Research Article
BibTex RIS Cite

Rüzgar Enerjisi Sistemlerinde Enerji Verimliliğinin Sensörsüz Yumuşak Anahtarlama Kontrolü ile Geliştirilmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1586835

Abstract

Bu çalışmada, anahtarlama kayıplarını en aza indirmek ve şebekeden bağımsız, küçük ölçekli bir rüzgar enerjisi dönüşüm sisteminin (REDS) verimliliğini artırmak için bir seri rezonans dönüştürücü (SRD) ve darbe yoğunluğu modülasyonu (DYM) güç kontrol stratejileri uygulanmaktadır. Ayrıca, maliyetleri daha da düşürmek ve sistem güvenilirliğini artırmak için maksimum güç noktası izleme (MGNİ) yöntemi kullanılmıştır. Rüzgar hızı verilerine veya türbinin aerodinamik modeline ihtiyaç duymadan maksimum güç noktasında (MGN) çalışmayı sağlayan “değiştir ve gözle” (D&G) MGNİ tekniği kullanılmıştır. D&G algoritması için gerekli hız ve güç verileri, çift ikinci dereceden genelleştirilmiş integratör tabanlı frekans kilitlemeli döngü (DSOGI-FLL) algoritması kullanılarak üç fazlı generatör değişkenlerinden türetilmiştir. Powersim'de (PSIM) gerçekleştirilen simülasyonlar aracılığıyla 1,5 kW'lık bir REDS'in performansı analiz edilmiş ve sonuçlar sunulmuştur. Analiz, tasarlanan sistemin ortalama %97 MGNİ verimliliği elde ettiğini ortaya koymuştur. Ayrıca, rezonans dönüştürücünün verimliliği en düşük rüzgar hızı için %90 ve diğer rüzgar hızları için %93 olarak ölçülmüştür. Bu bulgular, önerilen sistemin genel enerji dönüşüm verimliliğinde önemli bir gelişme sağladığını ve değişen rüzgar koşullarında yaklaşık %90-93 ortalama sistem verimliliği ile küçük ölçekli WECS'lerin güvenilir ve uygun maliyetli çalışmasını sağladığını göstermektedir.

Ethical Statement

Bu makalenin yazarları, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel izin gerektirmediğini beyan eder.

Supporting Institution

TÜBİTAK

Project Number

Project Number: 123E370

Thanks

Bu araştırma TÜBİTAK Araştırma Fonu tarafından desteklenmektedir (Proje Numarası: 123E370).

References

  • [1] Song G., Cao B., and Chang L., “Advanced soft stall control for protection of small-scale wind generation systems”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(1): 273-284, (2021).
  • [2] Chen H., Xu D., and Deng, X., “Control for power converter of small-scale switched reluctance wind power generator”, IEEE Transactions on Industrial Electronics, 68(4): 3148-3158, (2020).
  • [3] Mennad M., Bentaallah A., Djerırı Y., Ameur A. ve Bessas A.,“ Design of a standalone hybrid power system and optimization control with intelligent MPPT algorithms”, Politeknik Dergisi, 27(1): 153-167, (2024).
  • [4] N. Nassir, B. Acar, and A. K. A. Fahed, “Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya”, Politeknik Dergisi, 25(3): 975–984, (2022).
  • [5] Zhang Z., Zhao Y., Qiao W. and Qu L., "A discrete-time direct torque control for direct-drive PMSG-based wind energy conversion systems", IEEE Transactions on Industry Applications, 51(4): 3504-3514, (2015).
  • [6] Musarrat M. N., Islam M. R., Muttaqi K. M. and Sutanto D., "Enhanced frequency support from a PMSG-based wind energy conversion system integrated with a high temperature SMES in standalone power supply systems", IEEE Transactions on Applied Superconductivity, 29(2): 1-6, (2018).
  • [7] Selamoğulları U.S., “Yenilenebilir enerji kaynaklarına sahip bir evin talep karakteristiğine uygun bir inverter tasarımının incelenmesi”, Politeknik Dergisi, 23(2): 257-265, (2020).
  • [8] Urtasun A., Sanchis P. and Marroyo L., "Small wind turbine sensorless MPPT: robustness analysis and lossless approach", IEEE Transactions on Industry Applications, 50(6): 4113-4121, (2014).
  • [9] De Oliveira Filho H. M., Oliveira D. D. S. and e Silva C. E. D. A., "Three-stage static power converter for battery charging feasible for small wind energy conversion systems", IEEE Transactions on Industry Applications, 50(5): 3602-3610, (2014).
  • [10] Sejati P., Suzuki H. and Yasuno T., "Two-phase buck converter for battery charger of small scale wind turbine power system", International Electronics Symposium (IES), 244-247, (2016).
  • [11] Doshi K. and Joshi S., "Cascaded PI Controller based Wind Turbine Generator System for Battery Charging Applications", IEEE International Power and Renewable Energy Conference (IPRECON), 1-8, (2021).
  • [12] Kermani A. Y., Fadaeinedjad R., Maheri A., Mohammadi E. and Moschopoulos G., "Stall control and MPPT for a wind turbine, using a Buck converter in a battery storage system", IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 1-4, (2020).
  • [13] Abdelsalam I., Alajmi B. N., Marei M. I. and Alhajri M. F., "Wind energy conversion system based on open‐end winding three‐phase PMSG coupled with ac− dc buck‐boost converter", The Journal of Engineering, 2019(17): 4336-4340, (2019).
  • [14] Housseini B., Okou A. F. and Beguenane R., "Robust nonlinear controller design for on-grid/off-grid wind energy battery-storage system", IEEE Transactions on Smart Grid, 9(6): 5588-5598, (2017).
  • [15] Sharifi S., Monfared M., Babaei M. and Pourfaraj A., "Highly efficient single-phase buck–boost variable-frequency AC–AC converter with inherent commutation capability", IEEE Transactions on Industrial Electronics, 67(5): 3640-3649, (2019).
  • [16] Hussain J. and Mishra M. K., "Adaptive maximum power point tracking control algorithm for wind energy conversion systems", IEEE Transactions on Energy Conversion, 31(2): 697-705, (2016).
  • [17] Abbasi M. and Lam J., "An SiC-driven modular step-up converter with soft-switched module having 1: 1 turns ratio multiphase transformer for wind systems", IEEE Transactions on Industrial Electronics, 66(9): 7055-7066, (2018).
  • [18] Abbasi M. and Lam J., "A new three-phase AC/DC high power factor soft-switched step-up converter with high gain rectifier modules for medium voltage grid in wind systems", IEEE Energy Conversion Congress and Exposition (ECCE), 1-8, (2016).
  • [19] Parastar A. and Seok J. K., "High-gain resonant switched-capacitor cell-based DC/DC converter for offshore wind energy systems", IEEE transactions on power electronics, 30(2): 644-656, (2014).
  • [20] Dincan C., Kjaer P., Chen Y. H., Munk-Nielsen S. and Bak C. L., "A high-power, medium-voltage, series-resonant converter for DC wind turbines", IEEE Transactions on Power Electronics, 33(9): 7455-7465, (2017).
  • [21] Fan S., Ma W., Lim T. C. and Williams B. W., "Design and control of a wind energy conversion system based on a resonant dc/dc converter", IET Renewable Power Generation, 7(3): 265-274, (2013).
  • [22] Liao Y. H. and Dai Z. J., "Two-switch three-phase LLC resonant circuit with power factor correction for microscale wind power generation system", IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), 382-388, (2018).
  • [23] Yeh C. S., Chen C. W., Lee M. and Lai J. S., "A hybrid modulation method for single-stage soft-switching inverter based on series resonant converter", IEEE Transactions on Power Electronics, 35(6): 5785-5796, (2019).
  • [24] Wei Y., Luo Q. and Mantooth A., "Overview of modulation strategies for LLC resonant converter", IEEE Transactions on Power Electronics, 35(10): 10423-10443, (2020).
  • [25] Deshmukh S., Iqbal A., Islam S., Khan I., Marzband M., Rahman S. and Al-Wahedi A. M., "Review on classification of resonant converters for electric vehicle application", Energy reports, 8: 1091-1113, (2022).
  • [26] Unal K., Bal G., Oncu S. and Ozturk N., "MPPT Design for PV-Powered WPT System with Irregular Pulse Density Modulation", Electric Power Components and Systems, 51(1): 83-91, (2023).
  • [27] Singh K. A., Chaudhary A. and Chaudhary K., "Three-phase AC-DC Converter for Direct-drive PMSG-based Wind Energy Conversion System", Journal of Modern Power Systems and Clean Energy, 11(2): 589-598, (2022).
  • [28] Kucuk T. V. and Oncu S., "Wind Energy Conversion System With PDM Controlled Converter", 10th International Conference on Renewable Energy Research and Application (ICRERA), 136-140, (2021).
  • [29] Zhang Z., Zhao Y., Qiao W. and Qu L., "A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines", IEEE Transactions on Industry Applications, 50(4): 2331-2341, (2014).
  • [30] Unal K., Oncu S., Tuncer U. and Bal G., "Determination of Circuit Parameters in Domestic Induction Heaters by Analytical Solution Method", Electric Power Components and Systems, 1-9, (2024).
  • [31] Özbay H., "PDM-MPPT based solar powered induction heating system", Engineering Science and Technology, an International Journal, 23(6): 1397-1414, (2020).
  • [32] Özbay H., Karafil A. and Öncü S., "Sliding mode PLL-PDM controller for induction heating system", Turkish Journal of Electrical Engineering and Computer Sciences, 29(2): 1241-1258, (2021).
  • [33] Nguyen A. T. and Lee D. C., "Sensorless control of DFIG wind turbine systems based on SOGI and rotor position correction", IEEE Transactions on Power Electronics, 36(5): 5486-5495, (2020).
  • [34] Karthik M. and Panda A. K., "Enhancement of Power Quality in a Grid-Connected Photovoltaic System using Robust Modified Champernowne Function Adaptive Filter and DSOGI-FLL", IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC), 1-6, (2023).
  • [35] Dao N. D., Lee D. C. and Lee S., "A simple and robust sensorless control based on stator current vector for PMSG wind power systems", IEEE Access, 7: 8070-8080, (2018).
  • [36] Patil K. and Patel H. H., "Modified SOGI based shunt active power filter to tackle various grid voltage abnormalities", Engineering Science and Technology, an International Journal, 20(5): 1466-1474, (2017).
  • [37] Nazib A. A., Holmes D. G. and McGrath B. P., "Decoupled DSOGI-PLL for improved three phase grid synchronisation", International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), 3670-3677, (2018).
  • [38] Kherbachi A., Bendib A., Kara K. and Chouder A., "ARM based implementation of SOGI-FLL method for power calculation in single-phase power system", 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), 1-6, (2017).
  • [39] Shutari H., Ibrahim T., Nor N. B. M., Saad N., Tajuddin M. F. N. and Abdulrab H. Q., "Development of a novel efficient maximum power extraction technique for grid-tied VSWT system", IEEE Access, 10: 101922-101935, (2022).
  • [40] Yazıcı İ., and Yaylacı, E. K, “Modified grey wolf optimizer based MPPT design and experimentally performance evaluations for wind energy systems”, Engineering Science and Technology, an International Journal, 46: 101520, (2023).
  • [41] M. Mabrouk, B. Abderrahim, Y. Djeriri, A. Ameur, and A. Bessas, “Design of a Standalone Hybrid Power System and Optimization Control with Intelligent MPPT Algorithms”, Politeknik Dergisi, 27(1), 153–167, (2024).

Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1586835

Abstract

This study implements a series resonant converter (SRC) and pulse density modulation (PDM) power control strategies to minimize switching losses and improve the efficiency of an off-grid, small-scale wind energy conversion system (WECS). Additionally, the maximum power point tracking (MPPT) method was employed to further reduce costs and increase system reliability. The "perturb and observe" (P&O) MPPT technique was utilized, enabling operation at the maximum power point (MPP) without the need for wind speed data or an aerodynamic model of the turbine. The speed and power data required for the P&O algorithm were derived from the three-phase generator variables using the double second-order generalized integrator frequency-locked loop (DSOGI-FLL) algorithm. The performance of a 1.5 kW WECS was analyzed through simulations conducted in Powersim (PSIM), and the results are presented. The analysis revealed that the designed system achieved an average MPPT efficiency of 97%. Furthermore, the efficiency of the resonant converter was measured to be 90% for the lowest wind speed and 93% for other wind speeds. These findings demonstrate that the proposed system offers a significant improvement in overall energy conversion efficiency, ensuring reliable and cost-effective operation of small-scale WECS, with an average system efficiency of approximately 90-93% across varying wind conditions.

Ethical Statement

The authors of this article declares that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Supporting Institution

TÜBİTAK

Project Number

Project Number: 123E370

Thanks

This research is supported by TUBITAK Research Fund (Project Number: 123E370).

References

  • [1] Song G., Cao B., and Chang L., “Advanced soft stall control for protection of small-scale wind generation systems”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(1): 273-284, (2021).
  • [2] Chen H., Xu D., and Deng, X., “Control for power converter of small-scale switched reluctance wind power generator”, IEEE Transactions on Industrial Electronics, 68(4): 3148-3158, (2020).
  • [3] Mennad M., Bentaallah A., Djerırı Y., Ameur A. ve Bessas A.,“ Design of a standalone hybrid power system and optimization control with intelligent MPPT algorithms”, Politeknik Dergisi, 27(1): 153-167, (2024).
  • [4] N. Nassir, B. Acar, and A. K. A. Fahed, “Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya”, Politeknik Dergisi, 25(3): 975–984, (2022).
  • [5] Zhang Z., Zhao Y., Qiao W. and Qu L., "A discrete-time direct torque control for direct-drive PMSG-based wind energy conversion systems", IEEE Transactions on Industry Applications, 51(4): 3504-3514, (2015).
  • [6] Musarrat M. N., Islam M. R., Muttaqi K. M. and Sutanto D., "Enhanced frequency support from a PMSG-based wind energy conversion system integrated with a high temperature SMES in standalone power supply systems", IEEE Transactions on Applied Superconductivity, 29(2): 1-6, (2018).
  • [7] Selamoğulları U.S., “Yenilenebilir enerji kaynaklarına sahip bir evin talep karakteristiğine uygun bir inverter tasarımının incelenmesi”, Politeknik Dergisi, 23(2): 257-265, (2020).
  • [8] Urtasun A., Sanchis P. and Marroyo L., "Small wind turbine sensorless MPPT: robustness analysis and lossless approach", IEEE Transactions on Industry Applications, 50(6): 4113-4121, (2014).
  • [9] De Oliveira Filho H. M., Oliveira D. D. S. and e Silva C. E. D. A., "Three-stage static power converter for battery charging feasible for small wind energy conversion systems", IEEE Transactions on Industry Applications, 50(5): 3602-3610, (2014).
  • [10] Sejati P., Suzuki H. and Yasuno T., "Two-phase buck converter for battery charger of small scale wind turbine power system", International Electronics Symposium (IES), 244-247, (2016).
  • [11] Doshi K. and Joshi S., "Cascaded PI Controller based Wind Turbine Generator System for Battery Charging Applications", IEEE International Power and Renewable Energy Conference (IPRECON), 1-8, (2021).
  • [12] Kermani A. Y., Fadaeinedjad R., Maheri A., Mohammadi E. and Moschopoulos G., "Stall control and MPPT for a wind turbine, using a Buck converter in a battery storage system", IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 1-4, (2020).
  • [13] Abdelsalam I., Alajmi B. N., Marei M. I. and Alhajri M. F., "Wind energy conversion system based on open‐end winding three‐phase PMSG coupled with ac− dc buck‐boost converter", The Journal of Engineering, 2019(17): 4336-4340, (2019).
  • [14] Housseini B., Okou A. F. and Beguenane R., "Robust nonlinear controller design for on-grid/off-grid wind energy battery-storage system", IEEE Transactions on Smart Grid, 9(6): 5588-5598, (2017).
  • [15] Sharifi S., Monfared M., Babaei M. and Pourfaraj A., "Highly efficient single-phase buck–boost variable-frequency AC–AC converter with inherent commutation capability", IEEE Transactions on Industrial Electronics, 67(5): 3640-3649, (2019).
  • [16] Hussain J. and Mishra M. K., "Adaptive maximum power point tracking control algorithm for wind energy conversion systems", IEEE Transactions on Energy Conversion, 31(2): 697-705, (2016).
  • [17] Abbasi M. and Lam J., "An SiC-driven modular step-up converter with soft-switched module having 1: 1 turns ratio multiphase transformer for wind systems", IEEE Transactions on Industrial Electronics, 66(9): 7055-7066, (2018).
  • [18] Abbasi M. and Lam J., "A new three-phase AC/DC high power factor soft-switched step-up converter with high gain rectifier modules for medium voltage grid in wind systems", IEEE Energy Conversion Congress and Exposition (ECCE), 1-8, (2016).
  • [19] Parastar A. and Seok J. K., "High-gain resonant switched-capacitor cell-based DC/DC converter for offshore wind energy systems", IEEE transactions on power electronics, 30(2): 644-656, (2014).
  • [20] Dincan C., Kjaer P., Chen Y. H., Munk-Nielsen S. and Bak C. L., "A high-power, medium-voltage, series-resonant converter for DC wind turbines", IEEE Transactions on Power Electronics, 33(9): 7455-7465, (2017).
  • [21] Fan S., Ma W., Lim T. C. and Williams B. W., "Design and control of a wind energy conversion system based on a resonant dc/dc converter", IET Renewable Power Generation, 7(3): 265-274, (2013).
  • [22] Liao Y. H. and Dai Z. J., "Two-switch three-phase LLC resonant circuit with power factor correction for microscale wind power generation system", IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), 382-388, (2018).
  • [23] Yeh C. S., Chen C. W., Lee M. and Lai J. S., "A hybrid modulation method for single-stage soft-switching inverter based on series resonant converter", IEEE Transactions on Power Electronics, 35(6): 5785-5796, (2019).
  • [24] Wei Y., Luo Q. and Mantooth A., "Overview of modulation strategies for LLC resonant converter", IEEE Transactions on Power Electronics, 35(10): 10423-10443, (2020).
  • [25] Deshmukh S., Iqbal A., Islam S., Khan I., Marzband M., Rahman S. and Al-Wahedi A. M., "Review on classification of resonant converters for electric vehicle application", Energy reports, 8: 1091-1113, (2022).
  • [26] Unal K., Bal G., Oncu S. and Ozturk N., "MPPT Design for PV-Powered WPT System with Irregular Pulse Density Modulation", Electric Power Components and Systems, 51(1): 83-91, (2023).
  • [27] Singh K. A., Chaudhary A. and Chaudhary K., "Three-phase AC-DC Converter for Direct-drive PMSG-based Wind Energy Conversion System", Journal of Modern Power Systems and Clean Energy, 11(2): 589-598, (2022).
  • [28] Kucuk T. V. and Oncu S., "Wind Energy Conversion System With PDM Controlled Converter", 10th International Conference on Renewable Energy Research and Application (ICRERA), 136-140, (2021).
  • [29] Zhang Z., Zhao Y., Qiao W. and Qu L., "A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines", IEEE Transactions on Industry Applications, 50(4): 2331-2341, (2014).
  • [30] Unal K., Oncu S., Tuncer U. and Bal G., "Determination of Circuit Parameters in Domestic Induction Heaters by Analytical Solution Method", Electric Power Components and Systems, 1-9, (2024).
  • [31] Özbay H., "PDM-MPPT based solar powered induction heating system", Engineering Science and Technology, an International Journal, 23(6): 1397-1414, (2020).
  • [32] Özbay H., Karafil A. and Öncü S., "Sliding mode PLL-PDM controller for induction heating system", Turkish Journal of Electrical Engineering and Computer Sciences, 29(2): 1241-1258, (2021).
  • [33] Nguyen A. T. and Lee D. C., "Sensorless control of DFIG wind turbine systems based on SOGI and rotor position correction", IEEE Transactions on Power Electronics, 36(5): 5486-5495, (2020).
  • [34] Karthik M. and Panda A. K., "Enhancement of Power Quality in a Grid-Connected Photovoltaic System using Robust Modified Champernowne Function Adaptive Filter and DSOGI-FLL", IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC), 1-6, (2023).
  • [35] Dao N. D., Lee D. C. and Lee S., "A simple and robust sensorless control based on stator current vector for PMSG wind power systems", IEEE Access, 7: 8070-8080, (2018).
  • [36] Patil K. and Patel H. H., "Modified SOGI based shunt active power filter to tackle various grid voltage abnormalities", Engineering Science and Technology, an International Journal, 20(5): 1466-1474, (2017).
  • [37] Nazib A. A., Holmes D. G. and McGrath B. P., "Decoupled DSOGI-PLL for improved three phase grid synchronisation", International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), 3670-3677, (2018).
  • [38] Kherbachi A., Bendib A., Kara K. and Chouder A., "ARM based implementation of SOGI-FLL method for power calculation in single-phase power system", 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), 1-6, (2017).
  • [39] Shutari H., Ibrahim T., Nor N. B. M., Saad N., Tajuddin M. F. N. and Abdulrab H. Q., "Development of a novel efficient maximum power extraction technique for grid-tied VSWT system", IEEE Access, 10: 101922-101935, (2022).
  • [40] Yazıcı İ., and Yaylacı, E. K, “Modified grey wolf optimizer based MPPT design and experimentally performance evaluations for wind energy systems”, Engineering Science and Technology, an International Journal, 46: 101520, (2023).
  • [41] M. Mabrouk, B. Abderrahim, Y. Djeriri, A. Ameur, and A. Bessas, “Design of a Standalone Hybrid Power System and Optimization Control with Intelligent MPPT Algorithms”, Politeknik Dergisi, 27(1), 153–167, (2024).
There are 41 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Electrical Machines and Drives
Journal Section Research Article
Authors

Tufan Volkan Küçük 0000-0002-2456-5706

Selim Öncü 0000-0001-6432-0634

Project Number Project Number: 123E370
Early Pub Date January 30, 2025
Publication Date
Submission Date November 17, 2024
Acceptance Date December 15, 2024
Published in Issue Year 2025 EARLY VIEW

Cite

APA Küçük, T. V., & Öncü, S. (2025). Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1586835
AMA Küçük TV, Öncü S. Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control. Politeknik Dergisi. Published online January 1, 2025:1-1. doi:10.2339/politeknik.1586835
Chicago Küçük, Tufan Volkan, and Selim Öncü. “Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control”. Politeknik Dergisi, January (January 2025), 1-1. https://doi.org/10.2339/politeknik.1586835.
EndNote Küçük TV, Öncü S (January 1, 2025) Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control. Politeknik Dergisi 1–1.
IEEE T. V. Küçük and S. Öncü, “Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control”, Politeknik Dergisi, pp. 1–1, January 2025, doi: 10.2339/politeknik.1586835.
ISNAD Küçük, Tufan Volkan - Öncü, Selim. “Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control”. Politeknik Dergisi. January 2025. 1-1. https://doi.org/10.2339/politeknik.1586835.
JAMA Küçük TV, Öncü S. Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control. Politeknik Dergisi. 2025;:1–1.
MLA Küçük, Tufan Volkan and Selim Öncü. “Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1586835.
Vancouver Küçük TV, Öncü S. Energy Efficiency Improvements in Wind Energy Systems via Sensorless Soft-Switching Control. Politeknik Dergisi. 2025:1-.