Li-Mn-O Yapılı Lityum İyon Eleklerinin Sentezinde Öğütme Süresinin ve KCl İlavesinin Etkisinin Araştırılması
Year 2025,
EARLY VIEW, 1 - 1
Ayşegül Yücel
,
Abdulkerim Yörükoğlu
Abstract
Teknolojik açıdan kritik öneme sahip lityumun yer kabuğunda geniş bir alana yayılmamış olması, farklı lityum kaynaklarının araştırılmasının önünü açmıştır. Lityum geri kazanımı için yapılan uygulamalardan biri de adsorpsiyon yöntemidir. Çözelti ortamındaki lityum iyonlarını almak için etkili adsorban özelliklerine sahip lityum-iyon elekleri sentezlenmeye başlanmıştır. Yüksek lityum seçicilikleri nedeniyle lityum mangan oksit iyon elekleri, lityum kaynaklarından lityum geri kazanımı için en umut verici iyon elekleridir. Bu çalışmada başlangıç malzemesi olarak KMnO4 ve MnCl2 stokiyometrik olarak tercih edilmiştir. Ayrıca farklı kütle oranlarında (%0, %5, %10 ve %20) KCl eklenmiştir. Öğütme süresi sırasıyla 1, 2, 3 ve 4 saattir. Daha sonra kalsinasyon ve lityum emdirme işlemlerinden sonra asit ile aktive edilen lityum mangan oksit eleklerin lityum adsorpsiyon kapasiteleri araştırılmıştır. AAS ile yapılan ölçümler sonucunda çözeltide en az mangan iyonunun tespit edildiği koşullar %20 KCl ilaveli ve 2 saat öğütme süreli iyon elek numunesi olmuştur. Bu koşullar altında sentezlenen iyon eleğin lityum adsorpsiyon veriminin %50,74 civarında olduğu tespit edilmiştir.
Ethical Statement
Bu makalenin yazarları çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal özel bir izin gerektirmediğini beyan ederler.
Supporting Institution
TÜBİTAK
Project Number
TÜBİTAK 2218 Doktora Sonrası Araştırma Burs Programına (Proje No: 122C113)
Thanks
Tüm yazarlar TÜBİTAK 2218 Doktora Sonrası Araştırma Burs Programına (Proje No: 122C113) finansal destekleri için teşekkür eder. Ayrıca Türkiye Enerji, Nükleer ve Maden Araştırma Enstitüsü (TENMAK)/Bor Araştırma Enstitüsü'ne (BOREN) altyapı tesislerinin kullanımına ilişkin destekleri için teşekkür ederler.
References
-
[1] Alves Dias P, Blagoeva D, Pavel C, and Arvanitidis N., “Cobalt: demand-supply balances in the transition to electric mobility,” Luxembourg, (2018).
-
[2] D. L. P. Arrobas, K. L. Hund, M. S. Mccormick, J. Ningthoujam, and J. R. Drexhage, “The Growing Role of Minerals and Metals for a Low Carbon Future,” Jun. (2017).
-
[3] M. F. Gülcan and S. Gürmen, “Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri,” Journal of Polytechnic, pp. 1–1, (2024).
-
[4] “Lithium Statistics and Information,” https://www.usgs.gov/centers/national-minerals-information-center/lithium-statistics-and-information.
-
[5] L. Kavanagh, J. Keohane, G. G. Cabellos, A. Lloyd, and J. Cleary, “Global lithium sources-industrial use and future in the electric vehicle industry: A review,” MDPI AG., (2018).
-
[6] A. Yücel and A. Yörükoğlu, “Use of Lithium Manganese Oxide Ion Sieves in Fixed Bed Columns for Lithium Recovery: A Mini-Review,” Taylor and Francis Ltd. (2023).
-
[7] B. Sever et al., “Lithium Recovery from Reverse Osmosis Concentrate of Geothermal Water by Spinel Type λ-MnO2 -Batch Tests,” Solvent Extraction and Ion Exchange, (2025).
-
[8] A. Yücel, M. Sarıkaya, H. Ç. Yılmaz, and T. Depci, “Extraction of lithium from boron ore wastes and precipitation as lithium carbonate,” Canadian Metallurgical Quarterly, (2025).
-
[9] G. Liu, Z. Zhao, and A. Ghahreman, “Novel approaches for lithium extraction from salt-lake brines: A review,” Hydrometallurgy, vol. 187, pp. 81–100, (2019).
-
[10] P. Xu et al., “Materials for lithium recovery from salt lake brine,” Springer., (2021).
-
[11] X. Xu et al., “Extraction of lithium with functionalized lithium ion-sieves,” Elsevier Ltd., (2016).
-
[12] R. Chitrakar, Y. Makita, K. Ooi, and A. Sonoda, “Lithium recovery from salt lake brine by H2TiO3,” Dalton Transactions, vol. 43, pp. 8933–8939, (2014).
-
[13] C. L. Yu, K. Yanagisawa, S. Kamiya, T. Kozawa, and T. Ueda, “Monoclinic Li2TiO3 nano-particles via hydrothermal reaction: Processing and structure,” Ceram Int, vol. 40, pp. 1901–1908, (2014).
-
[14] Y. Zhang, J. Liu, Y. Yang, S. Lin, and P. Li, “Preparation of granular titanium-type lithium-ion sieves and recyclability assessment for lithium recovery from brines with different pH value,” Sep Purif Technol, vol. 267, (2021).
-
[15] P. K. Choubey, K. S. Chung, M. seuk Kim, J. chun Lee, and R. R. Srivastava, “Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs),” Miner Eng, vol. 110, pp. 104–121, (2017).
-
[16] C. Wang, Y. Zhai, X. Wang, and M. Zeng, “Preparation and characterization of lithium λ-MnO2 ion-sieves,” Front Chem Sci Eng, vol. 8, pp. 471–477, (2014).
-
[17] I. B. Singh and A. Singh, “A facile low-temperature synthesis of Li4Mn5O12 nanorods,” Colloid Polym Sci, vol. 295, pp. 689–693, (2017).
-
[18] J. L. Xiao, S. Y. Sun, X. Song, P. Li, and J. G. Yu, “Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve,” Chemical Engineering Journal, vol. 279, pp. 659–666, (2015).
-
[19] L. Liu, H. Zhang, Y. Zhang, D. Cao, and X. Zhao, “Lithium extraction from seawater by manganese oxide ion sieve MnO2·0.5H2O,” Colloids Surf A Physicochem Eng Asp, vol. 468, pp. 280–284, (2015).
-
[20] M. J. Park et al., “Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate,” Chemical Engineering Journal, vol. 254, pp. 73–81, (2014).
-
[21] M. H. Sorour, A. M. El-Rafei, and H. A. Hani, “Synthesis and characterization of electrospun aluminum doped Li1.6Mn1.6O4 spinel,” Ceram Int, vol. 42, pp. 4911–4917, (2016).
-
[22] Ü. A. Çelik, T. Sunar, D. Özyürek, and M. Gürü, “Mekanokimyasal Yöntemle FeB ve Fe2B Bileşiklerinin Üretimi ve Karakterizasyonu,” Journal of Polytechnic, (2023).
-
[23] B. Canöz, A. Ü. Metin, and M. Gürü, “Mekanokimyasal Yöntemle Elementlerinden Magnezyum Diborür (MgB2) Sentezi ve Enerjetik Madde Olarak Kullanımı,” Politeknik Dergisi, vol. 24, pp. 933–941, (2021).
-
[24] A. Gagrani, J. Zhou, and T. Tsuzuki, “Solvent free mechanochemical synthesis of MnO2 for the efficient degradation of Rhodamine-B,” Ceram Int, vol. 44, pp. 4694–4698, (2018).
-
[25] S. Zandevakili, M. Ranjbar, and M. Ehteshamzadeh, “Recovery of lithium from Urmia Lake by a nanostructure MnO2ion sieve,” Hydrometallurgy, vol. 149, pp. 148–152, (2014).
-
[26] T. Huang, Z. Qiu, D. Wu, and Z. Hu, “Bamboo-based activated carbon @ MnO2 nanocomposites for flexible high-performance supercapacitor electrode materials,” Int J Electrochem Sci, vol. 10, pp. 6312–6323, (2015).
-
[27] M. Kim, Y. Hwang, K. Min, and J. Kim, “Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors,” Electrochim Acta, vol. 113, pp. 322–331, (2013).
-
[28] K. A. M. Ahmed, “Exploitation of KMnO4 material as precursors for the fabrication of manganese oxide nanomaterials,” Journal of Taibah University for Science, vol. 10, pp. 412–429, (2016).
-
[29] M. Göktaş, “Mechanical activation applications in mineral processing,” Union of Chambers of Engineers and Architects of Turkey (2018).
-
[30] D. Yan et al., “Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them,” Chem Phys Lett, vol. 440, pp. 134–138, (2007).
-
[31] S. Zhao et al., “Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties,” Journal of Materials Science: Materials in Electronics, vol. 27, pp. 3265–3270, (2016).
-
[32] Q. Liu, L. Zhang, X. Liu, Z. Zhong, W. Deng, and P. Yang, “The preparation path, adsorption characteristics and manganese dissolution loss mechanism of manganese-based ion-sieve MnO2·0.5H2O for liquid phase lithium resource recovery,” J Environ Chem Eng, vol. 13, (2025).
Investigation of the Effect of Grinding Time and KCl Addition on the Synthesis of Li-Mn-O Structured Lithium Ion Sieves
Year 2025,
EARLY VIEW, 1 - 1
Ayşegül Yücel
,
Abdulkerim Yörükoğlu
Abstract
Technologically critical lithium has not spread over a wide area in the earth's crust, which paved the way for investigating different lithium sources. One of the applications for lithium recovery is the adsorption method. Lithium-ion sieves with effective adsorbent properties have begun to be synthesized to take lithium ions in the solution medium. Due to their high lithium selectivity, lithium manganese oxide ion sieves are the most promising ion sieves for the recovery of lithium from lithium sources. In this study, KMnO4 and MnCl2 were preferred as starting materials stoichiometrically. In addition, KCl was added at different mass ratios (0%, 5%, 10% and 20%). Grinding time is 1, 2, 3, and 4 hours, respectively. Then, the lithium adsorption capacities of lithium manganese oxide sieves activated with acid after calcination and lithium impregnation processes were investigated. As a result of the measurements made with AAS, the conditions in which the least manganese ions were detected in the solution were the ion sieve sample with 20% KCl addition and 2 hours of grinding time. It was determined that the lithium adsorption efficiency of the ion sieve synthesized under these conditions was around 50.74%.
Project Number
TÜBİTAK 2218 Doktora Sonrası Araştırma Burs Programına (Proje No: 122C113)
References
-
[1] Alves Dias P, Blagoeva D, Pavel C, and Arvanitidis N., “Cobalt: demand-supply balances in the transition to electric mobility,” Luxembourg, (2018).
-
[2] D. L. P. Arrobas, K. L. Hund, M. S. Mccormick, J. Ningthoujam, and J. R. Drexhage, “The Growing Role of Minerals and Metals for a Low Carbon Future,” Jun. (2017).
-
[3] M. F. Gülcan and S. Gürmen, “Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri,” Journal of Polytechnic, pp. 1–1, (2024).
-
[4] “Lithium Statistics and Information,” https://www.usgs.gov/centers/national-minerals-information-center/lithium-statistics-and-information.
-
[5] L. Kavanagh, J. Keohane, G. G. Cabellos, A. Lloyd, and J. Cleary, “Global lithium sources-industrial use and future in the electric vehicle industry: A review,” MDPI AG., (2018).
-
[6] A. Yücel and A. Yörükoğlu, “Use of Lithium Manganese Oxide Ion Sieves in Fixed Bed Columns for Lithium Recovery: A Mini-Review,” Taylor and Francis Ltd. (2023).
-
[7] B. Sever et al., “Lithium Recovery from Reverse Osmosis Concentrate of Geothermal Water by Spinel Type λ-MnO2 -Batch Tests,” Solvent Extraction and Ion Exchange, (2025).
-
[8] A. Yücel, M. Sarıkaya, H. Ç. Yılmaz, and T. Depci, “Extraction of lithium from boron ore wastes and precipitation as lithium carbonate,” Canadian Metallurgical Quarterly, (2025).
-
[9] G. Liu, Z. Zhao, and A. Ghahreman, “Novel approaches for lithium extraction from salt-lake brines: A review,” Hydrometallurgy, vol. 187, pp. 81–100, (2019).
-
[10] P. Xu et al., “Materials for lithium recovery from salt lake brine,” Springer., (2021).
-
[11] X. Xu et al., “Extraction of lithium with functionalized lithium ion-sieves,” Elsevier Ltd., (2016).
-
[12] R. Chitrakar, Y. Makita, K. Ooi, and A. Sonoda, “Lithium recovery from salt lake brine by H2TiO3,” Dalton Transactions, vol. 43, pp. 8933–8939, (2014).
-
[13] C. L. Yu, K. Yanagisawa, S. Kamiya, T. Kozawa, and T. Ueda, “Monoclinic Li2TiO3 nano-particles via hydrothermal reaction: Processing and structure,” Ceram Int, vol. 40, pp. 1901–1908, (2014).
-
[14] Y. Zhang, J. Liu, Y. Yang, S. Lin, and P. Li, “Preparation of granular titanium-type lithium-ion sieves and recyclability assessment for lithium recovery from brines with different pH value,” Sep Purif Technol, vol. 267, (2021).
-
[15] P. K. Choubey, K. S. Chung, M. seuk Kim, J. chun Lee, and R. R. Srivastava, “Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs),” Miner Eng, vol. 110, pp. 104–121, (2017).
-
[16] C. Wang, Y. Zhai, X. Wang, and M. Zeng, “Preparation and characterization of lithium λ-MnO2 ion-sieves,” Front Chem Sci Eng, vol. 8, pp. 471–477, (2014).
-
[17] I. B. Singh and A. Singh, “A facile low-temperature synthesis of Li4Mn5O12 nanorods,” Colloid Polym Sci, vol. 295, pp. 689–693, (2017).
-
[18] J. L. Xiao, S. Y. Sun, X. Song, P. Li, and J. G. Yu, “Lithium ion recovery from brine using granulated polyacrylamide-MnO2 ion-sieve,” Chemical Engineering Journal, vol. 279, pp. 659–666, (2015).
-
[19] L. Liu, H. Zhang, Y. Zhang, D. Cao, and X. Zhao, “Lithium extraction from seawater by manganese oxide ion sieve MnO2·0.5H2O,” Colloids Surf A Physicochem Eng Asp, vol. 468, pp. 280–284, (2015).
-
[20] M. J. Park et al., “Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate,” Chemical Engineering Journal, vol. 254, pp. 73–81, (2014).
-
[21] M. H. Sorour, A. M. El-Rafei, and H. A. Hani, “Synthesis and characterization of electrospun aluminum doped Li1.6Mn1.6O4 spinel,” Ceram Int, vol. 42, pp. 4911–4917, (2016).
-
[22] Ü. A. Çelik, T. Sunar, D. Özyürek, and M. Gürü, “Mekanokimyasal Yöntemle FeB ve Fe2B Bileşiklerinin Üretimi ve Karakterizasyonu,” Journal of Polytechnic, (2023).
-
[23] B. Canöz, A. Ü. Metin, and M. Gürü, “Mekanokimyasal Yöntemle Elementlerinden Magnezyum Diborür (MgB2) Sentezi ve Enerjetik Madde Olarak Kullanımı,” Politeknik Dergisi, vol. 24, pp. 933–941, (2021).
-
[24] A. Gagrani, J. Zhou, and T. Tsuzuki, “Solvent free mechanochemical synthesis of MnO2 for the efficient degradation of Rhodamine-B,” Ceram Int, vol. 44, pp. 4694–4698, (2018).
-
[25] S. Zandevakili, M. Ranjbar, and M. Ehteshamzadeh, “Recovery of lithium from Urmia Lake by a nanostructure MnO2ion sieve,” Hydrometallurgy, vol. 149, pp. 148–152, (2014).
-
[26] T. Huang, Z. Qiu, D. Wu, and Z. Hu, “Bamboo-based activated carbon @ MnO2 nanocomposites for flexible high-performance supercapacitor electrode materials,” Int J Electrochem Sci, vol. 10, pp. 6312–6323, (2015).
-
[27] M. Kim, Y. Hwang, K. Min, and J. Kim, “Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitors,” Electrochim Acta, vol. 113, pp. 322–331, (2013).
-
[28] K. A. M. Ahmed, “Exploitation of KMnO4 material as precursors for the fabrication of manganese oxide nanomaterials,” Journal of Taibah University for Science, vol. 10, pp. 412–429, (2016).
-
[29] M. Göktaş, “Mechanical activation applications in mineral processing,” Union of Chambers of Engineers and Architects of Turkey (2018).
-
[30] D. Yan et al., “Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them,” Chem Phys Lett, vol. 440, pp. 134–138, (2007).
-
[31] S. Zhao et al., “Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties,” Journal of Materials Science: Materials in Electronics, vol. 27, pp. 3265–3270, (2016).
-
[32] Q. Liu, L. Zhang, X. Liu, Z. Zhong, W. Deng, and P. Yang, “The preparation path, adsorption characteristics and manganese dissolution loss mechanism of manganese-based ion-sieve MnO2·0.5H2O for liquid phase lithium resource recovery,” J Environ Chem Eng, vol. 13, (2025).