Research Article
BibTex RIS Cite

M/A, T/M ve Boro-Sinterleme Teknikleriyle Üretilen NiTi+Lax (x:1, 3, 5 ağırlık %) Alaşımlarının Aşınma Davranışları

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1641930

Abstract

Toz Metalurjisi (T/M) yöntemi, geleneksel yöntemlerle üretilemeyen üstün metal alaşımlarının üretiminde çoğunlukla tercih edilmektedir. Bu çalışmada, ilk adım NiTi+Lax tozlarının bilyalı öğütme yoluyla mekanik alaşımlanması (M/A) olmuştur. Daha sonra alaşımlı tozlar preslenmiş ve bor tuzu ile doldurulmuş hava geçirmez seramik potalarda (alaşımlama ve atmosferik ortam oluşturmak için) kademeli olarak sinterlenerek NiTi+Lax alaşımları elde edilmiştir. Numunelerin aşınma özellikleri ve davranışları (farklı La miktarlarıyla (x: 1,3,5 % ağ.)) disk üstü pim testi ile belirlenmiştir. Deneyler 1,2 m/s kayma hızında ve 5N, 10N ve 15N yükler altında gerçekleştirilmiştir. Aşınmış yüzeylerin mikro yapıları FESEM ile karakterize edilmiş ve elementlerin dağılımı EDS ile analiz edilmiştir. Sonuç olarak, en düşük sürtünme katsayısı ve aşınma kaybı ağırlıkça %1 La içeren NiTi+Lax alaşımında gözlemlenmiştir. Aşınma hacmi miktarı yük ve La içeriğindeki artış ile artmıştır.

Project Number

2022FEBE025

References

  • [1] Mosca E., “Powder Metallurgy Criteria for design and inspection, Mechanical Metallurgical and Allied Manufactures Association”, Turin (Italy), (1984).
  • [2] Metals Handbook, Powder Metallurgy, vol. 7, 9th edn, ASM International, Metals Park OH., (1984).
  • [3] White C. History of Powder Metallurgy, in ASM Handbook, vol. 7, Powder Metal Technologies and Applications, Metals Park OH, (1998).
  • [4] Otsuka K., & Wayman C. M. (Eds.). “Shape memory materials”. Cambridge university press., (1999).
  • [5] Massari S., Ruberti M., “Rare earth elements as critical raw materials: Focus on international markets and future strategies”, Resources policy, 38(1), 36-43, (2013).
  • [6] Otsuka K., & Ren X. “Physical metallurgy of Ti–Ni-based shape memory alloys”, Progress in materials science, 50(5), 511-678, (2005).
  • [7] Xu J. W, Liu A. L., Qian B. Y., and Cai W., “Investigation on microstructure and phase transformation of La added Ti49. 3Ni50. 7 shape memory alloy” Advanced Materials Research 557: 1041-1044, (2012).
  • [8] Suryanarayana C., “Bibliography on mechanical alloying and milling”, Cambridge International Science Publishing, Cambridge, UK (1995).
  • [9] McNaney J. M., ImbeniV., Jung Y., Papadopoulos P., and Ritchie R.O., “An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading.” Mechanics of Materials, Vol 35, no. 10, pp. 969, (2003).
  • [10] Khorshid M.T., Omrani E., Menezes P. L., Rohatgi P. K., “Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets,” Engineering science and technology, an international journal, 19, 1, 463–469, (2016).
  • [11] Devaraju A., “A critical review on different types of wear of materials,” Int. J. Mech. Eng. Technol, vol. 6, no. 11, pp. 77–83, (2015).
  • [12] Aarthi T., Karthi M., Abinesh M. “Detection and analysis of surface defects in metals using wavelet transform,” International Journal of Scientific and Research Publications, vol. 3, no. 6, pp. 147–158, (2013).
  • [13] Naceur B., I., Elleuch, K., “Effects of saliva addition on the wear resistance of deflected NiTi archwire for biomedical application”, Materials Letters, 268, 127550, (2020).
  • [14] Hussein S. M., Salman K. D., & Hussein A. A., “The effect of different at.% Ag elements on the wear rate of nitinol alloys fabricated using the casting method”, In IOP Conference Series: Materials Science and Engineering (Vol. 987, No. 1, p. 012022). IOP Publishing, (2020).
  • [15] Mills S.H., Noebe R.D., Dellacorte C., Amin-Ahmadi B., Stebner A.P., “Development of Nickel-Rich Nickel–Titanium–Hafnium Alloys for Tribological Applications”, Shape Memory and Superelasticity, 6(3), 311-322, (2020).
  • [16] Yan L., Liu Y., “Wear Behavior of Austenitic NiTi Shape Memory Alloy”, Shape Memory and Superelasticity, 1(1), 58-68, (2015).
  • [17] Sadrnezhaad S. K., & Selahi A.R., “Effects of Mechanical Alloying and Sintering on NiTi Powders”. Materials and Manufacturing Processes, Vol.19 No. 3 pp.,475-486, (2004).
  • [18] Karabudak C., Sever N.K., & Aksöz S. “Sample Production and Characterization of NiTi+Nd Powders By BoroSintering Method After Mechanical Milling”. GU J Sci, Part C, 12(2): 759-770, (2024).
  • [19] Günen A., Koç V., Kanca E., Gök M.S., Kurt B., Kırar E., Demir M. “Effect of boro-sintering process on microstructure and phase formations of P/M AISI 1010 Steel” The Int. Conf. on Mater. Sci., Mech. Auto. Eng. Techno. in Çeşme-İzmir (IMSMATEC’18), 10-12 Nisan, (2018).
  • [20] Singh K.M., & Chauhan,A.K. “Effect of age hardening on sliding wear behaviour of Al7075/B4C nanocomposites”, Materials Today: Proceedings, 47, 3865-3870, (2021).
  • [21] Aksöz S., Arslan R., Kardeş Sever N., Kaplan Y., and Bostan B., “The Effect of Hot Rolling Temperature on the Wear Properties of NiTi Rods”, Transactions of the Indian Institute of Metals 76, no. 4: 951-960, (2023).
  • [22] Firstov G.S., Vitchev R.G., Kumar H., Blanpain B., & Van Humbeeck J. “Surface oxidation of NiTi shape memory alloy”, Biomaterials, 23(24), 4863-4871, (2002).
  • [23] Chu C.L., Chung C.Y., & Chu P.K. “Surface oxidation of NiTi shape memory alloy in a boiling aqueous solution containing hydrogen peroxide”, Materials Science and Engineering: A, 417(1-2), 104-109, (2006).
  • [24] Ozer M., Kaplan Y., Ozer A., & Aksoz S., “Influence of different sintering techniques on the wear properties of Al-15Si-2.5 Cu-0.5 Mg/B4C composites”, Science of Sintering, (00), 60-60, (2024).
  • [25] Altas E. “Investigation of the effects of surface oxide layer on wear and corrosion in NiTi alloys: A mechanical and chemical perspective”, Science of Sintering, (00), 44-44, (2024).
  • [26] Kim K.M., Yeom J.T., Lee H.-S., Yoon S.-Y., Kim J.H., “High temperature oxidation behavior of Ti–Ni–Hf shape memory alloy”, Thermochimica acta, 583, 1-7 (2014).
  • [27] Belbasi M., Salehi M.T., Mousavi S.A.A.A., Ebrahimi S.M., “A study on the mechanical behavior and microstructure of NiTiHf shape memory alloy under hot deformation”, Materials Science and Engineering: A, 560, 96-102 (2013).
  • [28] Aksöz S., Demir Ü., Bostan B., “NiTi SMA Parts Production with Different Porosity Ratios”, Acta Physica Polonica A, 135, 5:980-983, (2019).
  • [29] Yan L., Liu Y. E., “Wear behaviour of martensitic NiTi shape memory alloy under ball-on-disk sliding tests”, Tribology International, 66, 219-224, (2013).
  • [30] Aliasgarian R., Ghasemi H.M., Abedini M., “Tribological behavior of heat treated Ni-rich NiTi alloys”, Journal of Tribology, 133(3), 031602, (2011).
  • [31] Itano K., Iizuka T., “Unraveling the mechanism and impact of oxide production in LA-ICP-MS by comprehensive analysis of REE-Th-U phosphates”, Journal of Analytical Atomic Spectrometry, (2017).
  • [32] Kosec T., Močnik P., & Legat A., “The tribocorrosion behaviour of NiTi alloy”, Applied Surface Science, 288, 727-735, (2014).

Wear Behaviors of NiTi+Lax (x:1, 3, 5 wt. %) Alloys Produced via M/A, P/M and Boro-Sintering Techniques

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1641930

Abstract

The powder Metallurgy (P/M) method is mainly preferred in the production of superior metal alloys that cannot be produced with traditional methods. In this study, the first step was mechanical alloying (M/A) of NiTi+Lax powders via ball milling. Then the alloyed powders were pressed and gradually sintered using airtight ceramic crucibles filled with boron salt (for alloying and creating an atmospheric environment) to obtain NiTi+Lax alloys. The wear properties and behaviors of the samples were determined (with different La amounts (1wt.%, 3wt.%, and 5wt.%)) by pin-on-disc testing. The experiments were carried out at a sliding speed of 1.2 m/s and under 5N, 10N, and 15N loads. The microstructures of the worn surfaces were characterized by FESEM and the distribution of elements was analyzed by EDS. As a result, the lowest friction coefficient and wear loss were observed in the NiTi+Lax alloy containing 1wt.% La. The amount of wear volume increased with the increase in load and La content.

Supporting Institution

PAMUKKALE ÜNİVERSİTESİ

Project Number

2022FEBE025

References

  • [1] Mosca E., “Powder Metallurgy Criteria for design and inspection, Mechanical Metallurgical and Allied Manufactures Association”, Turin (Italy), (1984).
  • [2] Metals Handbook, Powder Metallurgy, vol. 7, 9th edn, ASM International, Metals Park OH., (1984).
  • [3] White C. History of Powder Metallurgy, in ASM Handbook, vol. 7, Powder Metal Technologies and Applications, Metals Park OH, (1998).
  • [4] Otsuka K., & Wayman C. M. (Eds.). “Shape memory materials”. Cambridge university press., (1999).
  • [5] Massari S., Ruberti M., “Rare earth elements as critical raw materials: Focus on international markets and future strategies”, Resources policy, 38(1), 36-43, (2013).
  • [6] Otsuka K., & Ren X. “Physical metallurgy of Ti–Ni-based shape memory alloys”, Progress in materials science, 50(5), 511-678, (2005).
  • [7] Xu J. W, Liu A. L., Qian B. Y., and Cai W., “Investigation on microstructure and phase transformation of La added Ti49. 3Ni50. 7 shape memory alloy” Advanced Materials Research 557: 1041-1044, (2012).
  • [8] Suryanarayana C., “Bibliography on mechanical alloying and milling”, Cambridge International Science Publishing, Cambridge, UK (1995).
  • [9] McNaney J. M., ImbeniV., Jung Y., Papadopoulos P., and Ritchie R.O., “An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading.” Mechanics of Materials, Vol 35, no. 10, pp. 969, (2003).
  • [10] Khorshid M.T., Omrani E., Menezes P. L., Rohatgi P. K., “Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets,” Engineering science and technology, an international journal, 19, 1, 463–469, (2016).
  • [11] Devaraju A., “A critical review on different types of wear of materials,” Int. J. Mech. Eng. Technol, vol. 6, no. 11, pp. 77–83, (2015).
  • [12] Aarthi T., Karthi M., Abinesh M. “Detection and analysis of surface defects in metals using wavelet transform,” International Journal of Scientific and Research Publications, vol. 3, no. 6, pp. 147–158, (2013).
  • [13] Naceur B., I., Elleuch, K., “Effects of saliva addition on the wear resistance of deflected NiTi archwire for biomedical application”, Materials Letters, 268, 127550, (2020).
  • [14] Hussein S. M., Salman K. D., & Hussein A. A., “The effect of different at.% Ag elements on the wear rate of nitinol alloys fabricated using the casting method”, In IOP Conference Series: Materials Science and Engineering (Vol. 987, No. 1, p. 012022). IOP Publishing, (2020).
  • [15] Mills S.H., Noebe R.D., Dellacorte C., Amin-Ahmadi B., Stebner A.P., “Development of Nickel-Rich Nickel–Titanium–Hafnium Alloys for Tribological Applications”, Shape Memory and Superelasticity, 6(3), 311-322, (2020).
  • [16] Yan L., Liu Y., “Wear Behavior of Austenitic NiTi Shape Memory Alloy”, Shape Memory and Superelasticity, 1(1), 58-68, (2015).
  • [17] Sadrnezhaad S. K., & Selahi A.R., “Effects of Mechanical Alloying and Sintering on NiTi Powders”. Materials and Manufacturing Processes, Vol.19 No. 3 pp.,475-486, (2004).
  • [18] Karabudak C., Sever N.K., & Aksöz S. “Sample Production and Characterization of NiTi+Nd Powders By BoroSintering Method After Mechanical Milling”. GU J Sci, Part C, 12(2): 759-770, (2024).
  • [19] Günen A., Koç V., Kanca E., Gök M.S., Kurt B., Kırar E., Demir M. “Effect of boro-sintering process on microstructure and phase formations of P/M AISI 1010 Steel” The Int. Conf. on Mater. Sci., Mech. Auto. Eng. Techno. in Çeşme-İzmir (IMSMATEC’18), 10-12 Nisan, (2018).
  • [20] Singh K.M., & Chauhan,A.K. “Effect of age hardening on sliding wear behaviour of Al7075/B4C nanocomposites”, Materials Today: Proceedings, 47, 3865-3870, (2021).
  • [21] Aksöz S., Arslan R., Kardeş Sever N., Kaplan Y., and Bostan B., “The Effect of Hot Rolling Temperature on the Wear Properties of NiTi Rods”, Transactions of the Indian Institute of Metals 76, no. 4: 951-960, (2023).
  • [22] Firstov G.S., Vitchev R.G., Kumar H., Blanpain B., & Van Humbeeck J. “Surface oxidation of NiTi shape memory alloy”, Biomaterials, 23(24), 4863-4871, (2002).
  • [23] Chu C.L., Chung C.Y., & Chu P.K. “Surface oxidation of NiTi shape memory alloy in a boiling aqueous solution containing hydrogen peroxide”, Materials Science and Engineering: A, 417(1-2), 104-109, (2006).
  • [24] Ozer M., Kaplan Y., Ozer A., & Aksoz S., “Influence of different sintering techniques on the wear properties of Al-15Si-2.5 Cu-0.5 Mg/B4C composites”, Science of Sintering, (00), 60-60, (2024).
  • [25] Altas E. “Investigation of the effects of surface oxide layer on wear and corrosion in NiTi alloys: A mechanical and chemical perspective”, Science of Sintering, (00), 44-44, (2024).
  • [26] Kim K.M., Yeom J.T., Lee H.-S., Yoon S.-Y., Kim J.H., “High temperature oxidation behavior of Ti–Ni–Hf shape memory alloy”, Thermochimica acta, 583, 1-7 (2014).
  • [27] Belbasi M., Salehi M.T., Mousavi S.A.A.A., Ebrahimi S.M., “A study on the mechanical behavior and microstructure of NiTiHf shape memory alloy under hot deformation”, Materials Science and Engineering: A, 560, 96-102 (2013).
  • [28] Aksöz S., Demir Ü., Bostan B., “NiTi SMA Parts Production with Different Porosity Ratios”, Acta Physica Polonica A, 135, 5:980-983, (2019).
  • [29] Yan L., Liu Y. E., “Wear behaviour of martensitic NiTi shape memory alloy under ball-on-disk sliding tests”, Tribology International, 66, 219-224, (2013).
  • [30] Aliasgarian R., Ghasemi H.M., Abedini M., “Tribological behavior of heat treated Ni-rich NiTi alloys”, Journal of Tribology, 133(3), 031602, (2011).
  • [31] Itano K., Iizuka T., “Unraveling the mechanism and impact of oxide production in LA-ICP-MS by comprehensive analysis of REE-Th-U phosphates”, Journal of Analytical Atomic Spectrometry, (2017).
  • [32] Kosec T., Močnik P., & Legat A., “The tribocorrosion behaviour of NiTi alloy”, Applied Surface Science, 288, 727-735, (2014).
There are 32 citations in total.

Details

Primary Language English
Subjects Powder Metallurgy
Journal Section Research Article
Authors

Ceylan Karabudak 0000-0002-3805-0703

Nimet Kardeş Sever 0000-0002-3395-0171

Hasan Duran 0000-0002-0605-8882

Sinan Aksöz 0000-0003-4324-5043

Project Number 2022FEBE025
Early Pub Date May 14, 2025
Publication Date October 16, 2025
Submission Date February 24, 2025
Acceptance Date April 8, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Karabudak, C., Kardeş Sever, N., Duran, H., Aksöz, S. (2025). Wear Behaviors of NiTi+Lax (x:1, 3, 5 wt. %) Alloys Produced via M/A, P/M and Boro-Sintering Techniques. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1641930
AMA Karabudak C, Kardeş Sever N, Duran H, Aksöz S. Wear Behaviors of NiTi+Lax (x:1, 3, 5 wt. %) Alloys Produced via M/A, P/M and Boro-Sintering Techniques. Politeknik Dergisi. Published online May 1, 2025:1-1. doi:10.2339/politeknik.1641930
Chicago Karabudak, Ceylan, Nimet Kardeş Sever, Hasan Duran, and Sinan Aksöz. “Wear Behaviors of NiTi+Lax (x:1, 3, 5 Wt. %) Alloys Produced via M A, P M and Boro-Sintering Techniques”. Politeknik Dergisi, May (May 2025), 1-1. https://doi.org/10.2339/politeknik.1641930.
EndNote Karabudak C, Kardeş Sever N, Duran H, Aksöz S (May 1, 2025) Wear Behaviors of NiTi+Lax (x:1, 3, 5 wt. %) Alloys Produced via M/A, P/M and Boro-Sintering Techniques. Politeknik Dergisi 1–1.
IEEE C. Karabudak, N. Kardeş Sever, H. Duran, and S. Aksöz, “Wear Behaviors of NiTi+Lax (x:1, 3, 5 wt. %) Alloys Produced via M/A, P/M and Boro-Sintering Techniques”, Politeknik Dergisi, pp. 1–1, May2025, doi: 10.2339/politeknik.1641930.
ISNAD Karabudak, Ceylan et al. “Wear Behaviors of NiTi+Lax (x:1, 3, 5 Wt. %) Alloys Produced via M A, P M and Boro-Sintering Techniques”. Politeknik Dergisi. May2025. 1-1. https://doi.org/10.2339/politeknik.1641930.
JAMA Karabudak C, Kardeş Sever N, Duran H, Aksöz S. Wear Behaviors of NiTi+Lax (x:1, 3, 5 wt. %) Alloys Produced via M/A, P/M and Boro-Sintering Techniques. Politeknik Dergisi. 2025;:1–1.
MLA Karabudak, Ceylan et al. “Wear Behaviors of NiTi+Lax (x:1, 3, 5 Wt. %) Alloys Produced via M A, P M and Boro-Sintering Techniques”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1641930.
Vancouver Karabudak C, Kardeş Sever N, Duran H, Aksöz S. Wear Behaviors of NiTi+Lax (x:1, 3, 5 wt. %) Alloys Produced via M/A, P/M and Boro-Sintering Techniques. Politeknik Dergisi. 2025:1-.