Research Article
BibTex RIS Cite

Investigation of the Effect of Nb Alloying Element on the Mechanical Properties of Low Carbon Steel Structures Using EBSD

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1648120

Abstract

This work aims to investigate the relationship between grain structure, crystallographic properties, tensile strength, and hardness in low-carbon structural steels both without niobium (Nb) and with Nb additions up to 0.012 wt.%. The microstructure of the samples was examined through optical microscopy, SEM, and EBSD techniques incorporated within the SEM setup. Additionally,chemical composition analysis of the steel samples was conducted via optical emission spectroscopy.The steel samples were produced as slabs through a slab casting process, following the ladle vacuum treatment conducted with an AC type electric arc furnace. Subsequently, the slabs were placed into the hot sheet rolling mill's annealing furnace, heated to rolling temperatures, and processed into coils after the final rolling stage.The rolling parameters of the produced coils were kept constant. Specifically, to assess the impact of niobium on grain refinement in steel, the grain boundary characteristics, texture analysis, and dislocation density distributions were examined using the EBSD. The results show that Nb increases the yield strength by reducing the grain size and improving the steels' mechanical performance. Although Nb-added low-carbon steels have been the subject of various studies, comprehensive EBSD-based microstructural examinations are few. Therefore, this thesis enhances the understanding of Nb-alloyed low-carbon structural steels by presenting a thorough EBSD-focused study of their crystallographic and mechanical performance.

References

  • [1] Benedito, A. V., et al. "Effects of Niobium Addition on the Mechanical Properties and Corrosion Resistance of Microalloyed Steels: A Review." Buildings, 14(5), 1462, (2024).
  • [2] Altuna, M. A., Iza-Mendia, A., & Gutiérrez, I. "Precipitation of Nb in ferrite after austenite conditioning. Part II: Strengthening contribution in high-strength low-alloy (HSLA) steels." Metallurgical and Materials Transactions A, 43, 4571–4586, (2012).
  • [3] Liang, G., et al. "Effect of cooling rate on microstructure and mechanical properties of a low-carbon low-alloy steel." Journal of Materials Science, 56, 3995–4005, (2021).
  • [4] Webel, J., et al. "Tracing microalloy precipitation in Nb-Ti HSLA steel during austenite conditioning." Metals, 10(2), 243, (2020).
  • [5] Zhang, Y. C., et al. "Effect of Nb content on the hot deformation behavior of S460ML steel." Acta Metallurgica Sinica (English Letters), 32, 526–534, (2019).
  • [6] Zhang, Y., & Ma, Y. "Research Progress on Titanium–Niobium Micro-Alloyed High-Strength Steel." Materials, 18(2), 325, (2025).
  • [7] Sanz, L., Pereda, B., & López, B. "Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb." Materials Science and Engineering: A, 685, 377–390, (2017).
  • [8] Liu, X., et al. "Effect of Solution and Precipitation of Nb on Microstructure and Strengthening Mechanism of High-Strength Anti-seismic Rebar." Journal of Materials Engineering and Performance, 1–13, (2024).
  • [9] Zhou, J., et al. "Effect of Nb Content on High-Temperature Strength and Precipitates of Nb-Containing Steel." Processes, 11(1), 209, (2023).
  • [10] Yang, Y., et al. "Effect of Nb on microstructure and mechanical properties between base metal and high heat input coarse-grain HAZ in a Ti-deoxidized low carbon high strength steel." Journal of Materials Research and Technology, 18, 2399–2412, (2022).
  • [11] Çolakoğlu Metalurji A.Ş. EBSD kullanımı iş talimatı. — (Kurumsal doküman olduğu için dergi/kitap formatı uygulanmadı).
  • [12] Kestens, L. A. I., et al. "Texture Observation and Control in Metal Manufacturing: Theory and Practice." IOP Conference Series: Materials Science and Engineering, 1121(1), (2021).
  • [13] Sun, L., et al. "Effect of V–Nb Composite Microalloying on Microstructure and Properties of Non‐Quenched and Tempered Forged Steel." Steel Research International, 94(8), 2300029, (2023).
  • [14] Zhang, N., et al. "Improving strength-toughness of low carbon bainitic microalloyed steel via tailoring isothermal quenching process and niobium microalloying." Materials Science and Engineering: A, 901, 146515, (2024).
  • [15] Park, B. C., et al. "Effect of Nb on Austenite Grain Growth in 10Cr-3Co-2W Martensitic Heat-Resistant Steel." Metals and Materials International, 1–9, (2024).
  • [16] Mohrbacher, H. "Metallurgical effects of niobium and molybdenum on heat-affected zone toughness in low-carbon steel." Applied Sciences, 9(9), 1847, (2019).
  • [17] Lian, S. Hot ductility of Nb-V microalloyed steels. (2009).
  • [18] Cai, F., et al. "Comparative study of the role of niobium in low-carbon ferritic and bainitic steels." Materials Science and Engineering: A, 851, 143579, (2022).
  • [19] Luo, L., et al. "Effects of Partially Replacing Mo with Nb on the Microstructure and Properties of High-Strength Low-Alloy Steel during Reverse Austenization." Metals, 14(8), 896, (2024).
  • [20] Cho, H. J., et al. "Effects of Nb addition on resistance to hydrogen embrittlement in SA 372 steels used for hydrogen-gas storage containers." International Journal of Hydrogen Energy, 50, 224–235, (2024).
  • [21] Gao, W. L., Leng, Y., Fu, D. F., & Teng, J. "Effects of niobium and heat treatment on microstructure and mechanical properties of low carbon cast steels." Materials & Design, 105, 114–123, (2016).
  • [22] Nakagawa, Y., Tada, M., Kojima, K., & Nakamaru, H. "Effect of Nb contents on size of ferrite grains and Nb precipitates in ultra-low carbon steel for cans." ISIJ International, 56(7), 1262–1267, (2016).
  • [23] Tan, F., et al. "Study of austenite grain growth and recrystallization behavior in pipeline steels containing niobium." Materials Research Express, 11(10), 106513, (2024).

Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD ile İncelenmesi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1648120

Abstract

Çalışma kapsamında; niyobyum katkısız ve maksimum ağ. %0,012 Nb içeriğine sahip çelik numunelerde tane yapısı, kristalografik özellikler, çekme ve sertlik özellikleri arasındaki ilişki incelenmiştir. Numunelerin mikro yapısal özellikleri, optik mikroskop ve yüksek çözünürlüklü taramalı elektron mikroskobu (SEM) ve bu sisteme bağlı EBSD (Elektron Geri Saçılım Difraksiyonu) detektörü kullanılarak gerçekleştirilmiştir. Çeliğin kimyasal bileşimi optik emisyon spektrometresiyle çıkarılmıştır. Çalışmada kullanılan çelikler, alternatif akımlı (AC tip) elektrik ark ocağı ile üretilmiş, pota vakum işlemlerinin ardından slab döküm makinesinde slab haline getirilmiştir. Daha sonra slablar sıcak sac haddehanesinde tav fırınına şarj edilerek hadde sıcaklığına çıkarılmış ve nihai haddeleme sonrası bobin olarak üretilmiştir. Üretilen bobinlerin haddeleme parametreleri sabit tutulmuştur. Özellikle niyobyumun çelikte tane boyutuna etkisi EBSD yöntemi kullanılarak tane sınırı karakterizasyonu, doku analizi ve dislokasyon yoğunluğu dağılımları incelenmiştir. Elde edilen sonuçlar, Nb ilavesinin tane boyutunu küçülterek akma mukavemetini artırdığını ve çeliklerin mekanik performansını iyileştirdiğini göstermektedir. Literatürde Nb içeren düşük karbonlu çelikler üzerine çeşitli çalışmalar bulunsa da EBSD tekniği ile yapılan detaylı incelemelerin sınırlı olması nedeniyle bu çalışma literatüre önemli katkı sunacaktır.

References

  • [1] Benedito, A. V., et al. "Effects of Niobium Addition on the Mechanical Properties and Corrosion Resistance of Microalloyed Steels: A Review." Buildings, 14(5), 1462, (2024).
  • [2] Altuna, M. A., Iza-Mendia, A., & Gutiérrez, I. "Precipitation of Nb in ferrite after austenite conditioning. Part II: Strengthening contribution in high-strength low-alloy (HSLA) steels." Metallurgical and Materials Transactions A, 43, 4571–4586, (2012).
  • [3] Liang, G., et al. "Effect of cooling rate on microstructure and mechanical properties of a low-carbon low-alloy steel." Journal of Materials Science, 56, 3995–4005, (2021).
  • [4] Webel, J., et al. "Tracing microalloy precipitation in Nb-Ti HSLA steel during austenite conditioning." Metals, 10(2), 243, (2020).
  • [5] Zhang, Y. C., et al. "Effect of Nb content on the hot deformation behavior of S460ML steel." Acta Metallurgica Sinica (English Letters), 32, 526–534, (2019).
  • [6] Zhang, Y., & Ma, Y. "Research Progress on Titanium–Niobium Micro-Alloyed High-Strength Steel." Materials, 18(2), 325, (2025).
  • [7] Sanz, L., Pereda, B., & López, B. "Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb." Materials Science and Engineering: A, 685, 377–390, (2017).
  • [8] Liu, X., et al. "Effect of Solution and Precipitation of Nb on Microstructure and Strengthening Mechanism of High-Strength Anti-seismic Rebar." Journal of Materials Engineering and Performance, 1–13, (2024).
  • [9] Zhou, J., et al. "Effect of Nb Content on High-Temperature Strength and Precipitates of Nb-Containing Steel." Processes, 11(1), 209, (2023).
  • [10] Yang, Y., et al. "Effect of Nb on microstructure and mechanical properties between base metal and high heat input coarse-grain HAZ in a Ti-deoxidized low carbon high strength steel." Journal of Materials Research and Technology, 18, 2399–2412, (2022).
  • [11] Çolakoğlu Metalurji A.Ş. EBSD kullanımı iş talimatı. — (Kurumsal doküman olduğu için dergi/kitap formatı uygulanmadı).
  • [12] Kestens, L. A. I., et al. "Texture Observation and Control in Metal Manufacturing: Theory and Practice." IOP Conference Series: Materials Science and Engineering, 1121(1), (2021).
  • [13] Sun, L., et al. "Effect of V–Nb Composite Microalloying on Microstructure and Properties of Non‐Quenched and Tempered Forged Steel." Steel Research International, 94(8), 2300029, (2023).
  • [14] Zhang, N., et al. "Improving strength-toughness of low carbon bainitic microalloyed steel via tailoring isothermal quenching process and niobium microalloying." Materials Science and Engineering: A, 901, 146515, (2024).
  • [15] Park, B. C., et al. "Effect of Nb on Austenite Grain Growth in 10Cr-3Co-2W Martensitic Heat-Resistant Steel." Metals and Materials International, 1–9, (2024).
  • [16] Mohrbacher, H. "Metallurgical effects of niobium and molybdenum on heat-affected zone toughness in low-carbon steel." Applied Sciences, 9(9), 1847, (2019).
  • [17] Lian, S. Hot ductility of Nb-V microalloyed steels. (2009).
  • [18] Cai, F., et al. "Comparative study of the role of niobium in low-carbon ferritic and bainitic steels." Materials Science and Engineering: A, 851, 143579, (2022).
  • [19] Luo, L., et al. "Effects of Partially Replacing Mo with Nb on the Microstructure and Properties of High-Strength Low-Alloy Steel during Reverse Austenization." Metals, 14(8), 896, (2024).
  • [20] Cho, H. J., et al. "Effects of Nb addition on resistance to hydrogen embrittlement in SA 372 steels used for hydrogen-gas storage containers." International Journal of Hydrogen Energy, 50, 224–235, (2024).
  • [21] Gao, W. L., Leng, Y., Fu, D. F., & Teng, J. "Effects of niobium and heat treatment on microstructure and mechanical properties of low carbon cast steels." Materials & Design, 105, 114–123, (2016).
  • [22] Nakagawa, Y., Tada, M., Kojima, K., & Nakamaru, H. "Effect of Nb contents on size of ferrite grains and Nb precipitates in ultra-low carbon steel for cans." ISIJ International, 56(7), 1262–1267, (2016).
  • [23] Tan, F., et al. "Study of austenite grain growth and recrystallization behavior in pipeline steels containing niobium." Materials Research Express, 11(10), 106513, (2024).
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Metals and Alloy Materials, Manufacturing Metallurgy
Journal Section Research Article
Authors

Zeynep Erpek 0000-0002-2093-8501

Nil Toplan 0000-0003-4130-0002

Early Pub Date August 24, 2025
Publication Date September 30, 2025
Submission Date February 27, 2025
Acceptance Date August 14, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Erpek, Z., & Toplan, N. (2025). Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD ile İncelenmesi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1648120
AMA Erpek Z, Toplan N. Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD ile İncelenmesi. Politeknik Dergisi. Published online August 1, 2025:1-1. doi:10.2339/politeknik.1648120
Chicago Erpek, Zeynep, and Nil Toplan. “Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD Ile İncelenmesi”. Politeknik Dergisi, August (August 2025), 1-1. https://doi.org/10.2339/politeknik.1648120.
EndNote Erpek Z, Toplan N (August 1, 2025) Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD ile İncelenmesi. Politeknik Dergisi 1–1.
IEEE Z. Erpek and N. Toplan, “Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD ile İncelenmesi”, Politeknik Dergisi, pp. 1–1, August2025, doi: 10.2339/politeknik.1648120.
ISNAD Erpek, Zeynep - Toplan, Nil. “Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD Ile İncelenmesi”. Politeknik Dergisi. August2025. 1-1. https://doi.org/10.2339/politeknik.1648120.
JAMA Erpek Z, Toplan N. Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD ile İncelenmesi. Politeknik Dergisi. 2025;:1–1.
MLA Erpek, Zeynep and Nil Toplan. “Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD Ile İncelenmesi”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1648120.
Vancouver Erpek Z, Toplan N. Düşük Karbonlu Yapı Çeliklerinde Nb Alaşım Elementinin Mekanik Özelliklere Etkisinin EBSD ile İncelenmesi. Politeknik Dergisi. 2025:1-.