Review
BibTex RIS Cite

Geçmişten Günümüze Kütlesel Metalik Camlar ve Yenilikçi Uygulamaları

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1652973

Abstract

Bu çalışma, yenilikçi malzemeler arasında önemli bir yere sahip olan Kütlesel Metalik Camlar (KMC’ler) üzerine odaklanmaktadır. Makalede bu malzemelerin camlaşma kabiliyeti, tarihsel gelişim süreçleri ve kullanılan alaşımların çeşitliliği hakkında bilgi verilmiştir. Üretim sürecinde karşılaşılan temel sorunlar ve bu sorunlara yönelik geliştirilen çözümlere değinilmiş, KMC'lerin günümüzdeki yenilikçi uygulama alanları üzerinde durularak özellikle son yıllarda yapılan dikkate değer çalışmalar vurgulanmıştır. Mevcut araştırma okuyucuya, KMC’ler hakkında genel bir bakış açısı sağlamayı, son yıllarda yapılan dikkate değer çalışmaları öne çıkararak alanın mevcut durumu hakkında bilgi vermeyi hedeflemektedir.

Ethical Statement

Etik Beyana gerek yoktur.

Supporting Institution

yok

References

  • [1] Miller, M., & Liaw, P. (Eds.). “Bulk metallic glasses: an overview.” Springer Science+Business Media, LLC, 978-0-387-48920-9, (2008).
  • [2] Klement, W., Willens, R. H., & Duwez, P. “Non-crystalline structure in solidified gold–silicon alloys.” Nature, 187(4740):869–870, (1960).
  • [3] Telford, M. “The case for bulk metallic glass.” Materials Today, 7(3):36–43, (2004).
  • [4] Schuh, C. A., Hufnagel, T. C., & Ramamurty, U. “Mechanical behavior of amorphous alloys.” Acta Materialia, 55(12):4067–4109, (2007).
  • [5] Inoue, A., & Takeuchi, A. “Recent development and application products of bulk glassy alloys.” Acta Materialia, 59(6):2243–2267, (2011).
  • [6] Wang, W. H. “The elastic properties, elastic models and elastic perspectives of metallic glasses.” Progress in Materials Science, 57:487–656, (2012).
  • [7] Demetriou, M. D., Launey, M. E., Garrett, G., Schramm, J. P., Hofmann, D. C., Johnson, W. L., et al. “A damage-tolerant glass.” Nature Materials, 10:123–128, (2011).
  • [8] Pampillo, C. A. “Flow and fracture in amorphous alloys.” Journal of Materials Science, 10:1194–1227, (1975).
  • [9] Jiang, L., Bao, M., Dong, Y., Yuan, Y., Zhou, X., & Meng, X. “Processing, production and anticorrosion behavior of metallic glasses: a critical review.” Journal of Non-Crystalline Solids, 612:122355, (2023).
  • [10] McHenry, M. E., Willard, M. A., & Laughlin, D. E. “Amorphous and nanocrystalline materials for applications as soft magnets.” Progress in Materials Science, 44:291–433, (1999).
  • [11] Silveyra, J. M., Ferrara, E., Huber, D. L., & Monson, T. C. “Soft magnetic materials for a sustainable and electrified world.” Science, 362:eaao0195, (2018).
  • [12] Li, H. X., Lu, Z. C., Wang, S. L., Wu, Y., & Lu, Z. P. “Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications.” Progress in Materials Science, 103:235–318, (2019).
  • [13] Li, X., Zhou, J., Shen, L., Sun, B., Bai, H., & Wang, W. “Exceptionally high saturation magnetic flux density and ultra-low coercivity via an amorphous-nanocrystalline transitional microstructure in a FeCo-based alloy.” Advanced Materials, 2205863, (2022).
  • [14] Ma, M. Z., Liu, R. P., Xiao, Y., Lou, D. C., Liu, L., Wang, Q., et al. “Wear resistance of Zr-based bulk metallic glass applied in bearing rollers.” Materials Science and Engineering A, 386:326–330, (2004).
  • [15] Sun, F., Deng, S., Fu, J., Zhu, J., Liang, D., Wang, P., et al. “Superior high-temperature wear resistance of an Ir–Ta–Ni–Nb bulk metallic glass.” Journal of Materials Science and Technology, 158:121–132, (2023).
  • [16] Sun, C., Hu, Y. C., & Sun, C. “Functional applications of metallic glasses in electrocatalysis.” ChemCatChem, n/a, (2019).
  • [17] Jiang, R., Da, Y., Chen, Z., Cui, X., Han, X., Ke, H., et al. “Progress and perspective of metallic glasses for energy conversion and storage.” Advanced Energy Materials, 12:2101092, (2022).
  • [18] Wang, Z. J., Li, M. X., Yu, J. H., Ge, X. B., Liu, Y. H., & Wang, W. H. “Low-iridium-content IrNiTa metallic glass films as intrinsically active catalysts for hydrogen evolution reaction.” Advanced Materials, 32:1906384, (2020).
  • [19] Yan, Y., Wang, C., Huang, Z., Fu, J., Lin, Z., Zhang, X., et al. “Highly efficient and robust catalysts for the hydrogen evolution reaction by surface nano engineering of metallic glass.” Journal of Materials Chemistry A, n/a, (2021).
  • [20] Stachurski, Z. H., Wang, G., & Tan, X. “An introduction to metallic glasses and amorphous metals.” Elsevier, 978-0-12-819418-8, (2021).
  • [21] Chen, H. S., & Turnbull, D. “Formation, stability and structure of palladium–silicon based alloy glasses.” Acta Metallurgica, 17:1021, (1969).
  • [22] Chen, H. S. “Thermodynamic considerations on the formation and stability of metallic glasses.” Acta Metallurgica, 22:1505–1511, (1974).
  • [23] Chen, M. “A brief overview of bulk metallic glasses.” NPG Asia Materials, 3:82–90, (2011).
  • [24] Turnbull, D. “Under what conditions can a glass be formed?” Contemporary Physics, 10(5):473–488, (1969).
  • [25] Johnson, W. L. “Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials.” Progress in Materials Science, 30(2):81–134, (1986).
  • [26] Greer, A. L., & Ma, E. “Bulk metallic glasses: at the cutting edge of metals research.” MRS Bulletin, 32:611–619, (2007).
  • [27] Inoue, A. “Stabilization of metallic supercooled liquid and bulk amorphous alloys.” Acta Materialia, 48(1):279–306, (2000).
  • [28] Wang, W. H., Dong, C., & Shek, C. H. “Bulk metallic glasses.” Materials Science and Engineering R: Reports, 44(2–3):45–89, (2004).
  • [29] Johnson, W. L. “Bulk glass-forming metallic alloys: science and technology.” MRS Bulletin, 24(10):42–56, (1999).
  • [30] Pauly, S., et al. “Processing metallic glasses by selective laser melting.” Materials Today, 16(1–2):37–41, (2013).
  • [31] Sohrabi, S., Fu, J., Li, L., Zhang, Y., Li, X., Sun, F., et al. “Manufacturing of metallic glass components: processes, structures and properties.” Progress in Materials Science, 101283, (2024).
  • [32] Lee, M. C., Kendall, J. M., & Johnson, W. L. “Spheres of the metallic glass Au55Pb22.5Sb22.5 and their surface characteristics.” Applied Physics Letters, 40:382–384, (1982).
  • [33] Bravenec, A. D., & Catling, D. C. “Effect of concentration, cooling, and warming rates on glass transition temperatures for NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines with relevance to Mars and other cold bodies.” ACS Earth and Space Chemistry, 7(7):1433–1445, (2023).
  • [34] George, T. F., Letfullin, R. R., & Zhang, G. “Bulk metallic glasses.” Nova Science Publishers, n/a, (2011).
  • [35] Gong, P., Li, M., Han, G., & Wang, X. “Physical metallurgy of metals and alloys II.” n/a, n/a, (2024).
  • [36] Rafique, M. M. A. “Bulk metallic glasses and their composites: additive manufacturing and modeling and simulation.” Walter de Gruyter GmbH & Co KG, n/a, (2021).
  • [37] Graeve, O. A., García-Vázquez, M. S., Ramírez-Acosta, A. A., & Cadieux, Z. “Latest advances in manufacturing and machine learning of bulk metallic glasses.” Advanced Engineering Materials, 25(9):2201493, (2023).
  • [38] Warren, B. E. “X-ray determination of the structure of glass.” Journal of the American Ceramic Society, 75(1):5–10, (1992).
  • [39] Kui, H. W., Greer, A. L., & Turnbull, D. “Formation of bulk metallic glass by fluxing.” Applied Physics Letters, 45:615–616, (1984).
  • [40] Inoue, A., Zhang, T., & Masumoto, T. “Al–La–Ni amorphous alloys with a wide supercooled liquid region.” Materials Transactions JIM, 30:965–972, (1989).
  • [41] Inoue, A., Kato, A., Zhang, T., Kim, S. G., & Masumoto, T. “Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method.” Materials Transactions JIM, 32:609–616, (1991).
  • [42] Zhang, T., Inoue, A., & Masumoto, T. “Amorphous Zr–Al–Tm (Tm = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K.” Materials Transactions JIM, 32:1005–1010, (1991).
  • [43] Peker, A., & Johnson, W. L. “A highly processable metallic glass–Zr41.2Ti13.8Cu12.5Ni10.0Be22.5.” Applied Physics Letters, 63:2342–2344, (1993).
  • [44] Inoue, A., Nishiyama, N., & Kimura, H. “Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter.” Materials Transactions JIM, 38:179–183, (1997).
  • [45] Schroers, J., Johnson, W. L., & Busch, R. “Crystallization kinetics of the bulk-glass-forming Pd43Ni10Cu27P20 melt.” Applied Physics Letters, 77(8):1158–1160, (2000).
  • [46] Greer, A. L. “Metallic glasses.” Science, 267(5206):1947–1953, (1995).
  • [47] Inoue, A., Makino, A., & Mizushima, T. “Ferromagnetic bulk glassy alloys.” Journal of Magnetism and Magnetic Materials, 215:246–252, (2000).
  • [48] Shen, B. L., Koshiba, H., Mizushima, T., & Inoue, A. “Bulk amorphous Fe–Ga–P–B–C alloys with a large supercooled liquid region.” Materials Transactions JIM, 41(7):873–876, (2000).
  • [49] Shen, B., Koshiba, H., Inoue, A., Kimura, H., & Mizushima, T. “Bulk glassy Co43Fe20Ta5.5B31.5 alloy with high glass-forming ability and good soft magnetic properties.” Materials Transactions, 42(10):2136–2139, (2001).
  • [50] Fukumura, H., Inoue, A., Koshiba, H., & Mizushima, T. “(Fe, Co)-(Hf, Nb)-B glassy thick sheet alloys prepared by a melt clamp forging method.” Materials Transactions, 42(8):1820–1822, (2001).
  • [51] Hays, C. C., Kim, C. P., & Johnson, W. L. “Microstructure-controlled toughness in bulk metallic glasses.” Physical Review Letters, 84(13):2901, (2000).
  • [52] Trexler, M. M., & Thadhani, N. N. “Mechanical properties of bulk metallic glasses.” Progress in Materials Science, 55(8):759–839, (2010).
  • [53] Cheng, Y. Q., & Ma, E. “Atomic-level structure and structure–property relationship in metallic glasses.” Progress in Materials Science, 56(4):379–473, (2011).
  • [54] Qiao, J., Jia, H., & Liaw, P. K. “Metallic glass matrix composites.” Materials Science and Engineering R: Reports, 100:1–69, (2016).
  • [55] Hays, C. C., Kim, C. P., & Johnson, W. L. “Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions.” Physical Review Letters, 84(13):2901–2904, (2000).
  • [56] Hofmann, D. C., Suh, J. Y., Wiest, A., Duan, G., Lind, M. L., Demetriou, M. D., & Johnson, W. L. “Designing metallic glass matrix composites with high toughness and tensile ductility.” Nature, 451(7182):1085–1089, (2008).
  • [57] Hofmann, D. C. “Shape memory bulk metallic glass composites.” Science, 329(5997):1294–1295, (2010).
  • [58] Wu, Y., Wang, H., Liu, X. J., Chen, X. H., Hui, X. D., Zhang, Y., & Lu, Z. P. “Designing bulk metallic glass composites with enhanced formability and plasticity.” Journal of Materials Science and Technology, 30(6):566–575, (2014).
  • [59] Guo, H., Yan, P. F., Wang, Y. B., Tan, J., Zhang, Z. F., Sui, M. L., & Ma, E. “Tensile ductility and necking of metallic glass.” Nature Materials, 6(10):735–739, (2007).
  • [60] Jang, D., & Greer, J. R. “Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses.” Nature Materials, 9(3):215–219, (2010).
  • [61] Choi-Yim H. “Synthesis and characterization of bulk metallic glass matrix composites.” California Institute of Technology, Pasadena, CA, (1998).
  • [62] Choi-Yim H., Conner R.D., Szuecs F., Johnson W.L. “Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites.” Acta Materialia, 50(10):2737–2745,(2002).
  • [63] Lee J.C., Kim Y.C., Ahn J.P., Lee S., Lee B.J. “Strain hardening of an amorphous matrix composite due to deformation-induced nanocrystallization during quasistatic compression.” Applied Physics Letters, 84(15):2781–2783, (2004).
  • [64] Trexler M.M., Thadhani N.N. “Mechanical properties of bulk metallic glasses.” Progress in Materials Science, 55(8):759–839,(2010).
  • [65] Pauly S., Gorantla S., Wang G., Kuhn U., Eckert J. “Transformation-mediated ductility in CuZr-based bulk metallic glasses.” Nature Materials, 9(6):473–477, (2010).
  • [66] Song K.K., Pauly S., Zhang Y., Li R., Gorantla S., Narayanan N., Kuhn U., Gemming T., Eckert J. “Triple yielding and deformation mechanisms in metastable Cu47.5Zr47.5Al5 composites.” Acta Materialia, 60(17):6000–6012,(2012).
  • [67] Wu Y., Xiao Y., Chen G., Liu C.T., Lu Z. “Bulk metallic glass composites with transformation-mediated work-hardening and ductility.” Advanced Materials, 22(25):2770–2773,(2010).
  • [68] Wu D.Y., Song K.K., Gargarella P., Cao C.D., Li R., Kaban I., Eckert J. “Glass-forming ability, thermal stability of B2 CuZr phase, and crystallization kinetics for rapidly solidified Cu-Zr-Zn alloys.” Journal of Alloys and Compounds,664:99–108,(2016).
  • [69] Kim C.P., Oh Y.S., Lee S., Kim N.J. “Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation.” ScriptaMaterialia,65(4):304–307,(2011).
  • [70] Gao W.H., Meng X.L., Cai W., Zhao L.C. “Effects of Co and Al addition on martensitic transformation and microstructure in ZrCu-based shape memory alloys.” Transactions of Nonferrous Metals Society of China, 25(3):850–855,(2015).
  • [71] Song H., Shi R., Wang Y., Hoyt J.J. “Simulation study of heterogeneous nucleation at grain boundaries during the austenite-ferrite phase transformation: comparing the classical model with the multi-phase field nudged elastic band method.” Metallurgical and Materials Transactions A, 1–9, (2016).
  • [72] Zhai H., Wang H., Liu F. “A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility.” Journal of Alloys and Compounds, 685:322–330,(2016).
  • [73] Pekarskaya E., Kim C.P., Johnson W.L. “In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite.” Journal of Materials Research,16(9):2513–2518,(2001).
  • [74] Fan C., Ott R.T., Hufnagel T.C. “Metallic glass matrix composite with precipitated ductile reinforcement.” Applied Physics Letters, 81(6):1020–1022, (2002).
  • [75] Hu X., Ng S.C., Feng Y.P., Li Y. “Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses.” Acta Materialia, 51(2):561–572, (2003).
  • [76] Zhang Q., Zhang H., Zhu Z., Hu Z. “Formation of high strength in-situ bulk metallic glass composite with enhanced plasticity in Cu50Zr47.5Ti2.5 alloy.” Materials Transactions, 46:n/a, (2005).
  • [77] Wu F.F., Zhang Z.F., Mao X.S., Peker A., Eckert J. “Effect of annealing on the mechanical properties and fracture mechanisms of a Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 bulk-metallic-glass composite.” Physical Review B, 75(13):134201, (2007).
  • [78] Zhu Z., Zhang H., Hu Z., Zhang W., Inoue A. “Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity.” Scripta Materialia, 62(5):278–281, (2010).
  • [79] Cheng J.L., Chen G. “Glass formation of Zr–Cu–Ni–Al bulk metallic glasses correlated with L → Zr₂Cu + ZrCu pseudo binary eutectic reaction.” Journal of Alloys and Compounds, 577:451–455,(2013).
  • [80] Chen H.S. “Ductile-brittle transition in metallic glasses.” Materials Science and Engineering, 26(1):79–82, (1976).
  • [81] Antonione, C., Spriano, S., Rizzi, P., Baricco, M., & Battezzati, L. “Phase separation in multicomponent amorphous alloys.” Journal of Non-Crystalline Solids, 232:127–132, (1998).
  • [82] Fan, C., & Inoue, A. “Ductility of bulk nanocrystalline composites and metallic glasses at room temperature.” Applied Physics Letters, 77(1):46–48, (2000).
  • [83] [83] Gu, J., Song, M., Ni, S., Guo, S., & He, Y. “Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass.” Materials & Design, 47:706–710, (2013).
  • [84] Krämer, L., Kormout, K. S., Setman, D., Champion, Y., & Pippan, R. “Production of bulk metallic glasses by severe plastic deformation.” Metals, 5(2):720–729, (2015).
  • [85] Nishiyama, N., Takenaka, K., Miura, H., Saidoh, N., Zeng, Y., & Inoue, A. “The world's biggest glassy alloy ever made.” Intermetallics, 30:19–24, (2012).
  • [86] Mahbooba, Z., Thorsson, L., Unosson, M., Skoglund, P., West, H., Horn, T., et al. “Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness.” Applied Materials Today, 11:264–269, (2018).
  • [87] Liu, C., Wang, X., Cai, W., He, Y., & Su, H. “Machine learning aided prediction of glass-forming ability of metallic glass.” Processes, 11(9):2806, (2023).
  • [88] Cheng, J. L., & Chen, G. “Glass formation of Zr–Cu–Ni–Al bulk metallic glasses correlated with L → Zr2Cu + ZrCu pseudo binary eutectic reaction.” Journal of Alloys and Compounds, 577:451–455, (2013).
  • [89] Perim, E., Lee, D., Liu, Y., Toher, C., Gong, P., Li, Y., et al. “Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases.” Nature Communications, 7:12315, (2016).
  • [90] Nicholson, D. M. C., Stocks, G. M., Shelton, W. A., Wang, Y., & Swihart, J. C. “Ab initio studies of the electronic structure and energetics of bulk amorphous metals.” Metallurgical and Materials Transactions A, 29:1845–1851, (1998).
  • [91] Pǎduraru, A., Kenoufi, A., Bailey, N. P., & Schiøtz, J. “An interatomic potential for studying CuZr bulk metallic glasses.” Advanced Engineering Materials, 9(6):505–508, (2007).
  • [92] Reyes-Retana, J. A., & Naumis, G. G. “Ab initio study of Si doping effects in Pd–Ni–P bulk metallic glass.” Journal of Non-Crystalline Solids, 409:49–53, (2015).
  • [93] Hui, X., Fang, H. Z., Chen, G. L., Shang, S. L., Wang, Y., Qin, J. Y., & Liu, Z. K. “Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy.” Acta Materialia, 57(2):376–391, (2009).
  • [94] Ju, S. P., Huang, H. H., & Huang, J. C. C. “Predicted atomic arrangement of Mg67Zn28Ca5 and Ca50Zn30Mg20 bulk metallic glasses by atomic simulation.” Journal of Non-Crystalline Solids, 388:23–31, (2014).
  • [95] Atta-Fynn, R., Drabold, D. A., & Biswas, P. “First principles modeling of the structural, electronic, and vibrational properties of Ni40Pd40P20 bulk metallic glass.” Journal of Non-Crystalline Solids: X, 1:100004, (2019).
  • [96] Weber, T. A., & Stillinger, F. H. “Local order and structural transitions in amorphous metal-metalloid alloys.” Physical Review B, 31(4):1954, (1985).
  • [97] Tarumi, R., Ogura, A., Shimojo, M., Takashima, K., & Higo, Y. “Molecular dynamics simulation of crystallization in an amorphous metal during shear deformation.” Japanese Journal of Applied Physics, 39(6B):L611, (2000).
  • [98] Rodríguez de La Fuente, O., & Soler, J. M. “Structure and stability of an amorphous metal.” Physical Review Letters, 81(15):3159–3162, (1998).
  • [99] Qi, Y., Çağın, T., Kimura, Y., & Goddard, W. A. III. “Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni.” Physical Review B, 59(5):3527, (1999).
  • [100] Ren, F., Ward, L., Williams, T., Laws, K. J., Wolverton, C., Hattrick-Simpers, J., & Mehta, A. “Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments.” Science Advances, 4:eaaq1566, (2018).
  • [101] Xiong, J., Shi, S. Q., & Zhang, T. Y. “A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys.” Materials & Design, 187:108378, (2020).
  • [102] Lu, Z., Chen, X., Liu, X., Lin, D., Wu, Y., Zhang, Y., et al. “Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses.” npj Computational Materials, 6:187, (2020).
  • [103] Mastropietro, D. G., & Moya, J. A. “Design of Fe-based bulk metallic glasses for maximum amorphous diameter (Dmax) using machine learning models.” Computational Materials Science, 188:110230, (2021).
  • [104] Ward, L., O’Keeffe, S. C., Stevick, J., Jelbert, G. R., Aykol, M., & Wolverton, C. “A machine learning approach for engineering bulk metallic glass alloys.” Acta Materialia, 159:102–111, (2018).
  • [105] Ward, L., Agrawal, A., Choudhary, A., & Wolverton, C. “A general-purpose machine learning framework for predicting properties of inorganic materials.” npj Computational Materials, 2:16028, (2016).
  • [106] Liu, X., Long, Z., Yang, L., Zhang, W., & Li, Z. “Prediction of glass forming ability in amorphous alloys based on different machine learning algorithms.” Journal of Non-Crystalline Solids, 570:121000, (2021).
  • [107] Li, Z., Long, Z., Lei, S., Zhang, T., Liu, X., & Kuang, D. “Predicting the glass formation of metallic glasses using machine learning approaches.” Computational Materials Science, 197:110656, (2021).
  • [108] Graeve, O. A., García-Vázquez, M. S., Ramírez-Acosta, A. A., & Cadieux, Z. “Latest advances in manufacturing and machine learning of bulk metallic glasses.” Advanced Engineering Materials, 25(9):2201493, (2023).
  • [109] Ding, H. Y., & Yao, K. F. “High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass.” Journal of Non-Crystalline Solids, 364:9–12, (2013).
  • [110] Biswas, K., Yeh, J. W., Bhattacharjee, P. P., & DeHosson, J. T. M. “High entropy alloys: Key issues under passionate debate.” Scripta Materialia, 188:54–58, (2020).
  • [111] Li, X. “Additive manufacturing of advanced multi‐component alloys: bulk metallic glasses and high entropy alloys.” Advanced Engineering Materials, 20(5):1700874, (2018).
  • [112] Inoue, A., Kong, F., Zhu, X., Chen, J., Men, H., & Botta, W. J. “Development and industrialization of Zr-and Fe-based bulk metallic glasses and light metal-based metastable alloys.” Journal of Alloys and Compounds, 979:173546, (2024).
  • [113] Özçatalbaş, Y. “Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi.” Politeknik Dergisi, 23(2):457–482, (2020).
  • [114] Schroers, J. “Processing of bulk metallic glass.” Advanced Materials, 22(14):1566–1597, (2010).
  • [115] Sarac, B., & Eckert, J. “Thermoplasticity of metallic glasses: Processing and applications.” Progress in Materials Science, 127:100941, (2022).
  • [116] Fu, J., & Ma, J. “Nanoengineering of metallic glasses.” Advanced Engineering Materials, 25(5):2200659, (2023).
  • [117] Liu, Z., Liu, N., & Schroers, J. “Nanofabrication through molding.” Progress in Materials Science, 125:100891, (2022).
  • [118] Savaedi, Z., Motallebi, R., Mirzadeh, H., & Malekan, M. “Superplasticity of bulk metallic glasses (BMGs): A review.” Journal of Non-Crystalline Solids, 583:121503, (2022).
  • [119] Kawamura, Y. “Liquid phase and supercooled liquid phase welding of bulk metallic glasses.” Materials Science and Engineering A, 375:112–119, (2004).
  • [120] Qiao, J., Yu, P., Wu, Y., Chen, T., Du, Y., & Yang, J. “A compact review of laser welding technologies for amorphous alloys.” Metals, 10(12):1690, (2020).
  • [121] Zhang, C., Ouyang, D., Pauly, S., & Liu, L. “3D printing of bulk metallic glasses.” Materials Science and Engineering R: Reports, 145:100625, (2021).
  • [122] Sohrabi, N., Jhabvala, J., & Loge, R. E. “Additive manufacturing of bulk metallic glasses—process, challenges and properties: a review.” Metals, 11(8):1279, (2021).
  • [123] Lashgari, H. R., Ferry, M., & Li, S. “Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications.” Journal of Materials Science & Technology, 119:131–149, (2022).
  • [124] Liu, H., Yang, D., Jiang, Q., Jiang, Y., Yang, W., Liu, L., & Zhang, L. C. “Additive manufacturing of metallic glasses and high-entropy alloys: Significance, unsettled issues, and future directions.” Journal of Materials Science & Technology, 140:79–120, (2023).
  • [125] Houghton, O. S., Schmitt, L. Y., Klotz, U. E., Costa, M. B., & Greer, A. L. “Pd-and Zr-based bulk metallic glasses for jewellery applications: Scratch, wear and tarnish behaviour.” Materials Science and Engineering A, 924:147791, (2025).
  • [126] Sekol, R. C., Kumar, G., Carmo, M., Gittleson, F., Hardesty-Dyck, N., Mukherjee, S., et al. “Bulk metallic glass micro fuel cell.” Small, 9(12):2081–2085, (2013).
  • [127] Das, S., Santos‐Ortiz, R., Arora, H. S., Mridha, S., Shepherd, N. D., & Mukherjee, S. “Electromechanical behavior of pulsed laser deposited platinum‐based metallic glass thin films.” Physica Status Solidi (A), 213(2):399–404, (2016).
  • [128] Mukherjee, S., Sekol, R. C., Carmo, M., Altman, E. I., Taylor, A. D., & Schroers, J. “Tunable hierarchical metallic‐glass nanostructures.” Advanced Functional Materials, 23(21):2708–2713,(2013).
  • [129] Khan, M. M., Nemati, A., Rahman, Z. U., Shah, U. H., Asgar, H., & Haider, W. “Recent advancements in bulk metallic glasses and their applications: A review.” Critical Reviews in Solid State and Materials Sciences, 43(3):233–268, (2018).
  • [130] Biały, M., Hasiak, M., & Łaszcz, A. “Review on biocompatibility and prospect biomedical applications of novel functional metallic glasses.” Journal of Functional Biomaterials,13(4):245,(2022).
  • [131] Schroers, J., Kumar, G., Hodges, T. M., Chan, S., & Kyriakides, T. R. “Bulk metallic glasses for biomedical applications.” JOM, 61:21–29, (2009).
  • [132] Li, H. F., & Zheng, Y. F. “Recent advances in bulk metallic glasses for biomedical applications.” Acta Biomaterialia,36:1–20,(2016).
  • [133] Li, J., Shi, L. L., Zhu, Z. D., He, Q., Ai, H. J., & Xu, J. “Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses.” Materials Science and Engineering C, 33(4):2113–2121,(2013).
  • [134] Riaz, U., Shabib, I., & Haider, W. “The current trends of Mg alloys in biomedical applications—A review.” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(6):1970–1996,(2019).
  • [135] Bin, S. J. B., Fong, K. S., Chua, B. W., & Gupta, M. “Mg-based bulk metallic glasses: A review of recent developments.” Journal of Magnesium and Alloys, 10(4):899–914, (2022).
  • [136] Aliyu, A. A. A., Panwisawas, C., Shinjo, J., Puncreobutr, C., Reed, R. C., Poungsiri, K., et al. “Laser-based additive manufacturing of bulk metallic glasses: Recent advances and future perspectives for biomedical applications.” Journal of Materials Research and Technology, 23:2956–2990, (2023).
  • [137] Türker, M. “Toz metal al köpükler: üretimi, çeşitleri ve kullanım alanları.” Politeknik Dergisi, 27(6):2335–2356, (2024).
  • [138] Zhang, C., Li, X. M., Liu, S. Q., Liu, H., Yu, L. J., & Liu, L. “3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications.” Journal of Alloys and Compounds, 790:963–973, (2019).
  • [139] Du, P., Xiang, T., Cai, Z., & Xie, G. “The influence of porous structure on the corrosion behavior and biocompatibility of bulk Ti-based metallic glass.” Journal of Alloys and Compounds,906:164326,(2022).
  • [140] Cai, Z., Du, P., Li, K., Chen, L., & Xie, G. “A review of the development of titanium-based and magnesium-based metallic glasses in the field of biomedical materials.” Materials,17(18):4587,(2024).
  • [141] Lebrun, N., Dupla, F., Bruhier, H., Prudent, M., Borroto, A., Der Loughian, C., et al. “Metallic glasses for biological applications and opportunities opened by laser surface texturing: A review.” Applied Surface Science, 160617, (2024).
  • [142] Gao, K., Zhu, X. G., Chen, L., Li, W. H., Xu, X., Pan, B. T., et al. “Recent development in the application of bulk metallic glasses.” Journal of Materials Science & Technology, 131:115–121,(2022).
  • [143] Suryanarayana, C., & Inoue, A. Bulk metallic glasses. CRC Press, (2017).
  • [144] Hofmann, D. C., Polit-Casillas, R., Roberts, S. N., Borgonia, J. P., Dillon, R. P., Hilgemann, E., et al. “Castable bulk metallic glass strain wave gears: Towards decreasing the cost of high-performance robotics.” Scientific Reports, 6:37773,(2016).
  • [145] Lu, W., Ma, J., Wang, C., & Liu, Y. “A promising application of bulk metallic glasses in torque sensor.” Science China Technological Sciences, 67(8):2505–2514, (2024).
  • [146] Qiao, J., Jia, H., & Liaw, P. K. “Metallic glass matrix composites.” Materials Science and Engineering R: Reports, 100:1–69,(2016).
  • [147] Acar, E., & Aydın, M. “Şekil hafıza davranışlarının termodinamiği.” Politeknik Dergisi, 21(1):201–211, (2018).
  • [148] Hofmann, D. C. “Shape memory bulk metallic glass composites.” Science, 329(5997):1294–1295, (2010).
  • [149] Zhao, Z., Yan, Z., Mu, J., Zhang, H., & Wang, Y. “Improving the mechanical reliability of shape memory bulk metallic glass composites by mechanical training.” Materials Science and Engineering A, 833:142564, (2022).

Historical Development of Bulk Metallic Glasses and their Innovative Applications

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1652973

Abstract

This article presents an overview of Bulk Metallic Glasses (BMGs), highlighting their significance as advanced materials. It outlines their glass-forming ability, historical development, and the variety of alloy systems used in their production. The paper also addresses the main challenges encountered during manufacturing and the strategies developed to overcome them. Recent research efforts and emerging application areas are discussed to illustrate the current state and future potential of BMGs. The aim is to provide a concise yet comprehensive summary of key developments in this field.

References

  • [1] Miller, M., & Liaw, P. (Eds.). “Bulk metallic glasses: an overview.” Springer Science+Business Media, LLC, 978-0-387-48920-9, (2008).
  • [2] Klement, W., Willens, R. H., & Duwez, P. “Non-crystalline structure in solidified gold–silicon alloys.” Nature, 187(4740):869–870, (1960).
  • [3] Telford, M. “The case for bulk metallic glass.” Materials Today, 7(3):36–43, (2004).
  • [4] Schuh, C. A., Hufnagel, T. C., & Ramamurty, U. “Mechanical behavior of amorphous alloys.” Acta Materialia, 55(12):4067–4109, (2007).
  • [5] Inoue, A., & Takeuchi, A. “Recent development and application products of bulk glassy alloys.” Acta Materialia, 59(6):2243–2267, (2011).
  • [6] Wang, W. H. “The elastic properties, elastic models and elastic perspectives of metallic glasses.” Progress in Materials Science, 57:487–656, (2012).
  • [7] Demetriou, M. D., Launey, M. E., Garrett, G., Schramm, J. P., Hofmann, D. C., Johnson, W. L., et al. “A damage-tolerant glass.” Nature Materials, 10:123–128, (2011).
  • [8] Pampillo, C. A. “Flow and fracture in amorphous alloys.” Journal of Materials Science, 10:1194–1227, (1975).
  • [9] Jiang, L., Bao, M., Dong, Y., Yuan, Y., Zhou, X., & Meng, X. “Processing, production and anticorrosion behavior of metallic glasses: a critical review.” Journal of Non-Crystalline Solids, 612:122355, (2023).
  • [10] McHenry, M. E., Willard, M. A., & Laughlin, D. E. “Amorphous and nanocrystalline materials for applications as soft magnets.” Progress in Materials Science, 44:291–433, (1999).
  • [11] Silveyra, J. M., Ferrara, E., Huber, D. L., & Monson, T. C. “Soft magnetic materials for a sustainable and electrified world.” Science, 362:eaao0195, (2018).
  • [12] Li, H. X., Lu, Z. C., Wang, S. L., Wu, Y., & Lu, Z. P. “Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications.” Progress in Materials Science, 103:235–318, (2019).
  • [13] Li, X., Zhou, J., Shen, L., Sun, B., Bai, H., & Wang, W. “Exceptionally high saturation magnetic flux density and ultra-low coercivity via an amorphous-nanocrystalline transitional microstructure in a FeCo-based alloy.” Advanced Materials, 2205863, (2022).
  • [14] Ma, M. Z., Liu, R. P., Xiao, Y., Lou, D. C., Liu, L., Wang, Q., et al. “Wear resistance of Zr-based bulk metallic glass applied in bearing rollers.” Materials Science and Engineering A, 386:326–330, (2004).
  • [15] Sun, F., Deng, S., Fu, J., Zhu, J., Liang, D., Wang, P., et al. “Superior high-temperature wear resistance of an Ir–Ta–Ni–Nb bulk metallic glass.” Journal of Materials Science and Technology, 158:121–132, (2023).
  • [16] Sun, C., Hu, Y. C., & Sun, C. “Functional applications of metallic glasses in electrocatalysis.” ChemCatChem, n/a, (2019).
  • [17] Jiang, R., Da, Y., Chen, Z., Cui, X., Han, X., Ke, H., et al. “Progress and perspective of metallic glasses for energy conversion and storage.” Advanced Energy Materials, 12:2101092, (2022).
  • [18] Wang, Z. J., Li, M. X., Yu, J. H., Ge, X. B., Liu, Y. H., & Wang, W. H. “Low-iridium-content IrNiTa metallic glass films as intrinsically active catalysts for hydrogen evolution reaction.” Advanced Materials, 32:1906384, (2020).
  • [19] Yan, Y., Wang, C., Huang, Z., Fu, J., Lin, Z., Zhang, X., et al. “Highly efficient and robust catalysts for the hydrogen evolution reaction by surface nano engineering of metallic glass.” Journal of Materials Chemistry A, n/a, (2021).
  • [20] Stachurski, Z. H., Wang, G., & Tan, X. “An introduction to metallic glasses and amorphous metals.” Elsevier, 978-0-12-819418-8, (2021).
  • [21] Chen, H. S., & Turnbull, D. “Formation, stability and structure of palladium–silicon based alloy glasses.” Acta Metallurgica, 17:1021, (1969).
  • [22] Chen, H. S. “Thermodynamic considerations on the formation and stability of metallic glasses.” Acta Metallurgica, 22:1505–1511, (1974).
  • [23] Chen, M. “A brief overview of bulk metallic glasses.” NPG Asia Materials, 3:82–90, (2011).
  • [24] Turnbull, D. “Under what conditions can a glass be formed?” Contemporary Physics, 10(5):473–488, (1969).
  • [25] Johnson, W. L. “Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials.” Progress in Materials Science, 30(2):81–134, (1986).
  • [26] Greer, A. L., & Ma, E. “Bulk metallic glasses: at the cutting edge of metals research.” MRS Bulletin, 32:611–619, (2007).
  • [27] Inoue, A. “Stabilization of metallic supercooled liquid and bulk amorphous alloys.” Acta Materialia, 48(1):279–306, (2000).
  • [28] Wang, W. H., Dong, C., & Shek, C. H. “Bulk metallic glasses.” Materials Science and Engineering R: Reports, 44(2–3):45–89, (2004).
  • [29] Johnson, W. L. “Bulk glass-forming metallic alloys: science and technology.” MRS Bulletin, 24(10):42–56, (1999).
  • [30] Pauly, S., et al. “Processing metallic glasses by selective laser melting.” Materials Today, 16(1–2):37–41, (2013).
  • [31] Sohrabi, S., Fu, J., Li, L., Zhang, Y., Li, X., Sun, F., et al. “Manufacturing of metallic glass components: processes, structures and properties.” Progress in Materials Science, 101283, (2024).
  • [32] Lee, M. C., Kendall, J. M., & Johnson, W. L. “Spheres of the metallic glass Au55Pb22.5Sb22.5 and their surface characteristics.” Applied Physics Letters, 40:382–384, (1982).
  • [33] Bravenec, A. D., & Catling, D. C. “Effect of concentration, cooling, and warming rates on glass transition temperatures for NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines with relevance to Mars and other cold bodies.” ACS Earth and Space Chemistry, 7(7):1433–1445, (2023).
  • [34] George, T. F., Letfullin, R. R., & Zhang, G. “Bulk metallic glasses.” Nova Science Publishers, n/a, (2011).
  • [35] Gong, P., Li, M., Han, G., & Wang, X. “Physical metallurgy of metals and alloys II.” n/a, n/a, (2024).
  • [36] Rafique, M. M. A. “Bulk metallic glasses and their composites: additive manufacturing and modeling and simulation.” Walter de Gruyter GmbH & Co KG, n/a, (2021).
  • [37] Graeve, O. A., García-Vázquez, M. S., Ramírez-Acosta, A. A., & Cadieux, Z. “Latest advances in manufacturing and machine learning of bulk metallic glasses.” Advanced Engineering Materials, 25(9):2201493, (2023).
  • [38] Warren, B. E. “X-ray determination of the structure of glass.” Journal of the American Ceramic Society, 75(1):5–10, (1992).
  • [39] Kui, H. W., Greer, A. L., & Turnbull, D. “Formation of bulk metallic glass by fluxing.” Applied Physics Letters, 45:615–616, (1984).
  • [40] Inoue, A., Zhang, T., & Masumoto, T. “Al–La–Ni amorphous alloys with a wide supercooled liquid region.” Materials Transactions JIM, 30:965–972, (1989).
  • [41] Inoue, A., Kato, A., Zhang, T., Kim, S. G., & Masumoto, T. “Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method.” Materials Transactions JIM, 32:609–616, (1991).
  • [42] Zhang, T., Inoue, A., & Masumoto, T. “Amorphous Zr–Al–Tm (Tm = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K.” Materials Transactions JIM, 32:1005–1010, (1991).
  • [43] Peker, A., & Johnson, W. L. “A highly processable metallic glass–Zr41.2Ti13.8Cu12.5Ni10.0Be22.5.” Applied Physics Letters, 63:2342–2344, (1993).
  • [44] Inoue, A., Nishiyama, N., & Kimura, H. “Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter.” Materials Transactions JIM, 38:179–183, (1997).
  • [45] Schroers, J., Johnson, W. L., & Busch, R. “Crystallization kinetics of the bulk-glass-forming Pd43Ni10Cu27P20 melt.” Applied Physics Letters, 77(8):1158–1160, (2000).
  • [46] Greer, A. L. “Metallic glasses.” Science, 267(5206):1947–1953, (1995).
  • [47] Inoue, A., Makino, A., & Mizushima, T. “Ferromagnetic bulk glassy alloys.” Journal of Magnetism and Magnetic Materials, 215:246–252, (2000).
  • [48] Shen, B. L., Koshiba, H., Mizushima, T., & Inoue, A. “Bulk amorphous Fe–Ga–P–B–C alloys with a large supercooled liquid region.” Materials Transactions JIM, 41(7):873–876, (2000).
  • [49] Shen, B., Koshiba, H., Inoue, A., Kimura, H., & Mizushima, T. “Bulk glassy Co43Fe20Ta5.5B31.5 alloy with high glass-forming ability and good soft magnetic properties.” Materials Transactions, 42(10):2136–2139, (2001).
  • [50] Fukumura, H., Inoue, A., Koshiba, H., & Mizushima, T. “(Fe, Co)-(Hf, Nb)-B glassy thick sheet alloys prepared by a melt clamp forging method.” Materials Transactions, 42(8):1820–1822, (2001).
  • [51] Hays, C. C., Kim, C. P., & Johnson, W. L. “Microstructure-controlled toughness in bulk metallic glasses.” Physical Review Letters, 84(13):2901, (2000).
  • [52] Trexler, M. M., & Thadhani, N. N. “Mechanical properties of bulk metallic glasses.” Progress in Materials Science, 55(8):759–839, (2010).
  • [53] Cheng, Y. Q., & Ma, E. “Atomic-level structure and structure–property relationship in metallic glasses.” Progress in Materials Science, 56(4):379–473, (2011).
  • [54] Qiao, J., Jia, H., & Liaw, P. K. “Metallic glass matrix composites.” Materials Science and Engineering R: Reports, 100:1–69, (2016).
  • [55] Hays, C. C., Kim, C. P., & Johnson, W. L. “Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions.” Physical Review Letters, 84(13):2901–2904, (2000).
  • [56] Hofmann, D. C., Suh, J. Y., Wiest, A., Duan, G., Lind, M. L., Demetriou, M. D., & Johnson, W. L. “Designing metallic glass matrix composites with high toughness and tensile ductility.” Nature, 451(7182):1085–1089, (2008).
  • [57] Hofmann, D. C. “Shape memory bulk metallic glass composites.” Science, 329(5997):1294–1295, (2010).
  • [58] Wu, Y., Wang, H., Liu, X. J., Chen, X. H., Hui, X. D., Zhang, Y., & Lu, Z. P. “Designing bulk metallic glass composites with enhanced formability and plasticity.” Journal of Materials Science and Technology, 30(6):566–575, (2014).
  • [59] Guo, H., Yan, P. F., Wang, Y. B., Tan, J., Zhang, Z. F., Sui, M. L., & Ma, E. “Tensile ductility and necking of metallic glass.” Nature Materials, 6(10):735–739, (2007).
  • [60] Jang, D., & Greer, J. R. “Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses.” Nature Materials, 9(3):215–219, (2010).
  • [61] Choi-Yim H. “Synthesis and characterization of bulk metallic glass matrix composites.” California Institute of Technology, Pasadena, CA, (1998).
  • [62] Choi-Yim H., Conner R.D., Szuecs F., Johnson W.L. “Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites.” Acta Materialia, 50(10):2737–2745,(2002).
  • [63] Lee J.C., Kim Y.C., Ahn J.P., Lee S., Lee B.J. “Strain hardening of an amorphous matrix composite due to deformation-induced nanocrystallization during quasistatic compression.” Applied Physics Letters, 84(15):2781–2783, (2004).
  • [64] Trexler M.M., Thadhani N.N. “Mechanical properties of bulk metallic glasses.” Progress in Materials Science, 55(8):759–839,(2010).
  • [65] Pauly S., Gorantla S., Wang G., Kuhn U., Eckert J. “Transformation-mediated ductility in CuZr-based bulk metallic glasses.” Nature Materials, 9(6):473–477, (2010).
  • [66] Song K.K., Pauly S., Zhang Y., Li R., Gorantla S., Narayanan N., Kuhn U., Gemming T., Eckert J. “Triple yielding and deformation mechanisms in metastable Cu47.5Zr47.5Al5 composites.” Acta Materialia, 60(17):6000–6012,(2012).
  • [67] Wu Y., Xiao Y., Chen G., Liu C.T., Lu Z. “Bulk metallic glass composites with transformation-mediated work-hardening and ductility.” Advanced Materials, 22(25):2770–2773,(2010).
  • [68] Wu D.Y., Song K.K., Gargarella P., Cao C.D., Li R., Kaban I., Eckert J. “Glass-forming ability, thermal stability of B2 CuZr phase, and crystallization kinetics for rapidly solidified Cu-Zr-Zn alloys.” Journal of Alloys and Compounds,664:99–108,(2016).
  • [69] Kim C.P., Oh Y.S., Lee S., Kim N.J. “Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation.” ScriptaMaterialia,65(4):304–307,(2011).
  • [70] Gao W.H., Meng X.L., Cai W., Zhao L.C. “Effects of Co and Al addition on martensitic transformation and microstructure in ZrCu-based shape memory alloys.” Transactions of Nonferrous Metals Society of China, 25(3):850–855,(2015).
  • [71] Song H., Shi R., Wang Y., Hoyt J.J. “Simulation study of heterogeneous nucleation at grain boundaries during the austenite-ferrite phase transformation: comparing the classical model with the multi-phase field nudged elastic band method.” Metallurgical and Materials Transactions A, 1–9, (2016).
  • [72] Zhai H., Wang H., Liu F. “A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility.” Journal of Alloys and Compounds, 685:322–330,(2016).
  • [73] Pekarskaya E., Kim C.P., Johnson W.L. “In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite.” Journal of Materials Research,16(9):2513–2518,(2001).
  • [74] Fan C., Ott R.T., Hufnagel T.C. “Metallic glass matrix composite with precipitated ductile reinforcement.” Applied Physics Letters, 81(6):1020–1022, (2002).
  • [75] Hu X., Ng S.C., Feng Y.P., Li Y. “Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses.” Acta Materialia, 51(2):561–572, (2003).
  • [76] Zhang Q., Zhang H., Zhu Z., Hu Z. “Formation of high strength in-situ bulk metallic glass composite with enhanced plasticity in Cu50Zr47.5Ti2.5 alloy.” Materials Transactions, 46:n/a, (2005).
  • [77] Wu F.F., Zhang Z.F., Mao X.S., Peker A., Eckert J. “Effect of annealing on the mechanical properties and fracture mechanisms of a Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 bulk-metallic-glass composite.” Physical Review B, 75(13):134201, (2007).
  • [78] Zhu Z., Zhang H., Hu Z., Zhang W., Inoue A. “Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity.” Scripta Materialia, 62(5):278–281, (2010).
  • [79] Cheng J.L., Chen G. “Glass formation of Zr–Cu–Ni–Al bulk metallic glasses correlated with L → Zr₂Cu + ZrCu pseudo binary eutectic reaction.” Journal of Alloys and Compounds, 577:451–455,(2013).
  • [80] Chen H.S. “Ductile-brittle transition in metallic glasses.” Materials Science and Engineering, 26(1):79–82, (1976).
  • [81] Antonione, C., Spriano, S., Rizzi, P., Baricco, M., & Battezzati, L. “Phase separation in multicomponent amorphous alloys.” Journal of Non-Crystalline Solids, 232:127–132, (1998).
  • [82] Fan, C., & Inoue, A. “Ductility of bulk nanocrystalline composites and metallic glasses at room temperature.” Applied Physics Letters, 77(1):46–48, (2000).
  • [83] [83] Gu, J., Song, M., Ni, S., Guo, S., & He, Y. “Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass.” Materials & Design, 47:706–710, (2013).
  • [84] Krämer, L., Kormout, K. S., Setman, D., Champion, Y., & Pippan, R. “Production of bulk metallic glasses by severe plastic deformation.” Metals, 5(2):720–729, (2015).
  • [85] Nishiyama, N., Takenaka, K., Miura, H., Saidoh, N., Zeng, Y., & Inoue, A. “The world's biggest glassy alloy ever made.” Intermetallics, 30:19–24, (2012).
  • [86] Mahbooba, Z., Thorsson, L., Unosson, M., Skoglund, P., West, H., Horn, T., et al. “Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness.” Applied Materials Today, 11:264–269, (2018).
  • [87] Liu, C., Wang, X., Cai, W., He, Y., & Su, H. “Machine learning aided prediction of glass-forming ability of metallic glass.” Processes, 11(9):2806, (2023).
  • [88] Cheng, J. L., & Chen, G. “Glass formation of Zr–Cu–Ni–Al bulk metallic glasses correlated with L → Zr2Cu + ZrCu pseudo binary eutectic reaction.” Journal of Alloys and Compounds, 577:451–455, (2013).
  • [89] Perim, E., Lee, D., Liu, Y., Toher, C., Gong, P., Li, Y., et al. “Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases.” Nature Communications, 7:12315, (2016).
  • [90] Nicholson, D. M. C., Stocks, G. M., Shelton, W. A., Wang, Y., & Swihart, J. C. “Ab initio studies of the electronic structure and energetics of bulk amorphous metals.” Metallurgical and Materials Transactions A, 29:1845–1851, (1998).
  • [91] Pǎduraru, A., Kenoufi, A., Bailey, N. P., & Schiøtz, J. “An interatomic potential for studying CuZr bulk metallic glasses.” Advanced Engineering Materials, 9(6):505–508, (2007).
  • [92] Reyes-Retana, J. A., & Naumis, G. G. “Ab initio study of Si doping effects in Pd–Ni–P bulk metallic glass.” Journal of Non-Crystalline Solids, 409:49–53, (2015).
  • [93] Hui, X., Fang, H. Z., Chen, G. L., Shang, S. L., Wang, Y., Qin, J. Y., & Liu, Z. K. “Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy.” Acta Materialia, 57(2):376–391, (2009).
  • [94] Ju, S. P., Huang, H. H., & Huang, J. C. C. “Predicted atomic arrangement of Mg67Zn28Ca5 and Ca50Zn30Mg20 bulk metallic glasses by atomic simulation.” Journal of Non-Crystalline Solids, 388:23–31, (2014).
  • [95] Atta-Fynn, R., Drabold, D. A., & Biswas, P. “First principles modeling of the structural, electronic, and vibrational properties of Ni40Pd40P20 bulk metallic glass.” Journal of Non-Crystalline Solids: X, 1:100004, (2019).
  • [96] Weber, T. A., & Stillinger, F. H. “Local order and structural transitions in amorphous metal-metalloid alloys.” Physical Review B, 31(4):1954, (1985).
  • [97] Tarumi, R., Ogura, A., Shimojo, M., Takashima, K., & Higo, Y. “Molecular dynamics simulation of crystallization in an amorphous metal during shear deformation.” Japanese Journal of Applied Physics, 39(6B):L611, (2000).
  • [98] Rodríguez de La Fuente, O., & Soler, J. M. “Structure and stability of an amorphous metal.” Physical Review Letters, 81(15):3159–3162, (1998).
  • [99] Qi, Y., Çağın, T., Kimura, Y., & Goddard, W. A. III. “Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni.” Physical Review B, 59(5):3527, (1999).
  • [100] Ren, F., Ward, L., Williams, T., Laws, K. J., Wolverton, C., Hattrick-Simpers, J., & Mehta, A. “Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments.” Science Advances, 4:eaaq1566, (2018).
  • [101] Xiong, J., Shi, S. Q., & Zhang, T. Y. “A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys.” Materials & Design, 187:108378, (2020).
  • [102] Lu, Z., Chen, X., Liu, X., Lin, D., Wu, Y., Zhang, Y., et al. “Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses.” npj Computational Materials, 6:187, (2020).
  • [103] Mastropietro, D. G., & Moya, J. A. “Design of Fe-based bulk metallic glasses for maximum amorphous diameter (Dmax) using machine learning models.” Computational Materials Science, 188:110230, (2021).
  • [104] Ward, L., O’Keeffe, S. C., Stevick, J., Jelbert, G. R., Aykol, M., & Wolverton, C. “A machine learning approach for engineering bulk metallic glass alloys.” Acta Materialia, 159:102–111, (2018).
  • [105] Ward, L., Agrawal, A., Choudhary, A., & Wolverton, C. “A general-purpose machine learning framework for predicting properties of inorganic materials.” npj Computational Materials, 2:16028, (2016).
  • [106] Liu, X., Long, Z., Yang, L., Zhang, W., & Li, Z. “Prediction of glass forming ability in amorphous alloys based on different machine learning algorithms.” Journal of Non-Crystalline Solids, 570:121000, (2021).
  • [107] Li, Z., Long, Z., Lei, S., Zhang, T., Liu, X., & Kuang, D. “Predicting the glass formation of metallic glasses using machine learning approaches.” Computational Materials Science, 197:110656, (2021).
  • [108] Graeve, O. A., García-Vázquez, M. S., Ramírez-Acosta, A. A., & Cadieux, Z. “Latest advances in manufacturing and machine learning of bulk metallic glasses.” Advanced Engineering Materials, 25(9):2201493, (2023).
  • [109] Ding, H. Y., & Yao, K. F. “High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass.” Journal of Non-Crystalline Solids, 364:9–12, (2013).
  • [110] Biswas, K., Yeh, J. W., Bhattacharjee, P. P., & DeHosson, J. T. M. “High entropy alloys: Key issues under passionate debate.” Scripta Materialia, 188:54–58, (2020).
  • [111] Li, X. “Additive manufacturing of advanced multi‐component alloys: bulk metallic glasses and high entropy alloys.” Advanced Engineering Materials, 20(5):1700874, (2018).
  • [112] Inoue, A., Kong, F., Zhu, X., Chen, J., Men, H., & Botta, W. J. “Development and industrialization of Zr-and Fe-based bulk metallic glasses and light metal-based metastable alloys.” Journal of Alloys and Compounds, 979:173546, (2024).
  • [113] Özçatalbaş, Y. “Çeliklerin işlenebilirliği: kimyasal bileşim, mikroyapı, mekanik özellikler ve işlenebilirlik ilişkisi.” Politeknik Dergisi, 23(2):457–482, (2020).
  • [114] Schroers, J. “Processing of bulk metallic glass.” Advanced Materials, 22(14):1566–1597, (2010).
  • [115] Sarac, B., & Eckert, J. “Thermoplasticity of metallic glasses: Processing and applications.” Progress in Materials Science, 127:100941, (2022).
  • [116] Fu, J., & Ma, J. “Nanoengineering of metallic glasses.” Advanced Engineering Materials, 25(5):2200659, (2023).
  • [117] Liu, Z., Liu, N., & Schroers, J. “Nanofabrication through molding.” Progress in Materials Science, 125:100891, (2022).
  • [118] Savaedi, Z., Motallebi, R., Mirzadeh, H., & Malekan, M. “Superplasticity of bulk metallic glasses (BMGs): A review.” Journal of Non-Crystalline Solids, 583:121503, (2022).
  • [119] Kawamura, Y. “Liquid phase and supercooled liquid phase welding of bulk metallic glasses.” Materials Science and Engineering A, 375:112–119, (2004).
  • [120] Qiao, J., Yu, P., Wu, Y., Chen, T., Du, Y., & Yang, J. “A compact review of laser welding technologies for amorphous alloys.” Metals, 10(12):1690, (2020).
  • [121] Zhang, C., Ouyang, D., Pauly, S., & Liu, L. “3D printing of bulk metallic glasses.” Materials Science and Engineering R: Reports, 145:100625, (2021).
  • [122] Sohrabi, N., Jhabvala, J., & Loge, R. E. “Additive manufacturing of bulk metallic glasses—process, challenges and properties: a review.” Metals, 11(8):1279, (2021).
  • [123] Lashgari, H. R., Ferry, M., & Li, S. “Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications.” Journal of Materials Science & Technology, 119:131–149, (2022).
  • [124] Liu, H., Yang, D., Jiang, Q., Jiang, Y., Yang, W., Liu, L., & Zhang, L. C. “Additive manufacturing of metallic glasses and high-entropy alloys: Significance, unsettled issues, and future directions.” Journal of Materials Science & Technology, 140:79–120, (2023).
  • [125] Houghton, O. S., Schmitt, L. Y., Klotz, U. E., Costa, M. B., & Greer, A. L. “Pd-and Zr-based bulk metallic glasses for jewellery applications: Scratch, wear and tarnish behaviour.” Materials Science and Engineering A, 924:147791, (2025).
  • [126] Sekol, R. C., Kumar, G., Carmo, M., Gittleson, F., Hardesty-Dyck, N., Mukherjee, S., et al. “Bulk metallic glass micro fuel cell.” Small, 9(12):2081–2085, (2013).
  • [127] Das, S., Santos‐Ortiz, R., Arora, H. S., Mridha, S., Shepherd, N. D., & Mukherjee, S. “Electromechanical behavior of pulsed laser deposited platinum‐based metallic glass thin films.” Physica Status Solidi (A), 213(2):399–404, (2016).
  • [128] Mukherjee, S., Sekol, R. C., Carmo, M., Altman, E. I., Taylor, A. D., & Schroers, J. “Tunable hierarchical metallic‐glass nanostructures.” Advanced Functional Materials, 23(21):2708–2713,(2013).
  • [129] Khan, M. M., Nemati, A., Rahman, Z. U., Shah, U. H., Asgar, H., & Haider, W. “Recent advancements in bulk metallic glasses and their applications: A review.” Critical Reviews in Solid State and Materials Sciences, 43(3):233–268, (2018).
  • [130] Biały, M., Hasiak, M., & Łaszcz, A. “Review on biocompatibility and prospect biomedical applications of novel functional metallic glasses.” Journal of Functional Biomaterials,13(4):245,(2022).
  • [131] Schroers, J., Kumar, G., Hodges, T. M., Chan, S., & Kyriakides, T. R. “Bulk metallic glasses for biomedical applications.” JOM, 61:21–29, (2009).
  • [132] Li, H. F., & Zheng, Y. F. “Recent advances in bulk metallic glasses for biomedical applications.” Acta Biomaterialia,36:1–20,(2016).
  • [133] Li, J., Shi, L. L., Zhu, Z. D., He, Q., Ai, H. J., & Xu, J. “Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses.” Materials Science and Engineering C, 33(4):2113–2121,(2013).
  • [134] Riaz, U., Shabib, I., & Haider, W. “The current trends of Mg alloys in biomedical applications—A review.” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(6):1970–1996,(2019).
  • [135] Bin, S. J. B., Fong, K. S., Chua, B. W., & Gupta, M. “Mg-based bulk metallic glasses: A review of recent developments.” Journal of Magnesium and Alloys, 10(4):899–914, (2022).
  • [136] Aliyu, A. A. A., Panwisawas, C., Shinjo, J., Puncreobutr, C., Reed, R. C., Poungsiri, K., et al. “Laser-based additive manufacturing of bulk metallic glasses: Recent advances and future perspectives for biomedical applications.” Journal of Materials Research and Technology, 23:2956–2990, (2023).
  • [137] Türker, M. “Toz metal al köpükler: üretimi, çeşitleri ve kullanım alanları.” Politeknik Dergisi, 27(6):2335–2356, (2024).
  • [138] Zhang, C., Li, X. M., Liu, S. Q., Liu, H., Yu, L. J., & Liu, L. “3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications.” Journal of Alloys and Compounds, 790:963–973, (2019).
  • [139] Du, P., Xiang, T., Cai, Z., & Xie, G. “The influence of porous structure on the corrosion behavior and biocompatibility of bulk Ti-based metallic glass.” Journal of Alloys and Compounds,906:164326,(2022).
  • [140] Cai, Z., Du, P., Li, K., Chen, L., & Xie, G. “A review of the development of titanium-based and magnesium-based metallic glasses in the field of biomedical materials.” Materials,17(18):4587,(2024).
  • [141] Lebrun, N., Dupla, F., Bruhier, H., Prudent, M., Borroto, A., Der Loughian, C., et al. “Metallic glasses for biological applications and opportunities opened by laser surface texturing: A review.” Applied Surface Science, 160617, (2024).
  • [142] Gao, K., Zhu, X. G., Chen, L., Li, W. H., Xu, X., Pan, B. T., et al. “Recent development in the application of bulk metallic glasses.” Journal of Materials Science & Technology, 131:115–121,(2022).
  • [143] Suryanarayana, C., & Inoue, A. Bulk metallic glasses. CRC Press, (2017).
  • [144] Hofmann, D. C., Polit-Casillas, R., Roberts, S. N., Borgonia, J. P., Dillon, R. P., Hilgemann, E., et al. “Castable bulk metallic glass strain wave gears: Towards decreasing the cost of high-performance robotics.” Scientific Reports, 6:37773,(2016).
  • [145] Lu, W., Ma, J., Wang, C., & Liu, Y. “A promising application of bulk metallic glasses in torque sensor.” Science China Technological Sciences, 67(8):2505–2514, (2024).
  • [146] Qiao, J., Jia, H., & Liaw, P. K. “Metallic glass matrix composites.” Materials Science and Engineering R: Reports, 100:1–69,(2016).
  • [147] Acar, E., & Aydın, M. “Şekil hafıza davranışlarının termodinamiği.” Politeknik Dergisi, 21(1):201–211, (2018).
  • [148] Hofmann, D. C. “Shape memory bulk metallic glass composites.” Science, 329(5997):1294–1295, (2010).
  • [149] Zhao, Z., Yan, Z., Mu, J., Zhang, H., & Wang, Y. “Improving the mechanical reliability of shape memory bulk metallic glass composites by mechanical training.” Materials Science and Engineering A, 833:142564, (2022).
There are 149 citations in total.

Details

Primary Language Turkish
Subjects Metals and Alloy Materials
Journal Section Review Article
Authors

Esra Burcu Yarar Tauscher 0009-0002-4105-055X

Nil Toplan 0000-0003-4130-0002

Early Pub Date July 7, 2025
Publication Date October 21, 2025
Submission Date March 6, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Yarar Tauscher, E. B., & Toplan, N. (2025). Geçmişten Günümüze Kütlesel Metalik Camlar ve Yenilikçi Uygulamaları. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1652973
AMA Yarar Tauscher EB, Toplan N. Geçmişten Günümüze Kütlesel Metalik Camlar ve Yenilikçi Uygulamaları. Politeknik Dergisi. Published online July 1, 2025:1-1. doi:10.2339/politeknik.1652973
Chicago Yarar Tauscher, Esra Burcu, and Nil Toplan. “Geçmişten Günümüze Kütlesel Metalik Camlar Ve Yenilikçi Uygulamaları”. Politeknik Dergisi, July (July 2025), 1-1. https://doi.org/10.2339/politeknik.1652973.
EndNote Yarar Tauscher EB, Toplan N (July 1, 2025) Geçmişten Günümüze Kütlesel Metalik Camlar ve Yenilikçi Uygulamaları. Politeknik Dergisi 1–1.
IEEE E. B. Yarar Tauscher and N. Toplan, “Geçmişten Günümüze Kütlesel Metalik Camlar ve Yenilikçi Uygulamaları”, Politeknik Dergisi, pp. 1–1, July2025, doi: 10.2339/politeknik.1652973.
ISNAD Yarar Tauscher, Esra Burcu - Toplan, Nil. “Geçmişten Günümüze Kütlesel Metalik Camlar Ve Yenilikçi Uygulamaları”. Politeknik Dergisi. July2025. 1-1. https://doi.org/10.2339/politeknik.1652973.
JAMA Yarar Tauscher EB, Toplan N. Geçmişten Günümüze Kütlesel Metalik Camlar ve Yenilikçi Uygulamaları. Politeknik Dergisi. 2025;:1–1.
MLA Yarar Tauscher, Esra Burcu and Nil Toplan. “Geçmişten Günümüze Kütlesel Metalik Camlar Ve Yenilikçi Uygulamaları”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1652973.
Vancouver Yarar Tauscher EB, Toplan N. Geçmişten Günümüze Kütlesel Metalik Camlar ve Yenilikçi Uygulamaları. Politeknik Dergisi. 2025:1-.