Research Article
BibTex RIS Cite

Karşılaştırmalı İstatistiksel Analiz Yöntemi Kullanılarak Alçak İrtifa İHA Kanat Tasarımının Optimizasyonu

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1646366

Abstract

Günümüzde insansız hava araçları (İHA) sivil, askeri ve sosyal faaliyetler de dahil olmak üzere çeşitli alanlarda yaygın olarak kullanılmaktadır. Alçak irtifalarda çalışan sabit kanatlı İHA'lar tipik olarak 2 ila 4 metre arasında değişen kanat açıklığına sahiptir ve üç saate kadar uçuşlarını sürdürebilirler. Kanat yapıları genellikle üç ana bileşenden oluşur: birincil yapısal yükü taşıyan merkezi bir kanat ve uçuş dayanıklılığını ve hızını belirlemek için kritik olan sol ve sağ yan kanatlar. Bu bileşenlerin uzunlukları değişmekte olup, yan kanatlar rüzgâr direncini azaltmak ve uçuş hızını artırmak için açılı olarak tasarlanmıştır. Bu çalışmada, ortalama bir alçak irtifa drone'u için üç ana parametre seviyesi belirlenmiş ve optimum boyutlar RSM (Yanıt Yüzeyi Metodolojisi), Taguchi yöntemi, FEM (Sonlu Elemanlar Yöntemi) ve Varyans Analizi (ANOVA) analizleri kullanılarak değerlendirilmiştir. Optimum tasarım 400 mm merkezi kanat uzunluğu, 700 mm yan kanat uzunluğu ve yaklaşık 8° yan kanat açısı ile elde edilmiştir. Analiz sonuçları 253 N maksimum kaldırma kuvveti (FZ), 10.2 N minimum sürükleme kuvveti, 0.66 maksimum kaldırma katsayısı (CL) ve 17.6 kaldırma-sürükleme (CL/CD ) oranı göstermiştir. Bu bulgulara dayanarak, hava aracı için kompozit kalıplar üretildi ve uçuş denemeleri sırasında hızı ölçmek için bir test cihazı geliştirildi. 10 m/s rüzgar koşulları altında, bu optimize edilmiş geometri için kaydedilen maksimum hız 183 km/s olmuştur.

Supporting Institution

We sincerely thank Bilecik Şeyh Edebali University Scientific Research Projects Unit for their valuable support within the scope of the project numbered ‘2022-01.BŞEÜ.03-09’. We would also like to express our gratitude to Düzce Glass Company for their significant contribution to the aircraft construction process.

Project Number

2022-01.BŞEÜ.03-09’

References

  • [1] R. Shokirov, N. Abdujabarov, T. Jonibek, K. Saytov, and S. Bobomurodov, "Prospects of the development of unmanned aerial vehicles (UAVs)" Technical science and innovation, 2020(3):4-8, (2020).
  • [2] M. T. R. Khan, M. Muhammad Saad, Y. Ru, J. Seo, and D. Kim, "Aspects of unmanned aerial vehicles path planning: Overview and applications" International Journal of Communication Systems, 34(10):e4827. (2021).
  • [3] A. Martian, C. Paleacu, I.-M. Marcu, and C. Vladeanu, "Direction-finding for unmanned aerial vehicles using radio frequency methods" Measurement, 235:114883. (2024).
  • [4] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, "Towards the unmanned aerial vehicles (UAVs): A comprehensive review" Drones, 6(6):147. (2022).
  • [5] E. E. Elmas and M. Alkan, "Collision Avoidance for Autonomous Unmanned Aerial Vehicles with Dynamic and Stationary Obstacles" Politeknik Dergisi, pp. 1-1. (2024).
  • [6] N. Can and M. Kahveci, "İnsansız hava araçları: Tarihçesi, tanımı, dünyada ve Türkiye’deki yasal durumu" Selcuk University Journal of Engineering, Science and Technology, 5(4):511-535, (2017).
  • [7] L. Rabiu, A. Ahmad, and A. Gohari, "Advancements of unmanned aerial vehicle technology in the realm of applied sciences and engineering: A review" Journal of Advanced Research in Applied Sciences and Engineering Technology, 40(2):74-95, (2024).
  • [8] A. S. Akgül and A. Hacıoğlu, "To design and build of a surveillance/attack mini unmanned aerial vehicle (UAV)" Journal of Aeronautics and Space Technologies, 4(3):1-6, (2010).
  • [9] M. Danışmaz, D. Atılğan, and F. Karaca, "Sabit Kanatli Mini İha’lar İçin Kanat Profili Tasarimi Ve Analizi".
  • [10] S. Gudmundsson, "General aviation aircraft design: Applied Methods and Procedures". Butterworth-Heinemann, (2013).
  • [11] D. Raymer, "Aircraft design: a conceptual approach". American Institute of Aeronautics and Astronautics, Inc., (2012).
  • [12] Y. Wang, K. Zhao, X.-Y. Lu, Y.-B. Song, and G. J. Bennett, "Bio-inspired aerodynamic noise control: a bibliographic review" Applied Sciences, 9(11):2224. (2019).
  • [13] Y. Wei, F. Xu, S. Bian, and D. Kong, "Noise reduction of UAV using biomimetic propellers with varied morphologies leading-edge serration" Journal of Bionic Engineering, 17:767-779. (2020).
  • [14] T. J. Mueller, "Fixed and flapping wing aerodynamics for micro air vehicle applications". AIAA, (2001).
  • [15] Y. Celik, "A comparative aerodynamic analysis of NACA and NREL aerofoils for darrieus turbines using CFD" International Journal of Innovative Engineering Applications, 6(1):111-117. (2022).
  • [16] Y. F. Görgülü, M. A. Özgür, and R. Köse, "CFD analysis of a NACA 0009 aerofoil at a low reynolds number" Politeknik Dergisi, 24(3):1237-1242. (2021).
  • [17] D. A. Gök and K. Alnimer, "Characterization of NACA 2412 and NACA 4412 airfoils: Effects of angle of attack on aerodynamics coefficients" Journal of Thermal Engineering, 10(6):1524-1538. (2021).
  • [18] Y. Luo, G. Pan, Q. Huang, Y. Shi, and H. Lai, "Parametric geometric model and shape optimization of airfoils of a biomimetic manta ray underwater vehicle" Journal of Shanghai Jiaotong University (Science), 24:402-408. (2019).
  • [19] K. Upasena, U. Weerathunga, J. Abeygoonewardena, and R. Bandara, "Design of a new aircraft wing inspired by the Magnificent Frigate bird". (2019).
  • [20] D. S. Martin, "An Investigation of Avian Wing Tip Vortex Generation Using a Biomimetic Approach," California Polytechnic State University, (2017).
  • [21] V. E. Focke, A. B. Kesel, and A. Baars, "Flying fish: Biomimetic potential for wing in ground effect crafts?" Bionik: Patente aus der Natur. (2016).
  • [22] J. T. Murphy, "Experimental investigation of biomimetic wing configurations for Micro Air Vehicle applications". Iowa State University, (2008).
  • [23] A. Risanthia, T. Phiboon, S. Bureerat, A. Pichitkul, S. Tantrairatn, and A. Ariyarit, "UAV Wing Design via Efficient Global Optimization" in 2024 16th International Conference on Knowledge and Smart Technology (KST), of Conference: IEEE, pp. 62-66. (2024)
  • [24] S. G. Kontogiannis and J. A. Ekaterinaris, "Design, performance evaluation and optimization of a UAV" Aerospace science and technology, 29(1):339-350. (2013).
  • [25] S. Evran and S. Z. Yıldır, "Numerical and statistical aerodynamic performance analysis of NACA0009 and NACA4415 airfoils" Politeknik Dergisi, 27(3):849-856. (2023).
  • [26] R. Jain, M. S. Jain, and M. L. Bajpai, "Investigation on 3-d wing of commercial aeroplane with aerofoil naca 2415 using cfd fluent" IRJET, 3(6):243-249. (2016).
  • [27] H. Demir and N. Kaya, "Bir Hava Aracının Çok Amaçlı Kanat Kiriş Kesit Optimizasyonu" Politeknik Dergisi, pp. 1-1.
  • [28] B. Öztürk and F. Öncü, "Optimization of thrust and fuel efficiency in low-altitude UAV engines through experimental design and statistical analysis" Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47(3):131. (2025).
  • [29] J. D. Anderson and M. L. Bowden, "Introduction to flight". McGraw-Hill Higher Education New York, NY, USA, (2005).
  • [30] D. Küchemann, "The aerodynamic design of aircraft". American Institute of Aeronautics and Astronautics, Inc., (2012).
  • [31] A. K. Kundu, "Aircraft design". Cambridge University Press, (2010).
  • [32] A. J. Keane, A. Sóbester, and J. P. Scanlan, "Small unmanned fixed-wing aircraft design: a practical approach". John Wiley & Sons, (2017).
  • [33] T. Liu, "Evolutionary understanding of airfoil lift" Advances in Aerodynamics, 3(1):37. (2021).
  • [34] C. Lee, S. Kim, and B. Chu, "A survey: Flight mechanism and mechanical structure of the UAV" International Journal of Precision Engineering and Manufacturing, 22(4):719-743. (2021).
  • [35] A. Lamsal, A. K. Mishra, S. Prajapati, and J. William, "Theoretical and Computational Study on Swept Back Wing for Variable Mach Ranges" International Journal of Enhanced Research in Science, Technology & Engineering, 11(10):22-29. (2022).
  • [36] C. J. Ejeh, G. P. Akhabue, E. A. Boah, and K. K. Tandoh, "Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics" Results in Engineering, 9:100037. (2019).
  • [37] R. A. Fisher and R. A. Fisher, "The design of experiments". Springer, (1971).
  • [38] E. Nas and B. Öztürk, "Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials" Materials Testing, 60(5):519-525. (2018).
  • [39] İ. Karadağ, S. Dündar, and Ö. F. Gürcan, "Taguchi Deney Tasarımı ile Fiber Optik Kablo Üretimi Proses Optimizasyonu" Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2):743-754. (2024).
  • [40] N. Ghosh, P. K. Pal, and G. Nandi, "GMAW dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stainless steel by using AISI 308 filler wire" Engineering science and technology, an international journal, 20(4):1334-1341. (2017).
  • [41] O. Özdamar and B. Öztürk, "A New Specific Carbon Footprint (Scf) Theory Of Flow Rate And Energy Consumption Variations Of An Industrial Internal GEAR PUMP" International Journal of 3D Printing Technologies and Digital Industry, 8(3):428-436. (2024).
  • [42] V. Gaitonde, S. Karnik, and J. P. Davim, "Minimising burr size in drilling: integrating response surface methodology with particle swarm optimisation" in Mechatronics and Manufacturing Engineering: Elsevier, pp. 259-292 (2012).
  • [43] F. Sönmez, H. Başak, and Ş. Baday, "Haddeleme işleminin yüzey yanit yöntemi ile analizi" Gazi University Journal of Science Part C: Design and Technology, 4(4):275-283. (2016).
  • [44] G. Ramanan, P. R. Krishnan, and H. Ranjan, "An aerodynamic performance study and analysis of SD7037 fixed wing UAV airfoil" Materials Today: Proceedings, 4:2547-2552. (2021).
  • [45] M. Altay and E. Türkeş, "Sabit Kanatlı İHA’da Kanat Geometrisinin Aerodinamikteki Etkileri" Kirklareli University Journal of Engineering and Science, 10(2):363-376. (2024).
  • [46] M. Mahbub, "Design and implementation of multipurpose radio controller unit using nRF24L01 wireless transceiver module and Arduino as MCU" International Journal of Digital Information and Wireless Communications, 9(2):61-72. (2019).
  • [47] N. Noviarianto, T. Turahyo, P. T. Kusumartono, and A. Anwar, "Implementation of Low Cost Real Time GPS Using the Haversine Method in Fishermen Electronic Navigation". (2023).
  • [48] J. E. Smart, "Unmanned Systems and Platform Options for Environmental Studies," Pacific Northwest National Lab.(PNNL), Richland, WA (United States). (2017).
  • [49] J. Yu, "Design and optimization of wing structure for a fixed-wing unmanned aerial vehicle (UAV)" Modern Mechanical Engineering, 8(4):249-263. (2018).
  • [50] K. R. Sekar, M. Ramesh, R. Naveen, M. Prasath, and D. Vigneshmoorthy, "Aerodynamic design and structural optimization of a wing for an Unmanned Aerial Vehicle (UAV)" in IOP conference series: materials science and engineering, of Conference, IOP Publishing, 764(1): 012058, (2020).
  • [51] M. Rostamzadeh-Renani et al., "A multi-objective and CFD based optimization of roof-flap geometry and position for simultaneous drag and lift reduction" Propulsion and Power Research, 13(1):26-45. (2024).

Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1646366

Abstract

Today, unmanned aerial vehicles (UAV) are widely used across various fields, including civil, military, and social activities. Fixed-wing UAV operating at low altitudes typically have a wingspan ranging from 2 to 4 meters and can sustain flight for up to three hours. Their wing structure generally consists of three main components: a central wing that bears the primary structural load, and left and right side wings that are critical for determining flight endurance and speed. The lengths of these components vary, with the side wings designed at an angle to reduce wind resistance and enhance flight speed. In this study, three main parameter levels were identified for an average low-altitude drone, and the optimal dimensions were evaluated using RSM (Response Surface Methodology), the Taguchi method, FEM (Finite Element Method), and Analysis of Variance (ANOVA) analyses. The optimal design was achieved with a central wing length of 400 mm, side wing lengths of 700 mm, and a side wing angle of approximately 8°. Analysis results showed a maximum lift force (FZ) of 253 N, a minimum drag force of 10.2 N, a maximum lift coefficient (CL) of 0.66, and a lift-to-drag (CL/CD ) ratio of 17.6. Based on these findings, composite molds were manufactured for the aircraft, and a testing device was developed to measure speed during flight trials. Under 10 m/s wind conditions, the maximum speed recorded for this optimized geometry was 183 km/h.

Project Number

2022-01.BŞEÜ.03-09’

References

  • [1] R. Shokirov, N. Abdujabarov, T. Jonibek, K. Saytov, and S. Bobomurodov, "Prospects of the development of unmanned aerial vehicles (UAVs)" Technical science and innovation, 2020(3):4-8, (2020).
  • [2] M. T. R. Khan, M. Muhammad Saad, Y. Ru, J. Seo, and D. Kim, "Aspects of unmanned aerial vehicles path planning: Overview and applications" International Journal of Communication Systems, 34(10):e4827. (2021).
  • [3] A. Martian, C. Paleacu, I.-M. Marcu, and C. Vladeanu, "Direction-finding for unmanned aerial vehicles using radio frequency methods" Measurement, 235:114883. (2024).
  • [4] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, "Towards the unmanned aerial vehicles (UAVs): A comprehensive review" Drones, 6(6):147. (2022).
  • [5] E. E. Elmas and M. Alkan, "Collision Avoidance for Autonomous Unmanned Aerial Vehicles with Dynamic and Stationary Obstacles" Politeknik Dergisi, pp. 1-1. (2024).
  • [6] N. Can and M. Kahveci, "İnsansız hava araçları: Tarihçesi, tanımı, dünyada ve Türkiye’deki yasal durumu" Selcuk University Journal of Engineering, Science and Technology, 5(4):511-535, (2017).
  • [7] L. Rabiu, A. Ahmad, and A. Gohari, "Advancements of unmanned aerial vehicle technology in the realm of applied sciences and engineering: A review" Journal of Advanced Research in Applied Sciences and Engineering Technology, 40(2):74-95, (2024).
  • [8] A. S. Akgül and A. Hacıoğlu, "To design and build of a surveillance/attack mini unmanned aerial vehicle (UAV)" Journal of Aeronautics and Space Technologies, 4(3):1-6, (2010).
  • [9] M. Danışmaz, D. Atılğan, and F. Karaca, "Sabit Kanatli Mini İha’lar İçin Kanat Profili Tasarimi Ve Analizi".
  • [10] S. Gudmundsson, "General aviation aircraft design: Applied Methods and Procedures". Butterworth-Heinemann, (2013).
  • [11] D. Raymer, "Aircraft design: a conceptual approach". American Institute of Aeronautics and Astronautics, Inc., (2012).
  • [12] Y. Wang, K. Zhao, X.-Y. Lu, Y.-B. Song, and G. J. Bennett, "Bio-inspired aerodynamic noise control: a bibliographic review" Applied Sciences, 9(11):2224. (2019).
  • [13] Y. Wei, F. Xu, S. Bian, and D. Kong, "Noise reduction of UAV using biomimetic propellers with varied morphologies leading-edge serration" Journal of Bionic Engineering, 17:767-779. (2020).
  • [14] T. J. Mueller, "Fixed and flapping wing aerodynamics for micro air vehicle applications". AIAA, (2001).
  • [15] Y. Celik, "A comparative aerodynamic analysis of NACA and NREL aerofoils for darrieus turbines using CFD" International Journal of Innovative Engineering Applications, 6(1):111-117. (2022).
  • [16] Y. F. Görgülü, M. A. Özgür, and R. Köse, "CFD analysis of a NACA 0009 aerofoil at a low reynolds number" Politeknik Dergisi, 24(3):1237-1242. (2021).
  • [17] D. A. Gök and K. Alnimer, "Characterization of NACA 2412 and NACA 4412 airfoils: Effects of angle of attack on aerodynamics coefficients" Journal of Thermal Engineering, 10(6):1524-1538. (2021).
  • [18] Y. Luo, G. Pan, Q. Huang, Y. Shi, and H. Lai, "Parametric geometric model and shape optimization of airfoils of a biomimetic manta ray underwater vehicle" Journal of Shanghai Jiaotong University (Science), 24:402-408. (2019).
  • [19] K. Upasena, U. Weerathunga, J. Abeygoonewardena, and R. Bandara, "Design of a new aircraft wing inspired by the Magnificent Frigate bird". (2019).
  • [20] D. S. Martin, "An Investigation of Avian Wing Tip Vortex Generation Using a Biomimetic Approach," California Polytechnic State University, (2017).
  • [21] V. E. Focke, A. B. Kesel, and A. Baars, "Flying fish: Biomimetic potential for wing in ground effect crafts?" Bionik: Patente aus der Natur. (2016).
  • [22] J. T. Murphy, "Experimental investigation of biomimetic wing configurations for Micro Air Vehicle applications". Iowa State University, (2008).
  • [23] A. Risanthia, T. Phiboon, S. Bureerat, A. Pichitkul, S. Tantrairatn, and A. Ariyarit, "UAV Wing Design via Efficient Global Optimization" in 2024 16th International Conference on Knowledge and Smart Technology (KST), of Conference: IEEE, pp. 62-66. (2024)
  • [24] S. G. Kontogiannis and J. A. Ekaterinaris, "Design, performance evaluation and optimization of a UAV" Aerospace science and technology, 29(1):339-350. (2013).
  • [25] S. Evran and S. Z. Yıldır, "Numerical and statistical aerodynamic performance analysis of NACA0009 and NACA4415 airfoils" Politeknik Dergisi, 27(3):849-856. (2023).
  • [26] R. Jain, M. S. Jain, and M. L. Bajpai, "Investigation on 3-d wing of commercial aeroplane with aerofoil naca 2415 using cfd fluent" IRJET, 3(6):243-249. (2016).
  • [27] H. Demir and N. Kaya, "Bir Hava Aracının Çok Amaçlı Kanat Kiriş Kesit Optimizasyonu" Politeknik Dergisi, pp. 1-1.
  • [28] B. Öztürk and F. Öncü, "Optimization of thrust and fuel efficiency in low-altitude UAV engines through experimental design and statistical analysis" Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47(3):131. (2025).
  • [29] J. D. Anderson and M. L. Bowden, "Introduction to flight". McGraw-Hill Higher Education New York, NY, USA, (2005).
  • [30] D. Küchemann, "The aerodynamic design of aircraft". American Institute of Aeronautics and Astronautics, Inc., (2012).
  • [31] A. K. Kundu, "Aircraft design". Cambridge University Press, (2010).
  • [32] A. J. Keane, A. Sóbester, and J. P. Scanlan, "Small unmanned fixed-wing aircraft design: a practical approach". John Wiley & Sons, (2017).
  • [33] T. Liu, "Evolutionary understanding of airfoil lift" Advances in Aerodynamics, 3(1):37. (2021).
  • [34] C. Lee, S. Kim, and B. Chu, "A survey: Flight mechanism and mechanical structure of the UAV" International Journal of Precision Engineering and Manufacturing, 22(4):719-743. (2021).
  • [35] A. Lamsal, A. K. Mishra, S. Prajapati, and J. William, "Theoretical and Computational Study on Swept Back Wing for Variable Mach Ranges" International Journal of Enhanced Research in Science, Technology & Engineering, 11(10):22-29. (2022).
  • [36] C. J. Ejeh, G. P. Akhabue, E. A. Boah, and K. K. Tandoh, "Evaluating the influence of unsteady air density to the aerodynamic performance of a fixed wing aircraft at different angle of attack using computational fluid dynamics" Results in Engineering, 9:100037. (2019).
  • [37] R. A. Fisher and R. A. Fisher, "The design of experiments". Springer, (1971).
  • [38] E. Nas and B. Öztürk, "Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials" Materials Testing, 60(5):519-525. (2018).
  • [39] İ. Karadağ, S. Dündar, and Ö. F. Gürcan, "Taguchi Deney Tasarımı ile Fiber Optik Kablo Üretimi Proses Optimizasyonu" Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 36(2):743-754. (2024).
  • [40] N. Ghosh, P. K. Pal, and G. Nandi, "GMAW dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stainless steel by using AISI 308 filler wire" Engineering science and technology, an international journal, 20(4):1334-1341. (2017).
  • [41] O. Özdamar and B. Öztürk, "A New Specific Carbon Footprint (Scf) Theory Of Flow Rate And Energy Consumption Variations Of An Industrial Internal GEAR PUMP" International Journal of 3D Printing Technologies and Digital Industry, 8(3):428-436. (2024).
  • [42] V. Gaitonde, S. Karnik, and J. P. Davim, "Minimising burr size in drilling: integrating response surface methodology with particle swarm optimisation" in Mechatronics and Manufacturing Engineering: Elsevier, pp. 259-292 (2012).
  • [43] F. Sönmez, H. Başak, and Ş. Baday, "Haddeleme işleminin yüzey yanit yöntemi ile analizi" Gazi University Journal of Science Part C: Design and Technology, 4(4):275-283. (2016).
  • [44] G. Ramanan, P. R. Krishnan, and H. Ranjan, "An aerodynamic performance study and analysis of SD7037 fixed wing UAV airfoil" Materials Today: Proceedings, 4:2547-2552. (2021).
  • [45] M. Altay and E. Türkeş, "Sabit Kanatlı İHA’da Kanat Geometrisinin Aerodinamikteki Etkileri" Kirklareli University Journal of Engineering and Science, 10(2):363-376. (2024).
  • [46] M. Mahbub, "Design and implementation of multipurpose radio controller unit using nRF24L01 wireless transceiver module and Arduino as MCU" International Journal of Digital Information and Wireless Communications, 9(2):61-72. (2019).
  • [47] N. Noviarianto, T. Turahyo, P. T. Kusumartono, and A. Anwar, "Implementation of Low Cost Real Time GPS Using the Haversine Method in Fishermen Electronic Navigation". (2023).
  • [48] J. E. Smart, "Unmanned Systems and Platform Options for Environmental Studies," Pacific Northwest National Lab.(PNNL), Richland, WA (United States). (2017).
  • [49] J. Yu, "Design and optimization of wing structure for a fixed-wing unmanned aerial vehicle (UAV)" Modern Mechanical Engineering, 8(4):249-263. (2018).
  • [50] K. R. Sekar, M. Ramesh, R. Naveen, M. Prasath, and D. Vigneshmoorthy, "Aerodynamic design and structural optimization of a wing for an Unmanned Aerial Vehicle (UAV)" in IOP conference series: materials science and engineering, of Conference, IOP Publishing, 764(1): 012058, (2020).
  • [51] M. Rostamzadeh-Renani et al., "A multi-objective and CFD based optimization of roof-flap geometry and position for simultaneous drag and lift reduction" Propulsion and Power Research, 13(1):26-45. (2024).
There are 51 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering, Aircraft Performance and Flight Control Systems
Journal Section Research Article
Authors

Osman Özdamar 0000-0001-6353-6812

Burak Öztürk 0000-0002-1018-6545

Emre Can 0009-0009-9369-8404

Cengizhan Abay 0000-0002-7484-2687

Tufan İnaç 0000-0001-8304-3441

Project Number 2022-01.BŞEÜ.03-09’
Early Pub Date July 25, 2025
Publication Date
Submission Date February 25, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Özdamar, O., Öztürk, B., Can, E., Abay, C., et al. (2025). Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1646366
AMA Özdamar O, Öztürk B, Can E, Abay C, İnaç T. Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method. Politeknik Dergisi. Published online July 1, 2025:1-1. doi:10.2339/politeknik.1646366
Chicago Özdamar, Osman, Burak Öztürk, Emre Can, Cengizhan Abay, and Tufan İnaç. “Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method”. Politeknik Dergisi, July (July 2025), 1-1. https://doi.org/10.2339/politeknik.1646366.
EndNote Özdamar O, Öztürk B, Can E, Abay C, İnaç T (July 1, 2025) Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method. Politeknik Dergisi 1–1.
IEEE O. Özdamar, B. Öztürk, E. Can, C. Abay, and T. İnaç, “Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method”, Politeknik Dergisi, pp. 1–1, July 2025, doi: 10.2339/politeknik.1646366.
ISNAD Özdamar, Osman et al. “Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method”. Politeknik Dergisi. July 2025. 1-1. https://doi.org/10.2339/politeknik.1646366.
JAMA Özdamar O, Öztürk B, Can E, Abay C, İnaç T. Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method. Politeknik Dergisi. 2025;:1–1.
MLA Özdamar, Osman et al. “Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1646366.
Vancouver Özdamar O, Öztürk B, Can E, Abay C, İnaç T. Optimization of Low-Altitude UAV Wing Design Using Comparative Statistical Analysis Method. Politeknik Dergisi. 2025:1-.