Use of Chest X-ray Images and Artificial Intelligence Methods for Early Diagnosis of COVID-19
Year 2025,
EARLY VIEW, 1 - 1
Maral A. Mustafa
,
O. Ayhan Erdem
,
Esra Söğüt
Abstract
The worldwide epidemic brought on by COVID-19 has substantially hurt people’s health. To discover and treat ill people, given the significant usage of efficient screening and diagnostic methods, as well as a crucial way to this deadly illness. One strategy that might be used to help with COVID-19 early diagnosis is to make use of X-ray pictures of individuals’ chests. Different Computer Aided Diagnosis (CAD) methods have been created to aid doctors in doing this work by providing them more extra information and suggestions. This investigation uses pictures of chest X-rays taken to create a CAD method for COVID-19 illness. Convolutional Neural Network (CNN), Resnet50, Xception, Densnet, Mobilenet, VGG16, Resnet152v2, and Inceptionv3 will use in the investigation to examine the pictures and remark on automatic detection and categorization of COVID-19 cases. The effectiveness of each method will be examined on a big collection of chest X-ray pictures to identify its accuracy and reliability in detecting COVID-19 cases. The result of this investigation could be used to design an effective and reliable tool for COVID-19 diagnosis and evaluation.
References
- [1] Zhu, N., Zhang, D. Wang, W. Li, X. Yang, B. Song, J. Zhao, X. Huang, B. Shi, W. Lu, R., et al. “A novel coronavirus from patients with pneumonia in China, 2019”, New England journal of medicine, 382(8): 727–733, (2020).
- [2] Barth, R. F., Buja, L., Barth, A. L., Carpenter, D. E., and Parwani, A. V., “A Comparison of the Clinical, Viral, Pathologic, and Immunologic Features of Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus 2019 (COVID-19) Diseases”, Archives of Pathology & Laboratory Medicine, 145(10): 1194–1211, (2021).
- [3] Cui, J., Li, F., and Shi, Z. L., "Origin and evolution of pathogenic coronaviruses", Nature reviews microbiology, 17(3): 181-192, (2019).
- [4] Wong, C. K., Lau, K. T., Au, I. C., Xiong, X., Lau, E. H., and Cowling, B. J., "Clinical improvement, outcomes, antiviral activity, and costs associated with early treatment with remdesivir for patients with coronavirus disease 2019 (COVID-19)", Clinical Infectious Diseases, 74(8): 1450-1458, (2022).
- [5] Ravi, V., Narasimhan, H., Chakraborty, C., and Pham, T. D., "Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images", Multimedia systems, 28(4): 1401-1415, (2022).
- [6] Verma, A., Amin, S. B., Naeem, M., & Saha, M., "Detecting COVID-19 from chest computed tomography scans using AI-driven android application", Computers in biology and medicine, 143: 105298, (2022).
- [7] Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., et al., "A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19)", European radiology, 31: 6096-6104, (2021).
- [8] Nanda, A., Barik, R. C., and Bakshi, S., "SSO-RBNN driven brain tumor classification with Saliency-K-means segmentation technique", Biomedical Signal Processing and Control, 81: 104356, (2023).
- [9] Littrup, P. J., Freeman-Gibb, L., Andea, A., White, M., Amerikia, K. C., Bouwman, D., Harb, T., and Sakr, W., "Cryotherapy for breast fibroadenomas", Radiology, 234(1): 63-72, (2005).
- [10] Darıcı, M. B., "Performance analysis of combination of cnn-based models with adaboost algorithm to diagnose covid-19 disease", Journal of Polytechnic, 26(1): 179-190, (2023).
- [11] Zieleskiewicz, L., Markarian, T., Lopez, A., Taguet, C., Mohammedi, N., Boucekine, M., Baumstarck, K., Besch, G., Mathon, G., Duclos, G., et al., "Comparative study of lung ultrasound and chest computed tomography scan in the assessment of severity of confirmed COVID-19 pneumonia", Intensive care medicine, 46: 1707-1713, (2020).
- [12] Khan, E., Rehman, M. Z. U., Ahmed, F., Alfouzan, F. A., Alzahrani, N. M., and Ahmad, J., "Chest X-ray classification for the detection of COVID-19 using deep learning techniques", Sensors, 22(3): 1211, (2022).
- [13] Castiglioni, I., Rundo, L., Codari, M., Di Leo, G., Salvatore, C., Interlenghi, M., Gallivanone, F., Cozzi, A., D’Amico, N. C., Sardanelli, F., "AI applications to medical images: From machine learning to deep learning", Physica medica, 83: 9-24, (2021).
- [14] Çelikdemir, M. Y., and Akbal, A., "A Deep Learning Based on Automatic Cerebral Aneurysm Detection in Brain Computed Tomography Angiography Scan Images", Journal of Polytechnic, 28(1): 147-157, (2025).
- [15] Marentakis, P., Karaiskos, P., Kouloulias, V., Kelekis, N., Argentos, S., Oikonomopoulos, N., and Loukas, C., "Lung cancer histology classification from CT images based on radiomics and deep learning models", Medical & biological engineering & computing, 59: 215-226, (2021).
- [16] Roy, S., Meena, T., and Lim, S. J., "Demystifying supervised learning in healthcare 4.0: A new reality of transforming diagnostic medicine", Diagnostics, 12(10): 2549, (2022).
- [17] Dündar Ö., and Koçer S., “Pneumonia detection from pediatric lung X-ray images using artificial neural networks”, Journal of Polytechnic, 27(5): 1843-1852, (2024).
- [18] Kaya, Y., Yiner, Z., Kaya, M., and Kuncan, F., "A new approach to COVID-19 detection from X-ray images using angle transformation with GoogleNet and LSTM", Measurement Science and Technology, 33(12): 124011, (2022).
- [19] Ismael, A. M., and Şengür, A., "Deep learning approaches for COVID-19 detection based on chest X-ray images", Expert Systems with Applications, 164: 114054, (2021).
- [20] Yılmaz, A. "Diagnosing COVID-19 from X-Ray images with using multi-channel CNN architecture", Journal of the Faculty of Engineering and Architecture of Gazi University, 36(4): 1761-1774, (2021).
- [21] Nair, R., Alhudhaif, A., Koundal, D., Doewes, R. I., and Sharma, P., "Deep learning-based COVID-19 detection system using pulmonary CT scans", Turkish Journal of Electrical Engineering and Computer Sciences, 29(8): 2716-2727, (2021).
- [22] Khan, M. A., Azhar, M., Ibrar, K., Alqahtani, A., Alsubai, S., Binbusayyis, A., Kim, Y.J., and Chang, B., "COVID‐19 classification from chest X‐ray images: a framework of deep explainable artificial intelligence", Computational Intelligence and Neuroscience, 2022(1): 4254631, (2022).
- [23] Iqbal, A., Usman, M., and Ahmed, Z., "Tuberculosis chest X-ray detection using CNN-based hybrid segmentation and classification approach," Biomedical Signal Processing and Control, 84: 104667, (2023).
- [24] Hamza, A., Attique Khan, M., Wang, S. H., Alqahtani, A., Alsubai, S., Binbusayyis, A., Hussein, H.S., Martinetz, T.M., and Alshazly, H., "COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization", Frontiers in Public Health, 10: 948205, (2022).
- [25] Fan, X., Feng, X., Dong, Y., and Hou, H., "COVID-19 CT image recognition algorithm based on transformer and CNN", Displays, 72: 102150, (2022).
- [26] Garg, A., Salehi, S., La Rocca, M., Garner, R., and Duncan, D., "Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT", Expert Systems with Applications, 195: 116540, (2022).
- [27] Reshan, M. S. A., Gill, K. S., Anand, V., Gupta, S., Alshahrani, H., Sulaiman, A., and Shaikh, A., "Detection of pneumonia from chest X-ray images utilizing mobilenet model", Healthcare, 11(11): 1561, (2023).
- [28] AbdElhamid, A. A., AbdElhalim, E., Mohamed, M. A., and Khalifa, F., "Multi-classification of chest X-rays for COVID-19 diagnosis using deep learning algorithms", Applied Sciences, 12(4): 2080, (2022).
- [29] Gampala, V., Rathan, K., S, C. N., Shajin, F. H., and Rajesh, P., "Diagnosis of COVID-19 patients by adapting hyper parametertuned deep belief network using hosted cuckoo optimization algorithm", Electromagnetic Biology and Medicine, 41(3): 257-271, (2022).
- [30] Thakur, S., and Kumar, A., "X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN)", Biomedical Signal Processing and Control, 69: 102920, (2021).
- [31] Shah, V., Keniya, R., Shridharani, A., Punjabi, M., Shah, J., and Mehendale, N., "Diagnosis of COVID-19 using CT scan images and deep learning techniques", Emergency Radiology, 28: 497-505, (2021).
- [32] Muhammad, G., and Hossain, M. S., "COVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound images", Information Fusion, 72: 80-88, (2021).
- [33] Hussain, E., Hasan, M., Rahman, M. A., Lee, I., Tamanna, T., and Parvez, M. Z., "CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images", Chaos, Solitons & Fractals, 142: 110495, (2021).
- [34] Ezzat, D., Hassanien, A. E., and Ella, H. A., "An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization", Applied Soft Computing, 98: 106742, (2021).
- [35] Nandhini Abirami, R., Durai Raj Vincent, P. M., Rajinikanth, V., and Kadry, S., "COVID-19 classification using medical image synthesis by generative adversarial networks", International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 30(03): 385-401, (2022).
- [36] Abirami, N., Vincent, D. R., and Kadry, S., "P2P-COVID-GAN: Classification and segmentation of COVID-19 lung infections from CT images using GAN", International Journal of Data Warehousing and Mining, 17(4): 101-118, (2021).
- [37] Khan, I. U., and Aslam, N., "A deep-learning-based framework for automated diagnosis of COVID-19 using X-ray images", Information, 11(9): 419, (2020).
- [38] Ullah, N., Khan, J. A., Almakdi, S., Khan, M. S., Alshehri, M., Alboaneen, D., and Raza, A., "A novel CovidDetNet deep learning model for effective COVID-19 infection detection using chest radiograph images", Applied Sciences, 12(12): 6269, (2022).
- [39] Arman, S. E., Rahman, S., and Deowan, S. A., "COVIDXception-Net: A Bayesian optimization-based deep learning approach to diagnose COVID-19 from X-Ray images", SN Computer Science, 3(2): 115, (2022).
- [40] Abad, M., Casas-Roma, J., and Prados, F., "Generalizable disease detection using model ensemble on chest X-ray images", Scientific Reports, 14(1): 5890, (2024).
- [41] Singh, T., Mishra, S., Kalra, R., Satakshi, Kumar, M., and Kim, T., "COVID-19 severity detection using chest X-ray segmentation and deep learning", Scientific Reports, 14(1): 19846, (2024).
- [42] Aljawarneh, S. A., and Al-Quraan, R., "Pneumonia detection using enhanced convolutional neural network model on chest x-ray images", Big Data, 13(1): 16-29, (2025).
- [43] Prince, R., Niu, Z., Khan, Z. Y., Chambua, J., Yousif, A., Patrick, N., and Jennifer, B., "Interpretable COVID-19 chest X-ray detection based on handcrafted feature analysis and sequential neural network", Computers in Biology and Medicine, 186: 109659, (2025).
- [44] El-Ghandour, M., and Obayya, M. I., "Pneumonia detection in chest x-ray images using an optimized ensemble with XGBoost classifier", Multimedia Tools and Applications, 84(9): 5491-5521, (2025).
- [45] https://www.sirm.org/category/senza-categoria/covid-19/, “COVID-19 Database”, (2020).
COVID-19’un Erken Teşhisi için Göğüs Röntgeni Görüntülerinin ve Yapay Zeka Yöntemlerinin Kullanımı
Year 2025,
EARLY VIEW, 1 - 1
Maral A. Mustafa
,
O. Ayhan Erdem
,
Esra Söğüt
Abstract
COVID-19'un yol açtığı küresel salgın, insan sağlığı üzerinde önemli olumsuz etkilere neden olmuştur. Bu ölümcül hastalığın tespiti ve tedavisi için etkili tarama ve tanı yöntemlerinin yaygın kullanımı büyük önem taşımaktadır. COVID-19'un erken teşhisine yardımcı olabilecek stratejilerden biri, hastaların göğüs röntgeni (X-ray) görüntülerinden faydalanmaktır. Doktorlara ek bilgi ve öneriler sağlayacak ve hastalık teşhis sürecini destekleyecek çeşitli Bilgisayar Destekli Tanı (BDT) yöntemleri geliştirilmekte ve kullanılmaktadır. Bu çalışma COVID-19 hastalığının teşhisini gerçekleştirmek üzere göğüs röntgeni görüntülerini temel alan bir BDT yöntemi geliştirmeyi amaçlamaktadır. Görsellerin analiz edilmesi ve COVID-19 vakalarının otomatik tespitine ve sınıflandırılmasına yönelik değerlendirme yapılabilmesi için Evrimsel Sinir Ağları (ESA), ResNet50, Xception, DenseNet, MobileNet, VGG16, ResNet152v2 ve Inceptionv3 gibi modeller kullanılmaktadır. Her yöntemin etkinliği geniş ölçekli bir göğüs röntgeni veri kümesi üzerinde test edilmekte ve COVID-19 vakalarının tespitindeki doğruluk ve güvenilirlik durumları değerlendirilmektedir. Bu çalışmadan elde edilen sonuçlar, COVID-19'un teşhis ve değerlendirilmesine yönelik etkili ve güvenilir bir tanı aracı geliştirilmesi için temel oluşturacaktır.
References
- [1] Zhu, N., Zhang, D. Wang, W. Li, X. Yang, B. Song, J. Zhao, X. Huang, B. Shi, W. Lu, R., et al. “A novel coronavirus from patients with pneumonia in China, 2019”, New England journal of medicine, 382(8): 727–733, (2020).
- [2] Barth, R. F., Buja, L., Barth, A. L., Carpenter, D. E., and Parwani, A. V., “A Comparison of the Clinical, Viral, Pathologic, and Immunologic Features of Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus 2019 (COVID-19) Diseases”, Archives of Pathology & Laboratory Medicine, 145(10): 1194–1211, (2021).
- [3] Cui, J., Li, F., and Shi, Z. L., "Origin and evolution of pathogenic coronaviruses", Nature reviews microbiology, 17(3): 181-192, (2019).
- [4] Wong, C. K., Lau, K. T., Au, I. C., Xiong, X., Lau, E. H., and Cowling, B. J., "Clinical improvement, outcomes, antiviral activity, and costs associated with early treatment with remdesivir for patients with coronavirus disease 2019 (COVID-19)", Clinical Infectious Diseases, 74(8): 1450-1458, (2022).
- [5] Ravi, V., Narasimhan, H., Chakraborty, C., and Pham, T. D., "Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images", Multimedia systems, 28(4): 1401-1415, (2022).
- [6] Verma, A., Amin, S. B., Naeem, M., & Saha, M., "Detecting COVID-19 from chest computed tomography scans using AI-driven android application", Computers in biology and medicine, 143: 105298, (2022).
- [7] Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., et al., "A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19)", European radiology, 31: 6096-6104, (2021).
- [8] Nanda, A., Barik, R. C., and Bakshi, S., "SSO-RBNN driven brain tumor classification with Saliency-K-means segmentation technique", Biomedical Signal Processing and Control, 81: 104356, (2023).
- [9] Littrup, P. J., Freeman-Gibb, L., Andea, A., White, M., Amerikia, K. C., Bouwman, D., Harb, T., and Sakr, W., "Cryotherapy for breast fibroadenomas", Radiology, 234(1): 63-72, (2005).
- [10] Darıcı, M. B., "Performance analysis of combination of cnn-based models with adaboost algorithm to diagnose covid-19 disease", Journal of Polytechnic, 26(1): 179-190, (2023).
- [11] Zieleskiewicz, L., Markarian, T., Lopez, A., Taguet, C., Mohammedi, N., Boucekine, M., Baumstarck, K., Besch, G., Mathon, G., Duclos, G., et al., "Comparative study of lung ultrasound and chest computed tomography scan in the assessment of severity of confirmed COVID-19 pneumonia", Intensive care medicine, 46: 1707-1713, (2020).
- [12] Khan, E., Rehman, M. Z. U., Ahmed, F., Alfouzan, F. A., Alzahrani, N. M., and Ahmad, J., "Chest X-ray classification for the detection of COVID-19 using deep learning techniques", Sensors, 22(3): 1211, (2022).
- [13] Castiglioni, I., Rundo, L., Codari, M., Di Leo, G., Salvatore, C., Interlenghi, M., Gallivanone, F., Cozzi, A., D’Amico, N. C., Sardanelli, F., "AI applications to medical images: From machine learning to deep learning", Physica medica, 83: 9-24, (2021).
- [14] Çelikdemir, M. Y., and Akbal, A., "A Deep Learning Based on Automatic Cerebral Aneurysm Detection in Brain Computed Tomography Angiography Scan Images", Journal of Polytechnic, 28(1): 147-157, (2025).
- [15] Marentakis, P., Karaiskos, P., Kouloulias, V., Kelekis, N., Argentos, S., Oikonomopoulos, N., and Loukas, C., "Lung cancer histology classification from CT images based on radiomics and deep learning models", Medical & biological engineering & computing, 59: 215-226, (2021).
- [16] Roy, S., Meena, T., and Lim, S. J., "Demystifying supervised learning in healthcare 4.0: A new reality of transforming diagnostic medicine", Diagnostics, 12(10): 2549, (2022).
- [17] Dündar Ö., and Koçer S., “Pneumonia detection from pediatric lung X-ray images using artificial neural networks”, Journal of Polytechnic, 27(5): 1843-1852, (2024).
- [18] Kaya, Y., Yiner, Z., Kaya, M., and Kuncan, F., "A new approach to COVID-19 detection from X-ray images using angle transformation with GoogleNet and LSTM", Measurement Science and Technology, 33(12): 124011, (2022).
- [19] Ismael, A. M., and Şengür, A., "Deep learning approaches for COVID-19 detection based on chest X-ray images", Expert Systems with Applications, 164: 114054, (2021).
- [20] Yılmaz, A. "Diagnosing COVID-19 from X-Ray images with using multi-channel CNN architecture", Journal of the Faculty of Engineering and Architecture of Gazi University, 36(4): 1761-1774, (2021).
- [21] Nair, R., Alhudhaif, A., Koundal, D., Doewes, R. I., and Sharma, P., "Deep learning-based COVID-19 detection system using pulmonary CT scans", Turkish Journal of Electrical Engineering and Computer Sciences, 29(8): 2716-2727, (2021).
- [22] Khan, M. A., Azhar, M., Ibrar, K., Alqahtani, A., Alsubai, S., Binbusayyis, A., Kim, Y.J., and Chang, B., "COVID‐19 classification from chest X‐ray images: a framework of deep explainable artificial intelligence", Computational Intelligence and Neuroscience, 2022(1): 4254631, (2022).
- [23] Iqbal, A., Usman, M., and Ahmed, Z., "Tuberculosis chest X-ray detection using CNN-based hybrid segmentation and classification approach," Biomedical Signal Processing and Control, 84: 104667, (2023).
- [24] Hamza, A., Attique Khan, M., Wang, S. H., Alqahtani, A., Alsubai, S., Binbusayyis, A., Hussein, H.S., Martinetz, T.M., and Alshazly, H., "COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization", Frontiers in Public Health, 10: 948205, (2022).
- [25] Fan, X., Feng, X., Dong, Y., and Hou, H., "COVID-19 CT image recognition algorithm based on transformer and CNN", Displays, 72: 102150, (2022).
- [26] Garg, A., Salehi, S., La Rocca, M., Garner, R., and Duncan, D., "Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT", Expert Systems with Applications, 195: 116540, (2022).
- [27] Reshan, M. S. A., Gill, K. S., Anand, V., Gupta, S., Alshahrani, H., Sulaiman, A., and Shaikh, A., "Detection of pneumonia from chest X-ray images utilizing mobilenet model", Healthcare, 11(11): 1561, (2023).
- [28] AbdElhamid, A. A., AbdElhalim, E., Mohamed, M. A., and Khalifa, F., "Multi-classification of chest X-rays for COVID-19 diagnosis using deep learning algorithms", Applied Sciences, 12(4): 2080, (2022).
- [29] Gampala, V., Rathan, K., S, C. N., Shajin, F. H., and Rajesh, P., "Diagnosis of COVID-19 patients by adapting hyper parametertuned deep belief network using hosted cuckoo optimization algorithm", Electromagnetic Biology and Medicine, 41(3): 257-271, (2022).
- [30] Thakur, S., and Kumar, A., "X-ray and CT-scan-based automated detection and classification of covid-19 using convolutional neural networks (CNN)", Biomedical Signal Processing and Control, 69: 102920, (2021).
- [31] Shah, V., Keniya, R., Shridharani, A., Punjabi, M., Shah, J., and Mehendale, N., "Diagnosis of COVID-19 using CT scan images and deep learning techniques", Emergency Radiology, 28: 497-505, (2021).
- [32] Muhammad, G., and Hossain, M. S., "COVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound images", Information Fusion, 72: 80-88, (2021).
- [33] Hussain, E., Hasan, M., Rahman, M. A., Lee, I., Tamanna, T., and Parvez, M. Z., "CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images", Chaos, Solitons & Fractals, 142: 110495, (2021).
- [34] Ezzat, D., Hassanien, A. E., and Ella, H. A., "An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization", Applied Soft Computing, 98: 106742, (2021).
- [35] Nandhini Abirami, R., Durai Raj Vincent, P. M., Rajinikanth, V., and Kadry, S., "COVID-19 classification using medical image synthesis by generative adversarial networks", International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 30(03): 385-401, (2022).
- [36] Abirami, N., Vincent, D. R., and Kadry, S., "P2P-COVID-GAN: Classification and segmentation of COVID-19 lung infections from CT images using GAN", International Journal of Data Warehousing and Mining, 17(4): 101-118, (2021).
- [37] Khan, I. U., and Aslam, N., "A deep-learning-based framework for automated diagnosis of COVID-19 using X-ray images", Information, 11(9): 419, (2020).
- [38] Ullah, N., Khan, J. A., Almakdi, S., Khan, M. S., Alshehri, M., Alboaneen, D., and Raza, A., "A novel CovidDetNet deep learning model for effective COVID-19 infection detection using chest radiograph images", Applied Sciences, 12(12): 6269, (2022).
- [39] Arman, S. E., Rahman, S., and Deowan, S. A., "COVIDXception-Net: A Bayesian optimization-based deep learning approach to diagnose COVID-19 from X-Ray images", SN Computer Science, 3(2): 115, (2022).
- [40] Abad, M., Casas-Roma, J., and Prados, F., "Generalizable disease detection using model ensemble on chest X-ray images", Scientific Reports, 14(1): 5890, (2024).
- [41] Singh, T., Mishra, S., Kalra, R., Satakshi, Kumar, M., and Kim, T., "COVID-19 severity detection using chest X-ray segmentation and deep learning", Scientific Reports, 14(1): 19846, (2024).
- [42] Aljawarneh, S. A., and Al-Quraan, R., "Pneumonia detection using enhanced convolutional neural network model on chest x-ray images", Big Data, 13(1): 16-29, (2025).
- [43] Prince, R., Niu, Z., Khan, Z. Y., Chambua, J., Yousif, A., Patrick, N., and Jennifer, B., "Interpretable COVID-19 chest X-ray detection based on handcrafted feature analysis and sequential neural network", Computers in Biology and Medicine, 186: 109659, (2025).
- [44] El-Ghandour, M., and Obayya, M. I., "Pneumonia detection in chest x-ray images using an optimized ensemble with XGBoost classifier", Multimedia Tools and Applications, 84(9): 5491-5521, (2025).
- [45] https://www.sirm.org/category/senza-categoria/covid-19/, “COVID-19 Database”, (2020).