Review
BibTex RIS Cite

Deniz Deşarjı Araştırmalarının Evriminin Haritalandırılması: Deniz Çevresinin Sürdürülebilirliği için Öneriler

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1543710

Abstract

Deniz deşarjının etkin yönetimi, deniz çevre bilimi, sürdürülebilirlik düzenlemeleri ve yol haritalarına uyum açısından kritik bir konudur. Bu nedenle, bu çalışmada 1970 - 2023 yılları arasında yayınlanan 248 makale ele alınarak deniz çıkışı araştırmalarının gelişimi haritalandırılmıştır. Bibliyometrik ve içerik analizinin bir kombinasyonu yoluyla alanın gelişiminin ayrıntılı bir değerlendirmesi yapılmıştır. Ortak araştırma konularını, atıf modellerini, üretken yazarları ve ülkeleri belirlemek için eş-oluşum, eş-yazarlık, atıf ve bibliyografik bağlantı dahil olmak üzere ağ analizi teknikleri kullanılmıştır. Daha sonra, mevcut araştırmadaki nitelikleri, araştırma yöntemlerini ve boşlukları araştırmak için içerik analizi uygulanmıştır. İçerik analizinden, çalışmalarda uygulanan metodolojiler (modelleme, sayısal analiz, deneysel teknikler, simülasyon ve saha çalışmaları) dikkate alınarak saha çalışmaları, laboratuvar deneyleri ve veri analizi olmak üzere yeni ve ayrıntılı bir deniz deşarjı araştırması sınıflandırması elde edilmiştir. Bulgular sadece deniz deşarjı araştırmalarının gelişimini vurgulamakla kalmamakta, aynı zamanda deniz çevresinin sürdürülebilirliğini ve yönetimini geliştirmeyi amaçlayan gelecekteki araştırmalara ve stratejik yatırımlara bilgi sağlayabilecek yeni perspektifler sunmaktadır.

References

  • [1] Anilan, T., Berkun, M., & Aras E., “Effects of T90 value variations on outfall design”, Proceedings of the 12th International Conference on Environmental Science and Technology, 8-10, (2011).
  • [2] Brooks, N., “ Dispersion in hydraulic and coastal environments”, W. M. Keck Lab. of Hydraulics and Water Resources, (1960).
  • [3] Morelissen, R., van der Kaaij, T., & Bleninger, T., “Dynamic coupling of near field and far field models for simulating effluent discharges”, Water Science and Technology, 67(10): 2210-2220, (2013).
  • [4] Elci, S., & Ersoy, Z. B., “Deniz deşarjı modellemesinde model sınırlarının belirlenmesi”, İklim Değişikliği ve Çevre, 4(1): 1-8, (2019).
  • [5] Mohammadian, A., Gildeh, H. K., & Yan, X., “Numerical simulation of effluent discharges: Applications with OpenFOAM”, CRC Press, (2023).
  • [6] Robinson, D., Wood, M., Piggott, M., & Gorman, G., “CFD modelling of marine discharge mixing and dispersion”, Journal of Applied Water Engineering and Research, 4(2): 152-162, (2016).
  • [7] Berkun, M. Aras, E., & Anilan, T., “Doğu Karadeniz Bölgesi’nde atıksu arıtma ve deniz deşarjı sistemlerinin kıyı ile etkileşimi”, Türkiye’nin Kıyı ve Deniz Alanları 7. Ulusal Kongresi, 27-30, (2008).
  • [8] Lesser, G. R., Roelvink, J. V., van Kester, J. T. M., & Stelling, G. S., “Development and validation of a three-dimensional morphological model”, Coastal Engineering, 51(8-9): 883-915, (2004).
  • [9] Bleninger, T., & Jirka, G. H., “Near-and far-field model coupling methodology for wastewater discharges”, In Environmental Hydraulics and Sustainable Water Management, Taylor & Francis, 447-453, (2004).
  • [10] Galeshi, A., Abessi, O., Yousefifard, M., & Firoozjaee, A. R., “Inclined dense discharge in stagnant and wave environments: An experimental and numerical study”, Ocean Engineering, 278, 114045, (2023).
  • [11] Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y., “OpenFOAM for computational fluid dynamics”, Notices of the AMS, 61(4): 354-363, (2014).
  • [12] Hou, Y., & Wang, Q., “A bibliometric study about energy, environment, and climate change”, Environmental Science and Pollution Research, 28(26): 34187-34199, (2021).
  • [13] Suhaimi, N., & Mahmud, S. N. D., “A bibliometric analysis of climate change literacy between 2001 and 2021”, Sustainability, 14(19): 11940, (2022).
  • [14] Yilmaz, M. U., & Yilmaz, H., “An investigation of meteorological drought studies on a blobal scale using a bibliometric analysis”, Journal of Innovative Science and Engineering, 6(1): 76-93, (2022).
  • [15] Si, H., Shi, J. G., Tang, D., Wen, S., Miao, W., & Duan, K., “Application of the theory of planned behavior in environmental science: a comprehensive bibliometric analysis”, International Journal of Environmental Research and Public Health, 16(15): 2788, (2019).
  • [16] Li, J., Wang, L., Liu, Y., Song, Y., Zeng, P., & Zhang, Y., “The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis”, Environmental Science and Pollution Research, 27: 19265-19284, (2020).
  • [17] Huang, C., Yang, C., Wang, S., Wu, W., Su, J., & Liang, C., “Evolution of topics in education research: A systematic review using bibliometric analysis”, Educational Review, 72(3): 281-297, (2020).
  • [18] Aparicio, G., Iturralde, T., & Maseda, A., “Conceptual structure and perspectives on entrepreneurship education research: A bibliometric review”, European Research on Management and Business Economics, 25(3): 105-113, (2019).
  • [19] Yilmaz, H., Karadayi-Usta, S., & Yanik, S., “A novel neutrosophic AHP-Copeland approach for distance education: towards sustainability”, Interactive Learning Environments, 32(5): 2152–2174, (2022).
  • [20] Hassan, W., Zafar, M., Hassan, H., Kamdem, J. P., Duarte, A. E., & da Rocha, J. B. T., “Ten years of Arabian Journal of Chemistry: A bibliometric analysis”, Arabian Journal of Chemistry, 13(11): 7720-7743, (2020).
  • [21] Merigó, J. M., Rocafort, A., & Aznar-Alarcón, J. P., “Bibliometric overview of business & economics research”, Journal of Business Economics and Management, 17(3): 397-413, (2016).
  • [22] Rousseau, S., & Rousseau, R., “Bibliometric techniques and their use in business and economics research”, Journal of Economic Surveys, 35(5): 1428-1451, (2021).
  • [23] Fiala, D., & Tutoky, G., “Computer science papers in web of science: A bibliometric analysis”, Publications, 5(4): 23, (2017).
  • [24] Ho, Y. S., “A bibliometric analysis of highly cited articles in materials science”, Current Science, 107(9): 1565-1572, (2014).
  • [25] Forliano, C., De Bernardi, P., & Yahiaoui, D., “Entrepreneurial universities: A bibliometric analysis within the business and management domains”, Technological Forecasting and Social Change, 165: 120522, (2021).
  • [26] Anugerah, A. R., Muttaqin, P. S., & Trinarningsih, W., “Social network analysis in business and management research: A bibliometric analysis of the research trend and performance from 2001 to 2020”, Heliyon, (2022).
  • [27] Serdarasan, S., Yilmaz, H., Dogan, E., Koc, B., Kayir, M. H., & Catalyurek, M., “Lojistik ve Tedarik Zinciri Alanında TR Dizin’de İndekslenen Çalışmaların Bibliyometrik Analizi”, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (68): 164-184, (2021).
  • [28] Durmus Senyapar, H. N., Cetinkaya, U., & Bayindir, R., “Renewable Energy Incentives and Future Implications for Turkey: A Comparative Bibliometric Analysis”, Politeknik Dergisi, 27(1): 329-342, (2024).
  • [29] Hancerliogulları, K. Ö., “A Scientometric Analysis of Space Medicine”, Politeknik Dergisi, 25(1): 405-410, (2022).
  • [30] Kaya, C., & Bashan, V., “Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects”, Politeknik Dergisi, 1-1, (2024).
  • [31] Chadegani, A. A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N., “A comparison between two main academic literature collections: Web of Science and Scopus databases”, Asian Social Science, 9(5): 18–26, (2013).
  • [32] Mongeon, P., & Paul-Hus, A., “The journal coverage of Web of Science and Scopus: a comparative analysis”, Scientometrics, 106(1): 213–228, (2016).
  • [33] Pritchard, A., “Statistical bibliography or bibliometrics”, Journal of Documentation, 25: 348, (1969).
  • [34] Csanady, G. T., “Dispersal of effluents in the Great Lakes”, Water Research, 4(1): 79-114, (1970).
  • [35] Ding, Y., & Cronin, B., “Popular and/or prestigious? Measures of scholarly esteem”, Information processing & management, 47(1): 80-96, (2011).
  • [36] Gartner, A., Lavery, P., & Smit, A. J., “Use of δ15N signatures of different functional forms of macroalgae and filter-feeders to reveal temporal and spatial patterns in sewage dispersal”, Marine Ecology Progress Series, 235: 63-73, (2002).
  • [37] Roberts, P. J., Snyder, W. H., & Baumgartner, D. J., “Ocean outfalls. I: Submerged wastefield formation”, Journal of Hydraulic Engineering, 115(1): 1-25, (1989).
  • [38] Bonvin, F., Rutler, R., Chèvre, N., Halder, J., & Kohn, T., “Spatial and temporal presence of a wastewater-derived micropollutant plume in Lake Geneva”, Environmental Science & Technology, 45(11): 4702-4709, (2011).
  • [39] Alameddine, I., & El-Fadel, M., “Brine discharge from desalination plants: a modeling approach to an optimized outfall design”, Desalination, 214(1-3): 241-260, (2007).
  • [40] Gagnon, C., & Saulnier, I., “Distribution and fate of metals in the dispersion plume of a major municipal effluent”, Environmental Pollution, 124(1): 47-55, (2003).
  • [41] Chan, S. N., Thoe, W., & Lee, J. H., “Real-time forecasting of Hong Kong beach water quality by 3D deterministic model”, Water Research, 47(4):1631-1647, (2003).
  • [42] Del Bene, J. V., Jirka, G., & Largier, J., “Ocean brine disposal”, Desalination, 97(1-3): 365-372, (1994).
  • [43] Robinson, R. D., Carey, J. H., Solomon, K. R., Smith, I. R., Servos, M. R., & Munkittrick, K. R., “Survey of receiving-water environmental impacts associated with discharges from pulp mills: 1. Mill characteristics, receiving-water chemical profiles and lab toxicity tests”, Environmental Toxicology and Chemistry, 13(7): 1075–1088, (1994).
  • [44] Pincince, A. B., & List, E. J., “Disposal of brine into an estuary”, Journal of Water Pollution Control Federation, 45(11): 2335-2344, (1973).
  • [45] Kveštak, R., Terzić, S., & Ahel, M., “Input and distribution of alkylphenol polyethoxylates in a stratified estuary”, Marine Chemistry, 46(1-2): 89-100, (1994).
  • [46] Surwase, G., Sagar, A., Kademani, B. S., & Bhanumurthy, K., “Co-citation analysis: An overview”, In Proceedings of the Beyond Librarianship: Creativity, Innovation and Discovery, 16–17, (2011).
  • [47] Waltman, L., Van Eck, N. J., & Noyons, E. C., “A unified approach to mapping and clustering of bibliometric networks”, Journal of informetrics, 4(4): 629-635, (2010).
  • [48] Sunder M, V., & Prashar, A., “Empirical examination of critical failure factors of continuous improvement deployments: stage-wise results and a contingency theory perspective”, International Journal of Production Research, 58(16): 4894-4915, (2020).
  • [49] Hunt, C. D., Mansfield, A. D., Mickelson, M. J., Albro, C. S., Geyer, W. R., & Roberts, P. J., “Plume tracking and dilution of effluent from the Boston sewage outfall”, Marine Environmental Research, 70(2): 150-161, (2010).
  • [50] Tian, X., Roberts, P. J., & Daviero, G. J., “Marine wastewater discharges from multiport diffusers. I: Unstratified stationary water”, Journal of Hydraulic Engineering, 130(12): 1137-1146, (2004).
  • [51] Zhao, L., Chen, Z., & Lee, K., “Modelling the dispersion of wastewater discharges from offshore outfalls: a review”, Environmental Reviews, 19: 107-120, (2011).
  • [52] Tian, X., Roberts, P. J., & Daviero, G. J., “Marine wastewater discharges from multiport diffusers. II: Unstratified flowing water” Journal of Hydraulic Engineering, 130(12): 1147-1155, (2004).
  • [53] Carvalho, J. L., Roberts, P. J., & Roldão, J., “Field observations of Ipanema Beach outfall”, Journal of Hydraulic Engineering, 128(2): 151-160, (2002).
  • [54] Roberts, P. J., & Snyder, W. H., “Hydraulic model study for Boston outfall. I: riser configuration”, Journal of Hydraulic Engineering, 119(9): 970-987, (1993).
  • [55] Alayo, M., Iturralde, T., Maseda, A., & Aparicio, G., “Mapping family firm internationalization research: bibliometric and literature review”, Review of Managerial Science, 15(6): 1517-1560, (2021).
  • [56] Maria, A., “Introduction to modeling and simulation”, In Proceedings of the Winter Simulation Conference, 7–10, (1997).
  • [57] Cumali, B. O., & Nemlioglu, S., “Initial dilution improvement of thermal wastewater outfall singular jets by nozzle inclination for decrement of sea water evaporation”, International Journal of Global Warming, 28(2): 170-184, (2022).
  • [58] Ramezani, M., Abessi, O., & Firoozjaee, A. R., “Effect of proximity to bed on 30° and 45° inclined dense jets: a numerical study”, Environmental Processes, 8: 1141-1164, (2021).
  • [59] Gildeh, H. K., Mohammadian, A., & Nistor, I., “Vertical dense effluent discharge modelling in shallow waters”, Water, 14(15): 2312, (2022).
  • [60] Tango, W. J., Link, J. K., & Zare, R. N., “Spectroscopy of K2 using laser‐induced fluorescence”, The Journal of Chemical Physics, 49(10): 4264-4268, (1968).
  • [61] Dudderar, T., Simpkins, P., “ Laser speckle photography in a fluid medium”, Nature, 270: 45–47, (1977).
  • [62] Lyubimova, T. P., Roux, B., Luo, S., Parshakova, Y. N., & Shumilova, N. S., “Modeling of the near-field distribution of pollutants coming from a coastal outfall”, Nonlinear Processes in Geophysics, 20(2): 257-266, (2013).

Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1543710

Abstract

Effective management of sea outfall is a critical topic in marine environmental science, sustainability regulations, and adaptation for the road maps. Therefore, the development of sea outfall research is mapped in this study by addressing 248 articles published during 1970 – 2023. A detailed assessment of the field’s evolution is provided through a combination of bibliometric and content analysis. Network analysis techniques, including co-occurrence, co-authorship, citation, and bibliographic coupling, are used to identify dominant research topics, citation patterns, and productive authors and countries. Subsequently, content analysis is applied to investigate the attributes, research methods, and gaps in the existing research. A new and detailed classification of sea outfall research is obtained from the content analysis namely: field studies, laboratory experiments, and data analysis, with consideration to the methodologies applied in the studies (modelling, numerical analysis, experimental techniques, simulation, and field studies). The findings not only highlight the progression of sea outfall research but also offer new perspectives that could inform future research and strategic investments aimed at enhancing marine environmental sustainability and managmenet.

References

  • [1] Anilan, T., Berkun, M., & Aras E., “Effects of T90 value variations on outfall design”, Proceedings of the 12th International Conference on Environmental Science and Technology, 8-10, (2011).
  • [2] Brooks, N., “ Dispersion in hydraulic and coastal environments”, W. M. Keck Lab. of Hydraulics and Water Resources, (1960).
  • [3] Morelissen, R., van der Kaaij, T., & Bleninger, T., “Dynamic coupling of near field and far field models for simulating effluent discharges”, Water Science and Technology, 67(10): 2210-2220, (2013).
  • [4] Elci, S., & Ersoy, Z. B., “Deniz deşarjı modellemesinde model sınırlarının belirlenmesi”, İklim Değişikliği ve Çevre, 4(1): 1-8, (2019).
  • [5] Mohammadian, A., Gildeh, H. K., & Yan, X., “Numerical simulation of effluent discharges: Applications with OpenFOAM”, CRC Press, (2023).
  • [6] Robinson, D., Wood, M., Piggott, M., & Gorman, G., “CFD modelling of marine discharge mixing and dispersion”, Journal of Applied Water Engineering and Research, 4(2): 152-162, (2016).
  • [7] Berkun, M. Aras, E., & Anilan, T., “Doğu Karadeniz Bölgesi’nde atıksu arıtma ve deniz deşarjı sistemlerinin kıyı ile etkileşimi”, Türkiye’nin Kıyı ve Deniz Alanları 7. Ulusal Kongresi, 27-30, (2008).
  • [8] Lesser, G. R., Roelvink, J. V., van Kester, J. T. M., & Stelling, G. S., “Development and validation of a three-dimensional morphological model”, Coastal Engineering, 51(8-9): 883-915, (2004).
  • [9] Bleninger, T., & Jirka, G. H., “Near-and far-field model coupling methodology for wastewater discharges”, In Environmental Hydraulics and Sustainable Water Management, Taylor & Francis, 447-453, (2004).
  • [10] Galeshi, A., Abessi, O., Yousefifard, M., & Firoozjaee, A. R., “Inclined dense discharge in stagnant and wave environments: An experimental and numerical study”, Ocean Engineering, 278, 114045, (2023).
  • [11] Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y., “OpenFOAM for computational fluid dynamics”, Notices of the AMS, 61(4): 354-363, (2014).
  • [12] Hou, Y., & Wang, Q., “A bibliometric study about energy, environment, and climate change”, Environmental Science and Pollution Research, 28(26): 34187-34199, (2021).
  • [13] Suhaimi, N., & Mahmud, S. N. D., “A bibliometric analysis of climate change literacy between 2001 and 2021”, Sustainability, 14(19): 11940, (2022).
  • [14] Yilmaz, M. U., & Yilmaz, H., “An investigation of meteorological drought studies on a blobal scale using a bibliometric analysis”, Journal of Innovative Science and Engineering, 6(1): 76-93, (2022).
  • [15] Si, H., Shi, J. G., Tang, D., Wen, S., Miao, W., & Duan, K., “Application of the theory of planned behavior in environmental science: a comprehensive bibliometric analysis”, International Journal of Environmental Research and Public Health, 16(15): 2788, (2019).
  • [16] Li, J., Wang, L., Liu, Y., Song, Y., Zeng, P., & Zhang, Y., “The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis”, Environmental Science and Pollution Research, 27: 19265-19284, (2020).
  • [17] Huang, C., Yang, C., Wang, S., Wu, W., Su, J., & Liang, C., “Evolution of topics in education research: A systematic review using bibliometric analysis”, Educational Review, 72(3): 281-297, (2020).
  • [18] Aparicio, G., Iturralde, T., & Maseda, A., “Conceptual structure and perspectives on entrepreneurship education research: A bibliometric review”, European Research on Management and Business Economics, 25(3): 105-113, (2019).
  • [19] Yilmaz, H., Karadayi-Usta, S., & Yanik, S., “A novel neutrosophic AHP-Copeland approach for distance education: towards sustainability”, Interactive Learning Environments, 32(5): 2152–2174, (2022).
  • [20] Hassan, W., Zafar, M., Hassan, H., Kamdem, J. P., Duarte, A. E., & da Rocha, J. B. T., “Ten years of Arabian Journal of Chemistry: A bibliometric analysis”, Arabian Journal of Chemistry, 13(11): 7720-7743, (2020).
  • [21] Merigó, J. M., Rocafort, A., & Aznar-Alarcón, J. P., “Bibliometric overview of business & economics research”, Journal of Business Economics and Management, 17(3): 397-413, (2016).
  • [22] Rousseau, S., & Rousseau, R., “Bibliometric techniques and their use in business and economics research”, Journal of Economic Surveys, 35(5): 1428-1451, (2021).
  • [23] Fiala, D., & Tutoky, G., “Computer science papers in web of science: A bibliometric analysis”, Publications, 5(4): 23, (2017).
  • [24] Ho, Y. S., “A bibliometric analysis of highly cited articles in materials science”, Current Science, 107(9): 1565-1572, (2014).
  • [25] Forliano, C., De Bernardi, P., & Yahiaoui, D., “Entrepreneurial universities: A bibliometric analysis within the business and management domains”, Technological Forecasting and Social Change, 165: 120522, (2021).
  • [26] Anugerah, A. R., Muttaqin, P. S., & Trinarningsih, W., “Social network analysis in business and management research: A bibliometric analysis of the research trend and performance from 2001 to 2020”, Heliyon, (2022).
  • [27] Serdarasan, S., Yilmaz, H., Dogan, E., Koc, B., Kayir, M. H., & Catalyurek, M., “Lojistik ve Tedarik Zinciri Alanında TR Dizin’de İndekslenen Çalışmaların Bibliyometrik Analizi”, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (68): 164-184, (2021).
  • [28] Durmus Senyapar, H. N., Cetinkaya, U., & Bayindir, R., “Renewable Energy Incentives and Future Implications for Turkey: A Comparative Bibliometric Analysis”, Politeknik Dergisi, 27(1): 329-342, (2024).
  • [29] Hancerliogulları, K. Ö., “A Scientometric Analysis of Space Medicine”, Politeknik Dergisi, 25(1): 405-410, (2022).
  • [30] Kaya, C., & Bashan, V., “Navigating Türkiye’s Energy Horizon: A Bibliometric Exploration of Academic Contributions to Energy, Fuels, and Hydrogen Subjects”, Politeknik Dergisi, 1-1, (2024).
  • [31] Chadegani, A. A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N., “A comparison between two main academic literature collections: Web of Science and Scopus databases”, Asian Social Science, 9(5): 18–26, (2013).
  • [32] Mongeon, P., & Paul-Hus, A., “The journal coverage of Web of Science and Scopus: a comparative analysis”, Scientometrics, 106(1): 213–228, (2016).
  • [33] Pritchard, A., “Statistical bibliography or bibliometrics”, Journal of Documentation, 25: 348, (1969).
  • [34] Csanady, G. T., “Dispersal of effluents in the Great Lakes”, Water Research, 4(1): 79-114, (1970).
  • [35] Ding, Y., & Cronin, B., “Popular and/or prestigious? Measures of scholarly esteem”, Information processing & management, 47(1): 80-96, (2011).
  • [36] Gartner, A., Lavery, P., & Smit, A. J., “Use of δ15N signatures of different functional forms of macroalgae and filter-feeders to reveal temporal and spatial patterns in sewage dispersal”, Marine Ecology Progress Series, 235: 63-73, (2002).
  • [37] Roberts, P. J., Snyder, W. H., & Baumgartner, D. J., “Ocean outfalls. I: Submerged wastefield formation”, Journal of Hydraulic Engineering, 115(1): 1-25, (1989).
  • [38] Bonvin, F., Rutler, R., Chèvre, N., Halder, J., & Kohn, T., “Spatial and temporal presence of a wastewater-derived micropollutant plume in Lake Geneva”, Environmental Science & Technology, 45(11): 4702-4709, (2011).
  • [39] Alameddine, I., & El-Fadel, M., “Brine discharge from desalination plants: a modeling approach to an optimized outfall design”, Desalination, 214(1-3): 241-260, (2007).
  • [40] Gagnon, C., & Saulnier, I., “Distribution and fate of metals in the dispersion plume of a major municipal effluent”, Environmental Pollution, 124(1): 47-55, (2003).
  • [41] Chan, S. N., Thoe, W., & Lee, J. H., “Real-time forecasting of Hong Kong beach water quality by 3D deterministic model”, Water Research, 47(4):1631-1647, (2003).
  • [42] Del Bene, J. V., Jirka, G., & Largier, J., “Ocean brine disposal”, Desalination, 97(1-3): 365-372, (1994).
  • [43] Robinson, R. D., Carey, J. H., Solomon, K. R., Smith, I. R., Servos, M. R., & Munkittrick, K. R., “Survey of receiving-water environmental impacts associated with discharges from pulp mills: 1. Mill characteristics, receiving-water chemical profiles and lab toxicity tests”, Environmental Toxicology and Chemistry, 13(7): 1075–1088, (1994).
  • [44] Pincince, A. B., & List, E. J., “Disposal of brine into an estuary”, Journal of Water Pollution Control Federation, 45(11): 2335-2344, (1973).
  • [45] Kveštak, R., Terzić, S., & Ahel, M., “Input and distribution of alkylphenol polyethoxylates in a stratified estuary”, Marine Chemistry, 46(1-2): 89-100, (1994).
  • [46] Surwase, G., Sagar, A., Kademani, B. S., & Bhanumurthy, K., “Co-citation analysis: An overview”, In Proceedings of the Beyond Librarianship: Creativity, Innovation and Discovery, 16–17, (2011).
  • [47] Waltman, L., Van Eck, N. J., & Noyons, E. C., “A unified approach to mapping and clustering of bibliometric networks”, Journal of informetrics, 4(4): 629-635, (2010).
  • [48] Sunder M, V., & Prashar, A., “Empirical examination of critical failure factors of continuous improvement deployments: stage-wise results and a contingency theory perspective”, International Journal of Production Research, 58(16): 4894-4915, (2020).
  • [49] Hunt, C. D., Mansfield, A. D., Mickelson, M. J., Albro, C. S., Geyer, W. R., & Roberts, P. J., “Plume tracking and dilution of effluent from the Boston sewage outfall”, Marine Environmental Research, 70(2): 150-161, (2010).
  • [50] Tian, X., Roberts, P. J., & Daviero, G. J., “Marine wastewater discharges from multiport diffusers. I: Unstratified stationary water”, Journal of Hydraulic Engineering, 130(12): 1137-1146, (2004).
  • [51] Zhao, L., Chen, Z., & Lee, K., “Modelling the dispersion of wastewater discharges from offshore outfalls: a review”, Environmental Reviews, 19: 107-120, (2011).
  • [52] Tian, X., Roberts, P. J., & Daviero, G. J., “Marine wastewater discharges from multiport diffusers. II: Unstratified flowing water” Journal of Hydraulic Engineering, 130(12): 1147-1155, (2004).
  • [53] Carvalho, J. L., Roberts, P. J., & Roldão, J., “Field observations of Ipanema Beach outfall”, Journal of Hydraulic Engineering, 128(2): 151-160, (2002).
  • [54] Roberts, P. J., & Snyder, W. H., “Hydraulic model study for Boston outfall. I: riser configuration”, Journal of Hydraulic Engineering, 119(9): 970-987, (1993).
  • [55] Alayo, M., Iturralde, T., Maseda, A., & Aparicio, G., “Mapping family firm internationalization research: bibliometric and literature review”, Review of Managerial Science, 15(6): 1517-1560, (2021).
  • [56] Maria, A., “Introduction to modeling and simulation”, In Proceedings of the Winter Simulation Conference, 7–10, (1997).
  • [57] Cumali, B. O., & Nemlioglu, S., “Initial dilution improvement of thermal wastewater outfall singular jets by nozzle inclination for decrement of sea water evaporation”, International Journal of Global Warming, 28(2): 170-184, (2022).
  • [58] Ramezani, M., Abessi, O., & Firoozjaee, A. R., “Effect of proximity to bed on 30° and 45° inclined dense jets: a numerical study”, Environmental Processes, 8: 1141-1164, (2021).
  • [59] Gildeh, H. K., Mohammadian, A., & Nistor, I., “Vertical dense effluent discharge modelling in shallow waters”, Water, 14(15): 2312, (2022).
  • [60] Tango, W. J., Link, J. K., & Zare, R. N., “Spectroscopy of K2 using laser‐induced fluorescence”, The Journal of Chemical Physics, 49(10): 4264-4268, (1968).
  • [61] Dudderar, T., Simpkins, P., “ Laser speckle photography in a fluid medium”, Nature, 270: 45–47, (1977).
  • [62] Lyubimova, T. P., Roux, B., Luo, S., Parshakova, Y. N., & Shumilova, N. S., “Modeling of the near-field distribution of pollutants coming from a coastal outfall”, Nonlinear Processes in Geophysics, 20(2): 257-266, (2013).
There are 62 citations in total.

Details

Primary Language English
Subjects Water Resources Engineering, Wastewater Treatment Processes
Journal Section Research Article
Authors

Damla Yılmaz 0000-0003-4207-7105

Hülya Yılmaz 0000-0002-5415-5708

Elif Aybike Erdem 0009-0008-5137-9539

Mustafa Utku Yılmaz 0000-0002-5662-9479

Babak Vaheddoost 0000-0002-4767-6660

Egemen Aras 0000-0002-7553-9313

Early Pub Date November 23, 2024
Publication Date
Submission Date September 4, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Yılmaz, D., Yılmaz, H., Erdem, E. A., Yılmaz, M. U., et al. (2024). Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1543710
AMA Yılmaz D, Yılmaz H, Erdem EA, Yılmaz MU, Vaheddoost B, Aras E. Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability. Politeknik Dergisi. Published online November 1, 2024:1-1. doi:10.2339/politeknik.1543710
Chicago Yılmaz, Damla, Hülya Yılmaz, Elif Aybike Erdem, Mustafa Utku Yılmaz, Babak Vaheddoost, and Egemen Aras. “Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability”. Politeknik Dergisi, November (November 2024), 1-1. https://doi.org/10.2339/politeknik.1543710.
EndNote Yılmaz D, Yılmaz H, Erdem EA, Yılmaz MU, Vaheddoost B, Aras E (November 1, 2024) Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability. Politeknik Dergisi 1–1.
IEEE D. Yılmaz, H. Yılmaz, E. A. Erdem, M. U. Yılmaz, B. Vaheddoost, and E. Aras, “Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability”, Politeknik Dergisi, pp. 1–1, November 2024, doi: 10.2339/politeknik.1543710.
ISNAD Yılmaz, Damla et al. “Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability”. Politeknik Dergisi. November 2024. 1-1. https://doi.org/10.2339/politeknik.1543710.
JAMA Yılmaz D, Yılmaz H, Erdem EA, Yılmaz MU, Vaheddoost B, Aras E. Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability. Politeknik Dergisi. 2024;:1–1.
MLA Yılmaz, Damla et al. “Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1543710.
Vancouver Yılmaz D, Yılmaz H, Erdem EA, Yılmaz MU, Vaheddoost B, Aras E. Mapping the Evolution of Sea Outfall Research: Insights for Marine Environmental Sustainability. Politeknik Dergisi. 2024:1-.