Research Article
BibTex RIS Cite

Optimize TiB2 Ağ Yapılı SiC Kompozitlerinin Geliştirilmiş Termoelektrik Özellikleri

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1625094

Abstract

Yenilenebilir enerji kaynaklarının azlığı ve fosil yakıt tüketiminin artışı nedeniyle, yenilenebilir ve sürdürülebilir enerji üretimi için malzemelerin geliştirilmesi, termoelektrik güç üretimi de dahil olmak üzere önemli bir konu haline gelmiştir. SiC gibi ileri teknoloji seramikleri yüksek sıcaklık termoelektrik uygulamaları için tercih edilen alternatif malzemelerden biridir. SiC yüksek Seebeck katsayısı değerlerine sahip olmasına rağmen, sahip olduğu nispeten düşük elektriksel ve termal iletkenlik özellikeri termoelektrik uygulamalar için istenmemektedir. SiC’ün elektriksel iletkenliğini artırmak için geçiş metal borürlerin ikincil faz olarak eklenmesi yaygın bir yöntemdir. Bu çalışmada, SiC granülleri, basit bir kuru kaplama yöntemi kullanılarak TiB₂ tozlarıyla kaplanmış ve ardından iletken ağyapıları oluşturmak için spark plazma sinterleme sürecine tabi tutulmuştur. TiB₂ ağının morfolojisini optimize etmek amacıyla, kaplama işlemi öncesinde SiC granülleri 25-50 µm’den 75-100 µm’ye kadar değişen partikül boyutu aralıklarına göre sınıflandırılmıştır. Matris granül boyutu dağılımına bağlı olarak elektriksel iletkenlikte ≈%130-500 oranında artıs elde edilmiştir ve iletkenliğin SiC granül boyutlarının artmasıyla azaldığı görülmüştür. Değerlendirildiğinde bu durumun, TiB₂ ağının daha yüksek bir yoğunluğa sahip olmasına bağlı olarak perkolasyon eşiğini düşürdüğünü ve elektriksel iletkenlikte yüksek miktarda artışlara neden olduğu anlaşılmıştır. Sonuç olarak, termoelektrik performansı belirleyen ZT değeri 25-50 µm partikül boyut aralığında ≈%50 oranında artırılmıştır.

Project Number

1919B012327999

References

  • [1] Gayner C. and Kar K.K., “Recent advances in thermoelectric materials”, Progress in Materials Science, 83: 330–382, (2016).
  • [2] Zeier W.G., “New tricks for optimizing thermoelectric materials”, Current Opinion in Green and Sustainable Chemistry, 4: 23–28, (2017).
  • [3] Bhandari C.M. and Rowe D.M., “Silicon-germanium alloys as high-temperature thermoelectric materials”, Contemporary Physics, 21: 219–242, (1980).
  • [4] Fitriani, Ovik R., Long B.D., Barma M.C., Riaz M., Sabri M.F.M., Said S.M. and Saidur R., “A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery”, Renewable and Sustainable Energy Reviews, 64: 635–659, (2016).
  • [5] Mori T., “Perspectives of high-temperature thermoelectric applications and p-type and n-type aluminoborides”, JOM, 68: 2673–2679, (2016).
  • [6] Freer, R., et al. “Key properties of inorganic thermoelectric materials-tables (version 1)”, Journal of Physics: Energy, 4: 022002, (2022).
  • [7] Wei T.R., Wu C.F., Li F. and Li J.F., “Low-cost and environmentally benign selenides as promising thermoelectric materials”, Journal of Materiomics, 4: 304–320, (2018).
  • [8] Izhevskyi V.A., Genova L.A., Bressiani J.C. and Bressiani A.H.A., “Silicon carbide: Structure, properties and processing”, Cerâmica, 46: 4-13, (2000).
  • [9] Koumoto K., Shimohigoshi M., Takeda S. and Yanagida H., “Thermoelectric energy conversion by porous SiC ceramics”, Journal of Materials Science Letters, 6: 1453-55, (1987).
  • [10] Lankau V., Martin H.P., Hempel-Weber R., Oeschler N. and Michaelis A., “Preparation and thermoelectric characterization of SiC-B4C composites”, Journal of Electronic Materials, 39: 1809-1813, (2010).
  • [11] Pangilinan L.E., Hu S., Hamilton, S.G., Tolbert, S.H. and Kaner, R.B., “Hardening effects in superhard transition-metal borides”, Accounts of Materials Research, 3: 100–109, (2022).
  • [12] Zoli L., Galizia P., Silvestroni L. and Sciti D., “Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride”, Journal of the American Ceramic Society, 101: 2627–2637, (2018).
  • [13] Mertdinç S., Ağaoğulları D. and Öveçoğlu M.L., “TaB/TaB2 tozlarının mekanokimyasal sentezleme ile üretimi ve karakterizasyonu”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19: 465–473, (2019).
  • [14] Williams R.K., Graves R.S. and Weaver F.J., “Transport properties of high purity, polycrystalline titanium diboride”, Journal of Applied Physics, 59: 1552-1556, (1986).
  • [15] Mao J., Liu Z., Zhou J., Zhu H., Zhang Q., Chen G. and Ren Z., “Advances in thermoelectrics”, Advances in Physics, 67: 69–147, (2018).
  • [16] Özer S.Ç., Arslan K., Metin E. and Turan S., “The effect of in-situ TiB2 segregated network structure on the thermoelectric properties of spark plasma sintered B4C ceramics”, Journal of the European Ceramic Society, 43: 7508-7515, (2023).
  • [17] Rahman M., Wang C.C., Chen W., Akbar S.A. and Mroz C., “Electrical resistivity of titanium diboride and zirconium diboride”, Journal of the American Ceramic Society, 78: 1380-1382, (1995).
  • [18] Ponnusamy P., Feng B., Martin H.P. and Groen P. “Effect of TiB2 nano-inclusions on the thermoelectric properties of boron rich boron carbide”, Materials Today: Proceedings, 5: 10306-10315, (2018).
  • [19] Özer S.Ç., Arslan K. and Turan S., “Improved thermoelectric properties of SiC with TiC segregated network structure”, Journal of the European Ceramic Society, 43: 6154-6161, (2023).
  • [20] Warzoha R.J. and Donovan B.F., “High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions”, Review of Scientific Instruments, 88: 094901, (2017).
  • [21] Boyce, B.L., Furnish, T.A. and Padilla II H.A., Van Campen D., Mehta A., “Detecting rare, abnormally large grains by x-ray diffraction”, Journal of Materials Science, 50: 6719-6729, (2015).
  • [22] Feng B., Martin H.P. and Michaelis A., “In situ preparation and thermoelectric properties of B4C1-x-TiB2 composites”, Journal of Electronic Materials, 42: 2314–2319, (2013).
  • [23] Snyder G.J., Pereyra A. and Gurunathan R., “Effective mass from Seebeck coefficient”, Advanced Functional Materials, 32: 2112772, (2022).
  • [24] Lee, S., et al., “Grain boundary engineering strategy for simultaneously reducing the electron concentration and lattice thermal conductivity in n-type Bi2Te2.7Se0.3-based thermoelectric materials”, Journal of the European Ceramic Society, 43: 3376-3382, (2023).
  • [25] Joshi R.P., Neudeck P.G. and Fazi, C., “Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications”, Journal of Applied Physics, 88: 265-269, (2000).
  • [26] Koumoto, K., Shimohigoshi, M., Takeda, S. and Yanagida, H., “Thermoelectric energy conversion by porous SiC ceramics”, Journal of Materials Science Letters, 6: 1453-1455, (1987).
  • [27] Mori, T., “Perspectives of high-temperature thermoelectric applications and p-type and n-type aluminoborides”, JOM, 69: 2673-2679, (2016).
  • [28] Namini, A. S., Gogani, S. N. S., Asl, M. S., Farhadi, K., Kakroudi, M. G. and Mohammadzadeh, A., “Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite”, International Journal of Refractory Metals and Hard Materials, 51: 169-179, (2015).

Improved Thermoelectric Properties of SiC Composites with Optimized TiB2 Network Structures

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1625094

Abstract

Due to the scarcity of renewable energy sources and the increase in fossil fuel consumption, the development of materials for renewable and sustainable energy production has become an eminent concern, including thermoelectric power generation. Advanced ceramics such as SiC is a desirable alternative material for high-temperature thermoelectric applications. Although SiC has a high Seebeck coefficient, it has relatively low electrical and thermal conductivities, which are undesirable properties for thermoelectric applications. Introducing transitional metal borides as a secondary phase to enhance the electrical conductivity of SiC is a common method. In this study, SiC granules were coated with TiB₂ powders using a simple dry coating method and subsequently subjected to spark plasma sintering to produce composites with conductive network structures. To modify the morphology of the TiB₂ network, SiC granules were classified with particle size ranges of 25-50 µm to 75-100 µm prior to the coating process, Increases of ≈130-500% in electrical conductivity was achieved depending on the matrix granule size distribution, which decreased with increasing SiC granule sizes, showed that the higher concentration of TiB₂ network lowered the percolation threshold causing drastic increases in electrical conductivity. The ZT value increased by ≈50% in the 25-50 µm range.

Ethical Statement

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Supporting Institution

the Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

1919B012327999

Thanks

This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the project 1919B012327999. The authors also would like to thank Prof. Dr. Servet Turan and the Ceramic Research Center for their help with raw materials and thermal analysis equipment.

References

  • [1] Gayner C. and Kar K.K., “Recent advances in thermoelectric materials”, Progress in Materials Science, 83: 330–382, (2016).
  • [2] Zeier W.G., “New tricks for optimizing thermoelectric materials”, Current Opinion in Green and Sustainable Chemistry, 4: 23–28, (2017).
  • [3] Bhandari C.M. and Rowe D.M., “Silicon-germanium alloys as high-temperature thermoelectric materials”, Contemporary Physics, 21: 219–242, (1980).
  • [4] Fitriani, Ovik R., Long B.D., Barma M.C., Riaz M., Sabri M.F.M., Said S.M. and Saidur R., “A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery”, Renewable and Sustainable Energy Reviews, 64: 635–659, (2016).
  • [5] Mori T., “Perspectives of high-temperature thermoelectric applications and p-type and n-type aluminoborides”, JOM, 68: 2673–2679, (2016).
  • [6] Freer, R., et al. “Key properties of inorganic thermoelectric materials-tables (version 1)”, Journal of Physics: Energy, 4: 022002, (2022).
  • [7] Wei T.R., Wu C.F., Li F. and Li J.F., “Low-cost and environmentally benign selenides as promising thermoelectric materials”, Journal of Materiomics, 4: 304–320, (2018).
  • [8] Izhevskyi V.A., Genova L.A., Bressiani J.C. and Bressiani A.H.A., “Silicon carbide: Structure, properties and processing”, Cerâmica, 46: 4-13, (2000).
  • [9] Koumoto K., Shimohigoshi M., Takeda S. and Yanagida H., “Thermoelectric energy conversion by porous SiC ceramics”, Journal of Materials Science Letters, 6: 1453-55, (1987).
  • [10] Lankau V., Martin H.P., Hempel-Weber R., Oeschler N. and Michaelis A., “Preparation and thermoelectric characterization of SiC-B4C composites”, Journal of Electronic Materials, 39: 1809-1813, (2010).
  • [11] Pangilinan L.E., Hu S., Hamilton, S.G., Tolbert, S.H. and Kaner, R.B., “Hardening effects in superhard transition-metal borides”, Accounts of Materials Research, 3: 100–109, (2022).
  • [12] Zoli L., Galizia P., Silvestroni L. and Sciti D., “Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride”, Journal of the American Ceramic Society, 101: 2627–2637, (2018).
  • [13] Mertdinç S., Ağaoğulları D. and Öveçoğlu M.L., “TaB/TaB2 tozlarının mekanokimyasal sentezleme ile üretimi ve karakterizasyonu”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19: 465–473, (2019).
  • [14] Williams R.K., Graves R.S. and Weaver F.J., “Transport properties of high purity, polycrystalline titanium diboride”, Journal of Applied Physics, 59: 1552-1556, (1986).
  • [15] Mao J., Liu Z., Zhou J., Zhu H., Zhang Q., Chen G. and Ren Z., “Advances in thermoelectrics”, Advances in Physics, 67: 69–147, (2018).
  • [16] Özer S.Ç., Arslan K., Metin E. and Turan S., “The effect of in-situ TiB2 segregated network structure on the thermoelectric properties of spark plasma sintered B4C ceramics”, Journal of the European Ceramic Society, 43: 7508-7515, (2023).
  • [17] Rahman M., Wang C.C., Chen W., Akbar S.A. and Mroz C., “Electrical resistivity of titanium diboride and zirconium diboride”, Journal of the American Ceramic Society, 78: 1380-1382, (1995).
  • [18] Ponnusamy P., Feng B., Martin H.P. and Groen P. “Effect of TiB2 nano-inclusions on the thermoelectric properties of boron rich boron carbide”, Materials Today: Proceedings, 5: 10306-10315, (2018).
  • [19] Özer S.Ç., Arslan K. and Turan S., “Improved thermoelectric properties of SiC with TiC segregated network structure”, Journal of the European Ceramic Society, 43: 6154-6161, (2023).
  • [20] Warzoha R.J. and Donovan B.F., “High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions”, Review of Scientific Instruments, 88: 094901, (2017).
  • [21] Boyce, B.L., Furnish, T.A. and Padilla II H.A., Van Campen D., Mehta A., “Detecting rare, abnormally large grains by x-ray diffraction”, Journal of Materials Science, 50: 6719-6729, (2015).
  • [22] Feng B., Martin H.P. and Michaelis A., “In situ preparation and thermoelectric properties of B4C1-x-TiB2 composites”, Journal of Electronic Materials, 42: 2314–2319, (2013).
  • [23] Snyder G.J., Pereyra A. and Gurunathan R., “Effective mass from Seebeck coefficient”, Advanced Functional Materials, 32: 2112772, (2022).
  • [24] Lee, S., et al., “Grain boundary engineering strategy for simultaneously reducing the electron concentration and lattice thermal conductivity in n-type Bi2Te2.7Se0.3-based thermoelectric materials”, Journal of the European Ceramic Society, 43: 3376-3382, (2023).
  • [25] Joshi R.P., Neudeck P.G. and Fazi, C., “Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications”, Journal of Applied Physics, 88: 265-269, (2000).
  • [26] Koumoto, K., Shimohigoshi, M., Takeda, S. and Yanagida, H., “Thermoelectric energy conversion by porous SiC ceramics”, Journal of Materials Science Letters, 6: 1453-1455, (1987).
  • [27] Mori, T., “Perspectives of high-temperature thermoelectric applications and p-type and n-type aluminoborides”, JOM, 69: 2673-2679, (2016).
  • [28] Namini, A. S., Gogani, S. N. S., Asl, M. S., Farhadi, K., Kakroudi, M. G. and Mohammadzadeh, A., “Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite”, International Journal of Refractory Metals and Hard Materials, 51: 169-179, (2015).
There are 28 citations in total.

Details

Primary Language English
Subjects Functional Materials, Ceramics in Materials Engineering
Journal Section Research Article
Authors

Zeynep Sude Bulut This is me 0009-0004-6318-3614

Salih Çağrı Özer 0000-0001-8501-5727

Project Number 1919B012327999
Early Pub Date July 15, 2025
Publication Date October 18, 2025
Submission Date January 22, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Bulut, Z. S., & Özer, S. Ç. (2025). Improved Thermoelectric Properties of SiC Composites with Optimized TiB2 Network Structures. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1625094
AMA Bulut ZS, Özer SÇ. Improved Thermoelectric Properties of SiC Composites with Optimized TiB2 Network Structures. Politeknik Dergisi. Published online July 1, 2025:1-1. doi:10.2339/politeknik.1625094
Chicago Bulut, Zeynep Sude, and Salih Çağrı Özer. “Improved Thermoelectric Properties of SiC Composites With Optimized TiB2 Network Structures”. Politeknik Dergisi, July (July 2025), 1-1. https://doi.org/10.2339/politeknik.1625094.
EndNote Bulut ZS, Özer SÇ (July 1, 2025) Improved Thermoelectric Properties of SiC Composites with Optimized TiB2 Network Structures. Politeknik Dergisi 1–1.
IEEE Z. S. Bulut and S. Ç. Özer, “Improved Thermoelectric Properties of SiC Composites with Optimized TiB2 Network Structures”, Politeknik Dergisi, pp. 1–1, July2025, doi: 10.2339/politeknik.1625094.
ISNAD Bulut, Zeynep Sude - Özer, Salih Çağrı. “Improved Thermoelectric Properties of SiC Composites With Optimized TiB2 Network Structures”. Politeknik Dergisi. July2025. 1-1. https://doi.org/10.2339/politeknik.1625094.
JAMA Bulut ZS, Özer SÇ. Improved Thermoelectric Properties of SiC Composites with Optimized TiB2 Network Structures. Politeknik Dergisi. 2025;:1–1.
MLA Bulut, Zeynep Sude and Salih Çağrı Özer. “Improved Thermoelectric Properties of SiC Composites With Optimized TiB2 Network Structures”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1625094.
Vancouver Bulut ZS, Özer SÇ. Improved Thermoelectric Properties of SiC Composites with Optimized TiB2 Network Structures. Politeknik Dergisi. 2025:1-.