Moropoulou A., Giakoumaki A., Krokida M.K., ‘‘Capillary rise kinetics of some building materials’’, Journal of Colloid and Interface Science, 284(1): 260–264, (2005).
  • [48] Tomašić I., Lukić D., Peček N., Kršinić A., ‘‘Dynamics of capillary water absorption in natural stone’’, Bulletin of Engineering Geology and the Environment, 70: 673–680, (2011).
  • [49] La Russa M.F., Ruffolo S.A., de Buergo M.Á., Ricca M., Belfiore C.M., Pezzino A., Crisci G.M., ‘‘The behaviour of consolidated Neapolitan yellow Tuff against salt weathering’’, Bulletin of Engineering Geology and the Environment, 76: 115–124, (2017).
  • [50] Salazar-Hernández C., Cervantes J., Puy-Alquiza M.J., Miranda R., ‘‘Conservation of building materials of historic monuments using a hybrid formulation’’, Journal of Cultural Heritage, 16(2): 185–191, (2015).

İgnimbirit (Nevşehir-Türkiye) Taşlarında Epoksi Kaplamaların Kullanılmasının Tuz Kristalleşmesine Etkisinin Araştırılması

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1537109

Abstract

Yapı taşı olarak kullanılan ignimbiritlerde su emilimiyle oluşan tuz kristalleşmesi tarihi yapıların bozulmasına neden olan en önemli faktörlerdendir. Taşların gözeneklerinde biriken tuz kristalleri, iç basınç etkisiyle çatlaklar ve kuruma esnasında çiçeklenme gibi bozulmaları oluşturmaktadır. Bu çalışmada Nevşehir (Türkiye) ilinde bulunan ignimbiritlerin yüzeyinde epoksi kaplamaların kullanılması, tuz kristalleşmesine bağlı oluşan hasarların önlenmesi amaçlanmaktadır. Epoksi kaplama işlemi görmüş ve işlem görmemiş numunelerin; su emme, görünür yoğunluk, açık gözeneklilik ve sodyum klorür çözeltileriyle tuz kristalleşmesi deneyleri yapılarak tuza karşı gösterdiği dirençleri incelenmiştir. Epoksi kaplama işlemi görmüş numunelerin tuz kristalizasyon testi sonunda kuru ağırlıklarında % 6.20 artış olurken, işlem görmemiş ignimbirit numunelerde ise % 0.82 azalma olduğu belirlenmiştir. Epoksi kaplama, taşlardaki gözenekleri doldurarak işlem görmemiş taşlara göre tuz kristalleşmesi tahribatına karşı daha dirençli olduğu gözlemlenmiştir. Epoksi kaplamalar ignimbiritlerin yüzeyinin korunmasında etkili olduğundan, tarihi yapıların tuz kristalizasyonuyla oluşan bozulmalarını önlemek için kullanılabileceği sonucuna varılmıştır.

References

  • [1] Salvadori B., Pinna D., Porcinai S., ‘‘Performance evaluation of two protective treatments on salt-laden limestones and marble after natural and artificial weathering’’, Environmental Science and Pollution Research, 21: 1884–1896, (2014).
  • [2] Corcione C.E., De Simone N., Santarelli M.L., Frigione M., ‘‘Protective properties and durability characteristics of experimental and commercial organic coatings for the preservation of porous stone’’, Progress in Organic Coatings, 103: 193–203, (2017).
  • [3] Cappelletti G., Fermo P., Camiloni M., ‘‘Smart hybrid coatings for natural stones conservation’’, Progress in Organic Coatings, 78: 511–516, (2015).
  • [4] Brus J., Kotlik P., ‘‘Consolidation of stone by mixtures of alkoxysilane and acrylic polymer’’, Studies in Conservation, 41(2): 109–119, (1996).
  • [5] da Fonseca B.S., Pinto A.P.F., Rucha M., Alves M.M., Montemor M.F., ‘‘Damaging effects of salt crystallization on a porous limestone after consolidation treatments’’, Construction and Building Materials, 374: 130967, (2023).
  • [6] Andreotti S., Franzoni E., Ruiz-Agudo E., Scherer G.W., Fabbri P., Sassoni E., Rodriguez-Navarro C., ‘‘New polymer-based treatments for the prevention of damage by salt crystallization in stone’’, Materials and Structures, 52: 17, (2019).
  • [7] Vázquez P., Luque A., Alonso F.J., Grossi C.M., ‘‘Surface changes on crystalline stones due to salt crystallisation’’, Environmental Earth Sciences, 69: 1237–1248, (2013).
  • [8] Khallaf M.K., El-Midany A.A., El-Mofty S.E., ‘‘Influence of acrylic coatings on the interfacial, physical, and mechanical properties of stone-based monuments’’, Progress in Organic Coatings, 72(3): 592–598, (2011).
  • [9] Pinna D., Salvadori B., Porcinai S., ‘‘Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble’’, Construction and Building Materials, 25(5): 2723–2732, (2011).
  • [10] Deniz B.E., Topal T., ‘‘Prediction of uniaxial compressive strength of the Kızılkaya ignimbrite with variable properties using MRA and ANN, Cappadocia (Turkey)’’, Discover Environment, 1: 12, (2023).
  • [11] Dinçer İ., Bostancı M., ‘‘Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration’’, Environmental Earth Sciences, 78: 7, (2019).
  • [12] Topal T., Doyuran V., ‘‘Engineering geological properties and durability assessment of the Cappadocian tuff’’, Engineering Geology, 47(1-2): 175–187, (1997).
  • [13] Özşen H., Bozdağ A., İnce İ., ‘‘Effect of salt crystallization on weathering of pyroclastic rocks from Cappadocia, Turkey’’, Arabian Journal of Geosciences, 10: 258, (2017).
  • [14] Aydar E., Akkaş E., ‘‘The emission of natural harmful particulate matters by wind erosion and possible impact areas, Cappadocia province, Central Anatolia, Turkey’’, Bulletin of Engineering Geology and the Environment, 81: 20, (2022).
  • [15] İnce İ., ‘‘Relationship between capillary water absorption value, capillary water absorption speed, and capillary rise height in pyroclastic rocks’’, Mining, Metallurgy & Exploration, 38: 841–853, (2021).
  • [16] Erguler Z.A., ‘‘Field-based experimental determination of the weathering rates of the Cappadocian tuffs’’, Engineering Geology, 105(3–4): 186-199, (2009).
  • [17] Korkanç M., Solak B., ‘‘Estimation of engineering properties of selected tuffs by using grain/matrix ratio’’, Journal of African Earth Sciences, 120: 160–172, (2016).
  • [18] Topal T., Doyuran V., ‘‘Analyses of deterioration of the Cappadocian tuff, Turkey’’, Environmental Geology, 34: 5–20, (1998).
  • [19] Aydan Ö., Ulusay R., ‘‘Geomechanical evaluation of Derinkuyu antique underground city and its implications in geoengineering’’, Rock Mechanics And Rock Engineering, 46: 731–754, (2013).
  • [20] Garcia-Vallès M., Topal T., Vendrell-Saz M., ‘‘Lichenic growth as a factor in the physical deterioration or protection of Cappadocian monuments’’, Environmental Geology, 43: 776–781, (2003).
  • [21] Aydar E., Schmitt A.K., Çubukçu H.E., Akin L., Ersoy O., Sen E., Duncan R.A., Atici G., ‘‘Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions’’, Journal of Volcanology and Geothermal Research, 213-214: 83–97, (2012).
  • [22] Korkanç M., ‘‘İgnimbiritlerin jeomekanik özelliklerinin yapı taşı olarak kullanımına etkisi: Nevşehir taşı’’, Jeoloji Mühendisliği Dergisi, 31(1): 49–60, (2007).
  • [23] TS-EN-12370, ‘‘Natural stone test methods-determination of resistance to salt crystallization’’, Turkish Standards Institute, Ankara, Turkey, (2001).
  • [24] Verma C., Olasunkanmi L.O., Akpan E.D., Quraishi M.A., Dagdag O., El Gouri M., Sherif E.-S.M., Ebenso E.E., ‘‘Epoxy resins as anticorrosive polymeric materials: A review’’, Reactive and Functional Polymers, 156: 104741, (2020).
  • [25] Pastarnokienė L., Jonikaitė-Švėgždienė J., Lapinskaitė N., Kulbokaitė R., Bočkuvienė A., Kochanė T., Makuška R., ‘‘The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings’’, Journal of Coatings Technology and Research, 20: 1207–1221, (2023).
  • [26] Francis L.F., McCormick A.V., Vaessen D.M., Payne J.A., ‘‘Development and measurement of stress in polymer coatings’’, Journal of Materials Science, 37: 4717–4731, (2002).
  • [27] RILEM, ‘‘Recommended test to measure the deterioration of stone and to assess the effectiveness of treatment methods’’, commission 25-PEM, Material and Structures, (1980).
  • [28] DIN-52111, ‘‘Testing of natural stone and mineral aggregates; crystallisation test with sodium sulfate’’, Deutsches Institut für Normung e.V., Berlin, German, (1990).
  • [29] ASTM-C-88, ‘‘Standard test method for soundness of aggregates by use of sodium sulfate and magnesium sulfate’’, Annual Book of ASTM Standards, West Conshohocken, Pennsylvania, USA, (1994).
  • [30] Bozdağ A., ‘‘Tuz (NaCl) kristallenmesinin kayaçların mühendislik parametreleri üzerine etkisi’’, Doktora, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (2013).
  • [31] Arı A.C., ‘‘Su itici kimyasal kaplama malzemesinin nevşehir taşinin mekanik özelliklerine etkisinin incelenmesi’’, Online Journal of Art and Design, 12(3): 21–34, (2024).
  • [32] Çelik M.Y., Güven Ö., ‘‘An assessment of the durability of untreated and water repellent-treated cultural heritage stone (Döğer tuff-Turkey) by salt mist and salt crystallization tests’’, Bulletin of Engineering Geology and the Environment, 83: 183, (2024).
  • [33] Çelik M.Y., Tığlı R., ‘‘The investigation of the water repellent chemical influence on salt crystallization in high porous building stones’’, Journal of the Faculty of Engineering and Architecture of Gazi University, 34(1): 535–552, (2019).
  • [34] ASTM-D570-98, ‘‘Standard test method for water absorption of plastics’’, American Society for Testing Materials, West Conshohocken, PA, (2005).
  • [35] TS-EN-1936, ‘‘Natural stone test methods-determination of real density and apparent density, and of total and open porosity’’, Turkish Standards Institute, Ankara, Turkey, (2010).
  • [36] Çelik M.Y., Sert M., ‘‘Accelerated aging laboratory tests for the evaluation of the durability of hydrophobic treated and untreated andesite with respect to salt crystallization, freezing–thawing, and thermal shock’’, Bulletin of Engineering Geology and the Environment, 79: 3751–3770, (2020).
  • [37] Vacchiano C.D., Incarnato L., Scarfato P., Acierno D., ‘‘Conservation of tuff-stone with polymeric resins’’, Construction and Building Materials, 22(5): 855–865, (2008).
  • [38] Striani R., Corcione C.E., Muia G.D.A., Frigione M., ‘‘Durability of a sunlight-curable organic–inorganic hybrid protective coating for porous stones in natural and artificial weathering conditions’’, Progress in Organic Coatings, 101: 1–14, (2016).
  • [39] Angeli M., Bigas J.-P., Benavente D., Menéndez B., Hébert R., David C., ‘‘Salt crystallization in pores: quantification and estimation of damage’’, Environmental Geology, 52: 205–213, (2007).
  • [40] Deniz B.E., Topal T., ‘‘Durability assessment of some Cappadocian tuffs using factor analysis, multiple regression analysis, and analytical hierarchy process’’, Bulletin of Engineering Geology and the Environment, 81: 6, (2022).
  • [41] Chen Z., Liu X., Chen H., Li J., Wang X., Zhu J., ‘‘Application of epoxy resin in cultural relics protection’’, Chinese Chemical Letters, 35(4): 109194, (2024).
  • [42] Zhang X.-Y., Wen W.-Y., Yu H.-Q., Chen Q., Xu J.-C., Yang D.-Y., Qiu F.-X., ‘‘Preparation and artificial ageing tests in stone conservation of fluorosilicone vinyl acetate/acrylic/epoxy polymers’’, Chemical Papers, 70: 1621–1631, (2016).
  • [43] Ban M., Mascha E., Weber J., Rohatsch A., Delgado Rodrigues J., ‘‘Efficiency and compatibility of selected alkoxysilanes on porous carbonate and silicate stones’’, Materials, 12(1): 156, (2019).
  • [44] Cardiano P., Ponterio R.C., Sergi S., Schiavo S.L., Piraino P., ‘‘Epoxy-silica polymers as stone conservation materials’’, Polymer, 46(6): 1857–1864, (2005).
  • [45] Urosevic M., Sebastián-Pardo E., Cardell C., ‘‘Rough and polished travertine building stone decay evaluated by a marine aerosol ageing test’’, Construction and Building Materials, 24(8): 1438–1448, (2010).
  • [46] Shilova O.A., Vlasov D.Y., Khamova T.V., Zelenskaya M.S., Frank-Kamenetskaya O.V., ‘‘Microbiologically induced deterioration and protection of outdoor stone monuments’’, In Biodegradation and Biodeterioration at the Nanoscale, 339–367, (2022).
  • [47] Karoglou M., Moropoulou A., Giakoumaki A., Krokida M.K., ‘‘Capillary rise kinetics of some building materials’’, Journal of Colloid and Interface Science, 284(1): 260–264, (2005).
  • [48] Tomašić I., Lukić D., Peček N., Kršinić A., ‘‘Dynamics of capillary water absorption in natural stone’’, Bulletin of Engineering Geology and the Environment, 70: 673–680, (2011).
  • [49] La Russa M.F., Ruffolo S.A., de Buergo M.Á., Ricca M., Belfiore C.M., Pezzino A., Crisci G.M., ‘‘The behaviour of consolidated Neapolitan yellow Tuff against salt weathering’’, Bulletin of Engineering Geology and the Environment, 76: 115–124, (2017).
  • [50] Salazar-Hernández C., Cervantes J., Puy-Alquiza M.J., Miranda R., ‘‘Conservation of building materials of historic monuments using a hybrid formulation’’, Journal of Cultural Heritage, 16(2): 185–191, (2015).
There are 50 citations in total.

Details

Primary Language English
Subjects Architectural Engineering, Construction Materials
Journal Section Research Article
Authors

Ahmet Cihat Arı 0000-0002-4690-8968

Early Pub Date February 17, 2025
Publication Date
Submission Date August 22, 2024
Acceptance Date January 7, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Arı, A. C. (2025). Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1537109
AMA Arı AC. Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones. Politeknik Dergisi. Published online February 1, 2025:1-1. doi:10.2339/politeknik.1537109
Chicago Arı, Ahmet Cihat. “Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones”. Politeknik Dergisi, February (February 2025), 1-1. https://doi.org/10.2339/politeknik.1537109.
EndNote Arı AC (February 1, 2025) Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones. Politeknik Dergisi 1–1.
IEEE A. C. Arı, “Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones”, Politeknik Dergisi, pp. 1–1, February 2025, doi: 10.2339/politeknik.1537109.
ISNAD Arı, Ahmet Cihat. “Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones”. Politeknik Dergisi. February 2025. 1-1. https://doi.org/10.2339/politeknik.1537109.
JAMA Arı AC. Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones. Politeknik Dergisi. 2025;:1–1.
MLA Arı, Ahmet Cihat. “Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1537109.
Vancouver Arı AC. Investigation of the Effect of Using Epoxy Coatings on Salt Crystallization in Ignimbrite (Nevsehir-Turkiye) Stones. Politeknik Dergisi. 2025:1-.