DAMPERLİ BİR VİTES DEĞİŞTİRME MEKANİZMASININ MEKANİK MODELLEMESİ VE DİNAMİK YÖNDEN İNCELENMESİ
Year 2024,
EARLY VIEW, 1 - 1
Halit Karabulut
,
Regaip Menküç
,
Turgay Ergin
,
Can Çınar
Abstract
Kara taşıtlarında motordan vites kutusuna aktarılan dönme hareketinin hızı ya da torku yol şartlarına göre farklı oranlarda değiştirilerek diferansiyele iletilmektedir. Dönme hareketinin hızını ya da torkunu değiştirmek gerektiğinde farklı dişli çarkların birbirine kenetlenmesi gerekmektedir. İki dişli çarkın birbirine kenetlenebilmesi için önce çevresel hızlarının eşitlenmesi gerekmektedir. Bu işlem senkronizasyon olarak adlandırılmakta olup senkronizasyon işini yapan mekanizmalara senkromeç denilmektedir. Sekromeçler kinetik enerjiyi sürtünme yolu ile ısıya dönüştürerek sürtünen parçalar arasındaki açısal hız farkını yok eden mekanik sistemlerdir. Bu çalışmada öncelikle dört ileri ve bir geri hız değişimi sağlayan bir vites kutusu mekanizmasının tasarımı yapılmıştır. Mekanizmada yarıçapı 35 mm olan tek halkalı bir senkronizasyon mekanizmasının kullanılması kararlaştırılmıştır. Böyle bir sürtünme halkasına tepe değeri 300 N’dan daha fazla olan bir harmonik kuvvet fonksiyonunun uygulanması gerektiği belirlenmiştir. Bu kadar büyük bir kuvvet ancak damperli bir senkronizasyon mekanizması ile sağlanabilmektedir. Çalışmanın devamında damperli bir senkronizasyon mekanizmasının matematik modeli kurularak, gerçekçi verilere göre boyutlandırılması yapılmıştır. Boyutlandırma yapılırken grup dişlinin hızının 2400 rpm’den 1263 rpm’e düşürüldüğü, yavaşlayan elemanlarının toplam kütle atalet momentinin 0.00508 m2 kg olduğu ve birinci vitesten ikinci vitese geçiş yapıldığı kabul edilmiştir. Tasarlanan senkronizasyon mekanizmasında damper sabiti 14000 Ns/m olarak kabul edilir, toplam sürtünme periyodu 0.25-0.35 s aralığında değiştirilirse 4-4.5 Nm civarında bir sürtünme torku yaratarak vites değiştirme işini sorunsuz gerçekleştirebilmektedir. Tasarlanan mekanizmanın mevcut vites mekanizmalarında kullanılmakta olan birden çok sürtünme halkasına sahip senkronizasyon tertibatlarına ve bloklama halkası olarak adlandırılan tertibatlara olan gereksinimi yok edebileceği görülmektedir.
References
- [1] Xu, X. and Luo, Y. "Modeling and analysis of gear shifting process of non-synchronizer AMT based on collision model." IEEE Access, 9, 13354-13367 (2021).
- [2] Alizadeh, H. V., Helwa, M. K. and Boulet, B. "Modeling, analysis and constrained control of wet cone clutch systems: A synchromesh case study." Mechatronics, 49, 92-104 (2018).
- [3] Arslan, E. and Sagirli, A. "Gear shift efforts analysis and user interface software development." International Journal of Engineering Technologies-IJET, 5(4), 1-8 (2018).
- [4] Stockinger, U., Schneider, T., Pflaum, H. and Stahl, K. "Single vs. multi-cone synchronizers with carbon friction lining—a comparison of load limits and deterioration behavior." Forsch Ingenieurwes, 84, 245-253 (2020).
- [5] Nagesh, S. G. and Hemant, D. L. "A review on multicone synchromesh transmissions." International Journal for Innovative Research in Multidisciplinary Field, 5(4), 170-177. ISSN: 2455-0620 (2019).
- [6] Wazır, U. "Manual gearbox synchronizers – An overview." International Journal of Emerging Trends in Engineering and Development, 5(3), 422-428. ISSN: 2249-6149 (2013).
- [7] Sigl, L. S., Rau, G. and Hoehn, B. R. "Processing and performance of PM synchronizer rings with friction linings." Proceedings of EURO PM 2003, Valencia, Spain, European Powder Metallurgy Association, 151-158 (2003).
- [8] Benake, A. "Introduction to shifting solution – Synchronizer." International Journal of Trend in Scientific Research and Development (IJTSRD), 5(2), 201-209 (2021).
- [9] Razzacki, S. T. "Synchronizer design: A mathematical and dimensional treatise." SAE Transactions, 2004-01-1230, 821-829 (2004).
- [10] Bedmar, A. P. "Synchronization processes and synchronizer mechanisms in manual transmissions." Master’s Thesis, Department of Applied Mechanics, Chalmers University of Technology (2013).
- [11] Thompson, E. A. "Automatic gear-shifting mechanism for sliding gear transmission." US1435430A, United States (1922).
- [12] Tseng, C. Y and Yu, C. H. "Advanced shifting control of synchronizer mechanisms for clutchless automatic manual transmission in an electric vehicle." Mechanism and Machine Theory, 84, 37-56 (2015).
- [13] Wang, Y., Wu, J., Zhang, N. and Mo, W. "Dynamics modeling and shift control of a novel spring-based synchronizer for electric vehicles." Mechanism and Machine Theory, 168, 104586 (2022).
- [14] Siregar, R., Zainuri, F., Adhitya, M. and Sumarsono, D. A. "Design a new generation of synchromesh mechanism to optimization manual transmission’s electric vehicle." In Proceedings of the 15th International Conference on QIR (Quality in Research) (Vol. 1411, p. 1284) (2017).
- [15] Zhang, L., Yang, H., Peng, Y. and Li, S. "A novel synchronizer for clutchless automated manual transmissions applied in electric vehicles." Mechanism and Machine Theory, 170, 104688 (2022).
- [16] Pang, B., Hong, J., Gao, B., Chen, H. and Li, Z. "Shift quality amelioration of EV with AMT by speed regulation." IFAC-Papers On Line, 51(31), 910-917 (2018).
- [17] Li, J., Feng, X., Jiang, M., Zhang, Y. and Wan, L. "Modelling and simulation of synchronization and engagement for self-energizing synchronizer with multibody dynamics." Advances in Mechanical Engineering, 9(3), 1–16 (2017).
- [18] Nejad, A. F., Chiandussi, G., Solimine, V. and Serra, A. "Estimation of the synchronization time of a transmission system through multi-body dynamic analysis." International Journal of Mechanical Engineering and Robotic Research, 6(3), 232-236 (2017).
- [19] Mo, W., Walker, P. D. and Zhang, N. "Dynamic analysis and control for an electric vehicle with harpoon-shift synchronizer." Mechanism and Machine Theory, 133, 750-766 (2019).
- [20] Mo, W., Walker, P. D., Fang, Y., Wu, J., Ruan, J. and Zhang, N. "A novel shift control concept for multi-speed electric vehicles." Mechanical Systems and Signal Processing, 112, 171-193 (2018).
- [21] Lovas, L., Play, D., Marialigeti, J. and Rigal, J. F. "Mechanical behaviour simulation for synchromesh mechanism improvements." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(7), 919-945 (2006).
- [22] Barathiraja, K., Devaradjane, G., Bhattacharya, A., Sivakumar, V. and Yadav, V. "Automotive transmission gearbox synchronizer sintered hub." Engineering Failure Analysis, 107, 104213 (2020).
- [23] Wanli, X., Wei, Z., Bin, S. and Ximeng, X. "Investigation of manual transmission synchronizer failure mechanism induced by interface material/lubricant combinations." Wear, 328-329, 475-479 (2015).
- [24] Tseng, C. Y. and Yu, C. H. "Advanced shifting control of synchronizer mechanisms for clutchless automatic manual transmission in an electric vehicle." Mechanism and Machine Theory, 84, 37-56 (2016).
- [25] Wang, Y., Wu, J., Zhang, N. and Mo, W. "Dynamics modeling and shift control of a novel spring-based synchronizer for electric vehicles." Mechanism and Machine Theory, 168, 104586 (2022).
- [26] Zhang, L., Yang, H., Peng, Y. and Li, S. "A novel synchronizer for clutchless automated manual transmissions applied in electric vehicles." Mechanism and Machine Theory, 170, 104688 (2022).
- [27] Häggström, D., Nyman, P., Sellgren, U. and Björklund, S. "Predicting friction in synchronizer systems." Tribology International, 97, 89-96 (2016).
- [28] Hwang, B., Ahn, J. and Lee, S. "Effects of blending elements on wear resistance of plasma-sprayed molybdenum blend coatings used for automotive synchronizer rings." Surface and Coating Technology, 194, 256-264 (2005).
- [29] Kumar, T. M., D'mello, S. and Pattabiraman, V. "Optimization of synchronizer of a typical 5-speed manual shift synchromesh transmission using statistics-based simulation techniques." SAE Technical Paper 2006-32-0069 (2006).
- [30] Bao, C., Guo, H., Kong, L. and Cheng, X. "Multi-stage gear shifting control scheme for electric mechanical transmission: Design and experiment." IEEE Access, 7, 95576-95584 (2019).
- [31] Alizadeh, H. V. and Boulet, B. "Robust control of synchromesh friction in an electric vehicle's clutchless automated transmission." IEEE Transactions on Control Systems Technology, 22(6), 2270-2280 (2014).
- [32] Alizadeh, H. V., Mousavi, M. R. and Boulet, B. "Synchromesh torque estimation in an electric vehicle's clutchless automated manual transmission using unknown input observer." In 2015 IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-5). IEEE (2015).
- [33] Zainuri, F., Sumarsono, D. A., Adhitya, M. and Siregar, R. "Design of synchromesh mechanism to optimization manual transmission’s electric vehicle." In AIP Conference Proceedings (Vol. 1823, No. 1, p. 020031). AIP Publishing LLC (2017).
- [34] Okazaki, Y. and Komatsuzaki, K. "Double cone synchronizer with paper lining for medium duty trucks." SAE Transactions, 928-932 (1990).
MECHANICAL MODELING AND DYNAMIC INVESTIGATION OF A GEAR SHIFT MECHANISM WITH DAMPER
Year 2024,
EARLY VIEW, 1 - 1
Halit Karabulut
,
Regaip Menküç
,
Turgay Ergin
,
Can Çınar
Abstract
In road vehicles, the speed or torque of the rotational motion transferred from the engine to the gearbox is changed at different rates according to road conditions and transmitted to the differential. When it is necessary to change the speed or torque of the rotational motion, different gears must be interlocked. In order to interlock two gears, their peripheral speeds must first be equalized. This process is called synchronization and the mechanisms that perform the synchronization are called synchromeshes. Synchromeshes are mechanical systems that eliminate the angular speed difference between the frictioning components by converting kinetic energy into heat through friction. In this study, first of all, the design of a gearbox mechanism providing four forward and one reverse speed changes was performed. It was decided to use a single-ring synchronization mechanism with a radius of 35 mm in the mechanism. It was determined that a harmonic force function with a peak value of more than 300 N should be applied to such a friction ring. Such a large force can only be provided by a synchronization mechanism with a damper. After that a mathematical model of a damperical synchronization mechanism was established and dimensions of synchronization mechanism were determined. During dimensioning, it was assumed that the speed of the counter shaft gear was reduced from 2400 rpm to 1263 rpm, the total mass moment of inertia of the decelerating elements was 0.00508 m2 kg and the shift was made from the first to second gear. When the damping constant is taken to be 14000 Ns/m the designed synchronization mechanism can perform the gear shifting within 0.25-0.35 s by creating a friction torque of around 4 Nm. It is seen that the designed mechanism can eliminate the need for multi-ring synchronization mechanisms and blocking ring mechanisms used in existing gear mechanisms.
References
- [1] Xu, X. and Luo, Y. "Modeling and analysis of gear shifting process of non-synchronizer AMT based on collision model." IEEE Access, 9, 13354-13367 (2021).
- [2] Alizadeh, H. V., Helwa, M. K. and Boulet, B. "Modeling, analysis and constrained control of wet cone clutch systems: A synchromesh case study." Mechatronics, 49, 92-104 (2018).
- [3] Arslan, E. and Sagirli, A. "Gear shift efforts analysis and user interface software development." International Journal of Engineering Technologies-IJET, 5(4), 1-8 (2018).
- [4] Stockinger, U., Schneider, T., Pflaum, H. and Stahl, K. "Single vs. multi-cone synchronizers with carbon friction lining—a comparison of load limits and deterioration behavior." Forsch Ingenieurwes, 84, 245-253 (2020).
- [5] Nagesh, S. G. and Hemant, D. L. "A review on multicone synchromesh transmissions." International Journal for Innovative Research in Multidisciplinary Field, 5(4), 170-177. ISSN: 2455-0620 (2019).
- [6] Wazır, U. "Manual gearbox synchronizers – An overview." International Journal of Emerging Trends in Engineering and Development, 5(3), 422-428. ISSN: 2249-6149 (2013).
- [7] Sigl, L. S., Rau, G. and Hoehn, B. R. "Processing and performance of PM synchronizer rings with friction linings." Proceedings of EURO PM 2003, Valencia, Spain, European Powder Metallurgy Association, 151-158 (2003).
- [8] Benake, A. "Introduction to shifting solution – Synchronizer." International Journal of Trend in Scientific Research and Development (IJTSRD), 5(2), 201-209 (2021).
- [9] Razzacki, S. T. "Synchronizer design: A mathematical and dimensional treatise." SAE Transactions, 2004-01-1230, 821-829 (2004).
- [10] Bedmar, A. P. "Synchronization processes and synchronizer mechanisms in manual transmissions." Master’s Thesis, Department of Applied Mechanics, Chalmers University of Technology (2013).
- [11] Thompson, E. A. "Automatic gear-shifting mechanism for sliding gear transmission." US1435430A, United States (1922).
- [12] Tseng, C. Y and Yu, C. H. "Advanced shifting control of synchronizer mechanisms for clutchless automatic manual transmission in an electric vehicle." Mechanism and Machine Theory, 84, 37-56 (2015).
- [13] Wang, Y., Wu, J., Zhang, N. and Mo, W. "Dynamics modeling and shift control of a novel spring-based synchronizer for electric vehicles." Mechanism and Machine Theory, 168, 104586 (2022).
- [14] Siregar, R., Zainuri, F., Adhitya, M. and Sumarsono, D. A. "Design a new generation of synchromesh mechanism to optimization manual transmission’s electric vehicle." In Proceedings of the 15th International Conference on QIR (Quality in Research) (Vol. 1411, p. 1284) (2017).
- [15] Zhang, L., Yang, H., Peng, Y. and Li, S. "A novel synchronizer for clutchless automated manual transmissions applied in electric vehicles." Mechanism and Machine Theory, 170, 104688 (2022).
- [16] Pang, B., Hong, J., Gao, B., Chen, H. and Li, Z. "Shift quality amelioration of EV with AMT by speed regulation." IFAC-Papers On Line, 51(31), 910-917 (2018).
- [17] Li, J., Feng, X., Jiang, M., Zhang, Y. and Wan, L. "Modelling and simulation of synchronization and engagement for self-energizing synchronizer with multibody dynamics." Advances in Mechanical Engineering, 9(3), 1–16 (2017).
- [18] Nejad, A. F., Chiandussi, G., Solimine, V. and Serra, A. "Estimation of the synchronization time of a transmission system through multi-body dynamic analysis." International Journal of Mechanical Engineering and Robotic Research, 6(3), 232-236 (2017).
- [19] Mo, W., Walker, P. D. and Zhang, N. "Dynamic analysis and control for an electric vehicle with harpoon-shift synchronizer." Mechanism and Machine Theory, 133, 750-766 (2019).
- [20] Mo, W., Walker, P. D., Fang, Y., Wu, J., Ruan, J. and Zhang, N. "A novel shift control concept for multi-speed electric vehicles." Mechanical Systems and Signal Processing, 112, 171-193 (2018).
- [21] Lovas, L., Play, D., Marialigeti, J. and Rigal, J. F. "Mechanical behaviour simulation for synchromesh mechanism improvements." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(7), 919-945 (2006).
- [22] Barathiraja, K., Devaradjane, G., Bhattacharya, A., Sivakumar, V. and Yadav, V. "Automotive transmission gearbox synchronizer sintered hub." Engineering Failure Analysis, 107, 104213 (2020).
- [23] Wanli, X., Wei, Z., Bin, S. and Ximeng, X. "Investigation of manual transmission synchronizer failure mechanism induced by interface material/lubricant combinations." Wear, 328-329, 475-479 (2015).
- [24] Tseng, C. Y. and Yu, C. H. "Advanced shifting control of synchronizer mechanisms for clutchless automatic manual transmission in an electric vehicle." Mechanism and Machine Theory, 84, 37-56 (2016).
- [25] Wang, Y., Wu, J., Zhang, N. and Mo, W. "Dynamics modeling and shift control of a novel spring-based synchronizer for electric vehicles." Mechanism and Machine Theory, 168, 104586 (2022).
- [26] Zhang, L., Yang, H., Peng, Y. and Li, S. "A novel synchronizer for clutchless automated manual transmissions applied in electric vehicles." Mechanism and Machine Theory, 170, 104688 (2022).
- [27] Häggström, D., Nyman, P., Sellgren, U. and Björklund, S. "Predicting friction in synchronizer systems." Tribology International, 97, 89-96 (2016).
- [28] Hwang, B., Ahn, J. and Lee, S. "Effects of blending elements on wear resistance of plasma-sprayed molybdenum blend coatings used for automotive synchronizer rings." Surface and Coating Technology, 194, 256-264 (2005).
- [29] Kumar, T. M., D'mello, S. and Pattabiraman, V. "Optimization of synchronizer of a typical 5-speed manual shift synchromesh transmission using statistics-based simulation techniques." SAE Technical Paper 2006-32-0069 (2006).
- [30] Bao, C., Guo, H., Kong, L. and Cheng, X. "Multi-stage gear shifting control scheme for electric mechanical transmission: Design and experiment." IEEE Access, 7, 95576-95584 (2019).
- [31] Alizadeh, H. V. and Boulet, B. "Robust control of synchromesh friction in an electric vehicle's clutchless automated transmission." IEEE Transactions on Control Systems Technology, 22(6), 2270-2280 (2014).
- [32] Alizadeh, H. V., Mousavi, M. R. and Boulet, B. "Synchromesh torque estimation in an electric vehicle's clutchless automated manual transmission using unknown input observer." In 2015 IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-5). IEEE (2015).
- [33] Zainuri, F., Sumarsono, D. A., Adhitya, M. and Siregar, R. "Design of synchromesh mechanism to optimization manual transmission’s electric vehicle." In AIP Conference Proceedings (Vol. 1823, No. 1, p. 020031). AIP Publishing LLC (2017).
- [34] Okazaki, Y. and Komatsuzaki, K. "Double cone synchronizer with paper lining for medium duty trucks." SAE Transactions, 928-932 (1990).