Research Article
BibTex RIS Cite

Formik asitten düşük voltajlı hidrojen üretimi: Farklı elektroliz parametrelerinin rolü

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1655878

Abstract

Bu çalışma, hidrojen üretimi amacıyla formik asidin elektrolizini incelemekte olup, çeşitli parametrelerin ve malzemelerin etkilerine odaklanmaktadır. İlk aşamada, 20°C’de Pd/Pt elektrotlar kullanılarak tek bölmeli bir elektroliz hücresinde deneyler gerçekleştirilmiştir. Formik asit konsantrasyonu, elektrolit türleri ve elektrot malzemelerinin akım yoğunluğu üzerindeki etkisi analiz edilmiştir. En yüksek akım yoğunluğu (1 V'ta 5,18 mA/cm²), elektrolit olarak H₂SO₄ kullanıldığında elde edilmiştir. Zn/Zn elektrot çifti, Pd/Pt’ye kıyasla dört kat daha yüksek akım yoğunluğu sağlayarak önemli bir üstünlük göstermiştir. İkinci aşamada ise, düşük voltaj (2 V) ve sıcaklık (50°C) koşullarında hidrojen üretimi için elektroliz şartları optimize edilmiştir. Katotta saf hidrojen elde edilerek bu koşullarda başarılı bir hidrojen üretimi doğrulanmıştır. 2 V'ta Faradik verim %92’ye ulaşmış ve yüksek bir hidrojen üretim hızı sağlanmıştır. Uygun maliyetli Zn elektrot kullanımı ve yumuşak elektroliz koşulları, sürecin uygulanabilirliğini ve sürdürülebilirliğini artırmaktadır. Bu bulgular, formik asit elektrolizinin saf hidrojen üretimi için ekonomik ve sürdürülebilir bir alternatif sunduğunu ve umut vadeden, verimli bir yöntem olduğunu ortaya koymaktadır.

References

  • [1] Megía, P. J., Vizcaíno, A. J., Calles, J. A., Carrero, A., "Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review", Energy & Fuels, 35(20): 16403-16415, (2021).
  • [2] Tashie-Lewis, B. C., Nnabuife, S. G., "Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review", Chemical Engineering Journal Advances, 8, 100172, (2021).
  • [3] Gielen, D., Taibi, E., Miranda, R. Hydrogen: A reviewable energy perspective: Report prepared for the 2nd hydrogen energy ministerial meeting in tokyo, japan, (2019).
  • [4] Büyük, P., Eryaşar, A., "Energy and exergy analysis of green hydrogen production". Politeknik Dergisi, 461-468, (2025).
  • [5] Öztan, H., Çapoğlu, İ. K., Uysal, D., Doğan, Ö., "A parametric study to optimize the temperature of hazelnut and walnut shell gasification for hydrogen and methane production", Bioresource Technology Reports, 23, 101581, (2023).
  • [6] Yao, D., Liu, C., Zhang, Y., Wang, S., Nie, Y., Qiao, M., Zhu, D., "Modulating Selectivity and Stability of the Direct Seawater Electrolysis for Sustainable Green Hydrogen Production", Materials Today Catalysis, 100089, (2025).
  • [7] Franco, A., Giovannini, C., "Recent and future advances in water electrolysis for green hydrogen generation: Critical analysis and perspectives", Sustainability, 15(24), 16917, (2023).
  • [8] Dash, S., Singh, A., Jose, S., Elangovan, D., Surapraraju, S. K., Natarajan, S. K., "Advances in green hydrogen production through alkaline water electrolysis: A comprehensive review", International Journal of Hydrogen Energy, 83, 614-629, (2024).
  • [9] Anwar, S., Khan, F., Zhang, Y., Djire, A., "Recent development in electrocatalysts for hydrogen production through water electrolysis", International Journal of Hydrogen Energy, 46(63), 32284-32317, (2021).
  • [10] Emam, A. S., Hamdan, M. O., Abu-Nabah, B. A., Elnajjar, E., "A review on recent trends, challenges, and innovations in alkaline water electrolysis", International Journal of Hydrogen Energy, 64, 599-625, (2024).
  • [11] Arshad, F., Haq, T. u., Hussain, I., Sher, F., "Recent advances in electrocatalysts toward alcohol-assisted, energy-saving hydrogen production", ACS Applied Energy Materials, 4(9), 8685-8701, (2021).
  • [12] Bambagioni, V., Bevilacqua, M., Bianchini, C., Filippi, J., Lavacchi, A., Marchionni, A., Vizza, F., Shen, P. K., "Self‐sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis", ChemSusChem, 3(7), 851-855, (2010).
  • [13] Ju, H., Giddey, S., Badwal, S. P., "The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis", Electrochimica Acta, 229, 39-47, (2017).
  • [14] Cárdenas-Acero, A., Álvarez-Romero, C., Daza, C., Álvarez, A., Baquero, E. A., "Exploring heterogeneous Ru-based catalysts: CO2 hydrogenation towards formic acid, formaldehyde, and methanol", Discover Catalysis, 1(1), 4, (2024).
  • [15] Chen, X., Liu, Y., Wu, J., "Sustainable production of formic acid from biomass and carbon dioxide", Molecular Catalysis, 483, 110716, (2020).
  • [16] Preuster, P., Albert, J., "Biogenic formic acid as a green hydrogen carrier", Energy Technology, 6(3), 501-509, (2018).
  • [17] Bulushev, D. A., Ross, J. R., "Towards sustainable production of formic acid", ChemSusChem, 11(5), 821-836, (2018).
  • [18] Kainth, S., Sharma, P., Pandey, O. P., "Green sorbents from agricultural wastes: A review of sustainable adsorption materials", Applied Surface Science Advances, 19, 100562, (2024).
  • [19] Hafeez, S., Harkou, E., Spanou, A., Al-Salem, S. M., Villa, A., Dimitratos, N., Manos, G., Constantinou, A., "Review on recent progress and reactor set-ups for hydrogen production from formic acid decomposition", Materials Today Chemistry, 26, 101120, (2022).
  • [20] Guo, W., Li, L., Li, L., Tian, S., Liu, S., Wu, Y., "Hydrogen production via electrolysis of aqueous formic acid solutions", International Journal of Hydrogen Energy, 36(16), 9415-9419, (2011).
  • [21] Li, Z., Xu, Q., "Metal-nanoparticle-catalyzed hydrogen generation from formic acid", Accounts of Chemical Research, 50(6), 1449-1458, (2017).
  • [22] Sordakis, K., Tang, C., Vogt, L. K., Junge, H., Dyson, P. J., Beller, M., Laurenczy, G., "Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols", Chemical reviews, 118(2), 372-433, (2018).
  • [23] Lv, C., Lou, P., Shi, C., Wang, R., Fu, Y., Gao, L., Wang, S., Li, Y., Zhang, C.,"Efficient hydrogen production via sunlight-driven thermal formic acid decomposition over a porous film of molybdenum carbide", Journal of Materials Chemistry A, 9(39), 22481-22488, (2021).
  • [24] Younas, M., Rezakazemi, M., Arbab, M. S., Shah, J., Rehman, W. U., "Green hydrogen storage and delivery: Utilizing highly active homogeneous and heterogeneous catalysts for formic acid dehydrogenation", International Journal of Hydrogen Energy, 47(22), 11694-11724, (2022).
  • [25] Tazikeh, S., Davoudi, A., Zendehboudi, S., Saady, N. M. C., Albayati, T. M., "Predicting hydrogen production from formic acid dehydrogenation using smart connectionist models", International Journal of Hydrogen Energy, 109, 574-590, (2025).
  • [26] Wen, H., Liu, Y., Liu, S., Peng, Z., Wu, X., Yuan, H., Jiang, J., Li, B., "Heterogeneous catalysis in production and utilization of formic acid for renewable energy", Small, 20(18), 2305405, (2024).
  • [27] Grasemann, M., Laurenczy, G., "Formic acid as a hydrogen source–recent developments and future trends" Energy & Environmental Science, 5(8), 8171-8181, (2012).
  • [28] Al-Nayili, A., Majdi, H. S., Albayati, T. M., Saady, N. M. C., "Formic acid dehydrogenation using noble-metal nanoheterogeneous catalysts: Towards sustainable hydrogen-based energy", Catalysts, 12(3), 324, (2022).
  • [29] Asefa, T., Koh, K., Yoon, C. W., "CO2‐mediated H2 storage‐release with nanostructured catalysts: recent progresses, challenges, and perspectives", Advanced Energy Materials, 9(30), 1901158, (2019).
  • [30] Chaparro-Garnica, J. A., Navlani-García, M., Salinas-Torres, D., Morallón, E., Cazorla-Amorós, D., "H2 Production from Formic Acid Using Highly Stable Carbon-Supported Pd-Based Catalysts Derived from Soft-Biomass Residues: Effect of Heat Treatment and Functionalization of the Carbon Support", Materials, 14(21), 6506, (2021).
  • [31] Navlani-García, M., Salinas-Torres, D., Cazorla-Amorós, D., "Hydrogen production from formic acid attained by bimetallic heterogeneous PdAg catalytic systems", Energies, 12(21), 4027, (2019).
  • [32] Boddien, A., Loges, B., Junge, H., Gärtner, F., Noyes, J. R., Beller, M., "Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts", Advanced Synthesis & Catalysis, 351(14‐15), 2517-2520, (2009).
  • [33] Czaun, M., Goeppert, A., Kothandaraman, J., May, R. B., Haiges, R., Prakash, G. S., Olah, G. A., "Formic acid as a hydrogen storage medium: ruthenium-catalyzed generation of hydrogen from formic acid in emulsions", ACS catalysis, 4(1), 311-320, (2014).
  • [34] Strauss, S., Whitmire, K., Shriver, D., "Rhodium (I) catalyzed decomposition of formic acid", Journal of Organometallic Chemistry, 174(3), C59-C62, (1979).
  • [35] Hermosilla, P., Urriolabeitia, A., Iglesias, M., Polo, V., Casado, M. A., "Efficient solventless dehydrogenation of formic acid by a CNC-based rhodium catalyst", Inorganic Chemistry Frontiers, 9(17), 4538-4547, (2022).
  • [36] Boddien, A., Loges, B., Gärtner, F., Torborg, C., Fumino, K., Junge, H., Ludwig, R., Beller, M., "Iron-catalyzed hydrogen production from formic acid", Journal of the American Chemical Society, 132(26), 8924-8934, (2010).
  • [37] Zell, T., Butschke, B., Ben‐David, Y., Milstein, D., "Efficient hydrogen liberation from formic acid catalyzed by a well‐defined iron pincer complex under mild conditions", Chemistry–A European Journal, 19(25), 8068-8072, (2013).
  • [38] Bavykina, A., Goesten, M., Kapteijn, F., Makkee, M., Gascon, J., "Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst", ChemSusChem, 8(5), 809-812, (2015).
  • [39] Czaun, M., Kothandaraman, J., Goeppert, A., Yang, B., Greenberg, S., May, R. B., Olah, G. A., Prakash, G. S., "Iridium-catalyzed continuous hydrogen generation from formic acid and its subsequent utilization in a fuel cell: toward a carbon neutral chemical energy storage", ACS catalysis, 6(11), 7475-7484, (2016).
  • [40] Russo, D., Calabrese, M., Marotta, R., Andreozzi, R., Di Benedetto, A., "Thermodynamics of the cyclic formate/bicarbonate interconversion for hydrogen storage", International Journal of Hydrogen Energy, 47(73), 31370-31380, (2022).
  • [41] Rodriguez-Reinoso, F., "The role of carbon materials in heterogeneous catalysis", Carbon, 36(3), 159-175, (1998).
  • [42] Lam, E., Luong, J. H., "Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals", ACS catalysis, 4(10), 3393-3410, (2014).
  • [43] Enthaler, S., von Langermann, J., Schmidt, T., "Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage", Energy & Environmental Science, 3(9), 1207-1217, (2010).
  • [44] Li, Y., Yao, M.-S., He, Y., Du, S., "Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells: from Nano to Meter Scale Challenges", Nano-Micro Letters, 17(1), 148, (2025).
  • [45] Singh, A. K., Singh, S., Kumar, A., "Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system", Catalysis Science & Technology, 6(1), 12-40, (2016).
  • [46] Tang, W., Zhang, L., Qiu, T., Tan, H., Wang, Y., Liu, W., Li, Y., "Efficient conversion of biomass to formic acid coupled with low energy consumption hydrogen production from water electrolysis", Angewandte Chemie International Edition, 62(30), e202305843, (2023).
  • [47] Kiliç, E. Ö., Koparal, A. S., Öğütveren, Ü. B., "Hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte", Fuel Processing Technology, 90(1), 158-163, (2009).
  • [48] Ren, J.-T., Chen, L., Wang, H.-Y., Tian, W.-W., Yuan, Z.-Y., "Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices", Energy & Environmental Science, 17(1), 49-113, (2024).
  • [49] Dutta, I., Chatterjee, S., Cheng, H., Parsapur, R. K., Liu, Z., Li, Z., Ye, E., Kawanami, H., Low, J. S. C., Lai, Z., "Formic acid to power towards low‐carbon economy", Advanced Energy Materials, 12(15), 2103799, (2022).
  • [50] Lu, X., Leung, D. Y., Wang, H., Leung, M. K., Xuan, J., "Electrochemical reduction of carbon dioxide to formic acid", ChemElectroChem, 1(5), 836-849, (2014).
  • [51] Ramdin, M., Morrison, A. R., De Groen, M., Van Haperen, R., De Kler, R., Irtem, E., Laitinen, A. T., Van Den Broeke, L. J., Breugelmans, T., Trusler, J. M., "High-pressure electrochemical reduction of CO2 to formic acid/formate: effect of pH on the downstream separation process and economics", Industrial & Engineering Chemistry Research, 58(51), 22718-22740, (2019).
  • [52] Orlić, M., Hochenauer, C., Nagpal, R., Subotić, V., "Electrochemical reduction of CO2: A roadmap to formic and acetic acid synthesis for efficient hydrogen storage", Energy Conversion and Management, 314, 118601, (2024).
  • [53] Ewis, D., Arsalan, M., Khaled, M., Pant, D., Ba-Abbad, M. M., Amhamed, A., El-Naas, M. H., "Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation", Separation and Purification Technology, 316, 123811, (2023).
  • [54] Tasgin, B., İlbaş, M., "Pressure analysis investigation of PEM electrolyzer cell used for green hydrogen production", Journal of Polytechnic-Politeknik Dergisi, 26(4), 1533-1541, (2023).
  • [55] Zhigalenok, Y., Abdimomyn, S., Levi, M., Shpigel, N., Ryabicheva, M., Lepikhin, M., Galeyeva, A., Malchik, F., "Water activity: the key to unlocking high-voltage aqueous electrolytes", Journal of Materials Chemistry A, 12(48), 33855-33869, (2024).
  • [56] Kroll, F., Schörner, M., Schmidt, M., Kohler, F. T., Albert, J., Schühle, P., "Hydrogen production from wet biomass via a formic acid route under mild conditions", International Journal of Hydrogen Energy, 62, 959-968, (2024).
  • [57] Boddula, R., Lee, Y.-Y., Masimukku, S., Chang-Chien, G.-P., Pothu, R., Srivastava, R. K., Sarangi, P. K., Selvaraj, M., Basumatary, S., Al-Qahtani, N., "Sustainable hydrogen production: Solar-powered biomass conversion explored through (Photo) electrochemical advancements", Process Safety and Environmental Protection, (2024).
  • [58] Achour, M., Álvarez-Hernández, D., Ruiz-López, E., Megías-Sayago, C., Ammari, F., Ivanova, S., Centeno, M. Á., "Formic acid as renewable reagent and product in biomass upgrading", Tetrahedron Green Chem, 2, 100020, (2023).
  • [59] Saravanan, A., Vo, D.-V. N., Jeevanantham, S., Bhuvaneswari, V., Narayanan, V. A., Yaashikaa, P., Swetha, S., Reshma, B., "A comprehensive review on different approaches for CO2 utilization and conversion pathways", Chemical Engineering Science, 236, 116515. (2021).
  • [60] Wang, Z., Li, H., Dong, T., Geng, Y., Tian, X., Chang, R., Lai, J., Feng, S., Wang, L., "Efficient acidic CO2 electroreduction to formic acid by modulating electrode structure at industrial-level current", Chemical Engineering Journal, 489, 151238, (2024).
  • [61] Fernández-Caso, K., Díaz-Sainz, G., Alvarez-Guerra, M., Irabien, A., "Electroreduction of CO2: advances in the continuous production of formic acid and formate", ACS Energy Letters, 8(4), 1992-2024, (2023).
  • [62] Wang, S., Lu, A., Zhong, C.-J., "Hydrogen production from water electrolysis: role of catalysts", Nano Convergence, 8(1), 4, (2021).
  • [63] Goren, A. Y., Temiz, M., Erdemir, D., Dincer, I., "The role of effective catalysts for hydrogen production: A performance evaluation", Energy, 315, 134257, (2025).
  • [64] Tumiwa, J. R., Mizik, T., "Advancing nickel-based catalysts for enhanced hydrogen production: Innovations in electrolysis and catalyst design", International Journal of Hydrogen Energy, 109, 961-978, (2025).
  • [65] Vidal-Barreiro, I., Sánchez, P., de Lucas-Consuegra, A., Romero, A., "A New Doped Graphene-Based Catalyst for Hydrogen Evolution Reaction Under Low-Electrolyte Concentration and Biomass-Rich Environments", Energy & Fuels, (2025).
  • [66] Folkman, S. J., González-Cobos, J., Giancola, S., Sánchez-Molina, I., Galán-Mascarós, J. R., "Benchmarking catalysts for formic acid/formate electrooxidation", Molecules, 26(16), 4756, (2021).
  • [67] Chen, A., Ostrom, C., "Palladium-based nanomaterials: synthesis and electrochemical applications", Chemical Reviews, 115(21), 11999-12044, (2015).
  • [68] Rego de Vasconcelos, B., Lavoie, J.-M., "Recent advances in power-to-X technology for the production of fuels and chemicals", Frontiers in chemistry, 7, 392, (2019).
  • [69] Yasin, M. C., Johar, M., Gupta, A., Shahgaldi, S., "A comprehensive review of the material innovations and corrosion mitigation strategies for PEMWE bipolar plates", International Journal of Hydrogen Energy, 88, 726-747, (2024).
  • [70] Nnabuife, S. G., Hamzat, A. K., Whidborne, J., Kuang, B., Jenkins, K. W., "Integration of renewable energy sources in tandem with electrolysis: A technology review for green hydrogen production", International Journal of Hydrogen Energy, (2024).
  • [71] Proietto, F., Rinicella, R., Galia, A., Scialdone, O., "Electrochemical conversion of CO2 to formic acid using a Sn based cathode: Combined effect of temperature and pressure", Journal of CO2 Utilization, 67, 102338, (2023).
  • [72] Vos, R. E., Kolmeijer, K. E., Jacobs, T. S., van der Stam, W., Weckhuysen, B. M., Koper, M. T., "How temperature affects the selectivity of the electrochemical CO2 reduction on copper", ACS catalysis, 13(12), 8080-8091, (2023).
  • [73] Yörük, Ö., Uysal, D., Doğan, Ö. M., "Carbon-assisted hydrogen production via electrolysis at intermediate temperatures: Impact of mineral composition, functional groups, and membrane effects on current density", Fuel, 380, 133268, (2025).
  • [74] Qiao, H., Han, M., Ouyang, S., Zheng, Z., Ouyang, J., "An integrated lignocellulose biorefinery process: two-step sequential treatment with formic acid for efficiently producing ethanol and furfural from corn cobs", Renewable Energy, 191, 775-784, (2022).
  • [75] Li, Z., Xu, Y., Li, R., Jia, M., Wang, Q., Chen, Y., Cai, R., Han, Z., "Impact of the water evaporation on the heat and moisture transfer in a high-temperature underground roadway", Case Studies in Thermal Engineering, 28, 101551, (2021).
  • [76] Yıldız, M. G., Yörük, Ö., Uysal, D., Doğan, Ö. M., "Investigation of Hydrogen Production via Black Water Electrolysis", Journal of Polytechnic, 28(2), 585-594, (2025).
  • [77] Yagizatli, Y., Ar, I., "Novel fluoroboric acid additive for blend membrane to be used in PEM fuel cell, characterization studies, and performance test", Journal of Polymers and the Environment, 32(8), 3569-3590, (2024).
  • [78] Tan, H., Zhao, S., Ali, S. E., Zheng, S., Alanazi, A. K., Wang, R., Zhang, H., Abo-Dief, H. M., Xu, B. B., Algadi, H., "Perfluorosulfonic acid proton exchange membrane with double proton site side chain for high-performance fuel cells at low humidity", Journal of Materials Science & Technology, 166, 155-163, (2023).
  • [79] Ito, H., Maeda, T., Nakano, A., Takenaka, H., "Properties of Nafion membranes under PEM water electrolysis conditions", International Journal of Hydrogen Energy, 36(17), 10527-10540, (2011).
  • [80] Kusoglu, A., Savagatrup, S., Clark, K. T., Weber, A. Z., "Role of Mechanical Factors in Controlling the Structure–Function Relationship of PFSA Ionomers", Macromolecules, 45(18), 7467–7476, (2012).
  • [81] Ma, M., Shen, L., Zhao, Z., Guo, P., Liu, J., Xu, B., Zhang, Z., Zhang, Y., Zhao, L., Wang, Z., "Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer", EScience, 100254, (2024).
  • [82] Xu, Z., Qi, Z., He, C., Kaufman, A., "Combined activation methods for proton-exchange membrane fuel cells", Journal of Power Sources, 156(2), 315-320, (2006).
  • [83] Lufrano, E., Simari, C., Di Vona, M. L., Nicotera, I., Narducci, R., "How the morphology of nafion-based membranes affects proton transport", Polymers, 13(3), 359, (2021).
  • [84] Yagizatli, Y., Ulas, B., Sahin, A., Ar, I., "Preparation and Characterization of SPEEK–PVA Blend Membrane Additives with Colloidal Silica for Proton Exchange Membrane Fuel Cell", Journal of Polymers and the Environment, 32(9), 4699-4715, (2024).
  • [85] Kuwertz, R., Kirstein, C., Turek, T., Kunz, U., "Influence of acid pretreatment on ionic conductivity of Nafion® membranes", Journal of Membrane Science, 500, 225-235, (2016).
  • [86] Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., Iriyama, Y., Abe, T., Ogumi, Z., "Durability of perfluorinated ionomer membrane against hydrogen peroxide", Journal of Power Sources, 158(2), 1222-1228, (2006).
  • [87] Tang, H., Peikang, S., Wang, F., Pan, M., "A degradation study of Nafion proton exchange membrane of PEM fuel cells", Journal of Power Sources, 170(1), 85-92, (2007).
  • [88] Kortlever, R., Balemans, C., Kwon, Y., Koper, M. T., "Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst", Catalysis Today, 244, 58-62, (2015).
  • [89] Yörük, Ö., Yıldız, M. G., Uysal, D., Doğan, Ö. M., Uysal, B. Z., "Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: Parametric studies using single-chamber cell", International Journal of Hydrogen Energy, 48(11), 4173-4181, (2023).
  • [90] Bodard, A., Chen, Z., ELJarray, O., Zhang, G., "Green Hydrogen Production by Low‐Temperature Membrane‐Engineered Water Electrolyzers, and Regenerative Fuel Cells", Small Methods, 8(12), 2400574, (2024).
  • [91] Charisiou, N. D., Siakavelas, G. I., Papageridis, K. N., Motta, D., Dimitratos, N., Sebastian, V., Polychronopoulou, K., Goula, M. A., "The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2O3-γ-Al2O3 catalysts for hydrogen production via the steam reforming of glycerol", Catalysts, 10(7), 790, (2020).
  • [92] Yan, H., Li, S., Zhong, J., Li, B., "An electrochemical perspective of aqueous zinc metal anode", Nano-Micro Letters, 16(1), 15, (2024).
  • [93] Chen, S., Ouyang, K., Liu, Y., Qin, H., Cui, M., Liu, A., Wang, Y., Zhang, K., Huang, Y., "Strong Metal‐Support Interaction to Invert Hydrogen Evolution Overpotential of Cu Coating for High‐Coulombic‐Efficiency Stable Zn Anode in Aqueous Zn‐Ion Batteries", Advanced Materials, 2417775, (2025).
  • [94] Wang, Y., Jia, S., Wu, J., Wang, X., Bai, Y., "Two-Step Water Splitting for Hydrogen Production Based on Zinc Deposition and Dissolution", Renewables, 2(6), 414-420, (2024).
  • [95] Qiu, D., Li, B., Zhao, C., Dang, J., Chen, G., Qiu, H., Miao, H., "A review on zinc electrodes in alkaline electrolyte: Current challenges and optimization strategies", Energy Storage Materials, 61, 102903, (2023).
  • [96] Helliwell, M., Helliwell, J., Kaucic, V., Zabukovec Logar, N., Teat, S., Warren, J., Dodson, E., "Determination of zinc incorporation in the Zn-substituted gallophosphate ZnULM-5 by multiple wavelength anomalous dispersion techniques", Structural Science, 66(3), 345-357, (2010).
  • [97] Hu, R.-p., Yu, Y.-h., WU, L., Li, K., Liao, H., Qian, Z., "Preparation of high purity zinc phosphate by precipitation transformation method", Mod. Chem. Ind., 30(11), 48-51, (2010).
  • [98] Marshall, A., Haverkamp, R., "Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell", International Journal of Hydrogen Energy, 33(17), 4649-4654, (2008).
  • [99] Yıldız, M. G., Yörük, Ö., Uysal, D., Doğan, Ö. M., Uysal, B. Z., "Parametric study on electrochemical reforming of glycerol for hydrogen production", International Journal of Hydrogen Energy, 47(95), 40196-40203, (2022).
  • [100] Sanchez, C., Espinos, F. J., Barjola, A., Escorihuela, J., Compañ, V., "Hydrogen production from methanol–water solution and pure water electrolysis using nanocomposite perfluorinated sulfocationic membranes modified by polyaniline", Polymers, 14(21), 4500, (2022).
  • [101] Liang, S., Huang, L., Gao, Y., Wang, Q., Liu, B., "Electrochemical reduction of CO2 to CO over transition metal/N‐doped carbon catalysts: the active sites and reaction mechanism", Advanced Science, 8(24), 2102886, (2021).
  • [102] Larrazábal, G. O., Martín, A. J., Mitchell, S., Hauert, R., Pérez-Ramírez, J., "Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: catalyst evolution is the key", ACS catalysis, 6(9), 6265-6274.
  • [103] Zou, X., Gu, J., "Strategies for efficient CO2 electroreduction in acidic conditions", Chinese Journal of Catalysis, 52, 14-31, (2023).
  • [104] Li, F.-Z., Qin, H.-G., Zhang, H.-L., Yue, X., Fu, L.-K., Xu, B., Lin, M., Gu, J." "Another role of CO-formation catalyst in acidic tandem CO2 electroreduction: Local pH modulator", Joule, 8(6), 1772-1789, (2024).
  • [105] Vass, Á., Kormányos, A., Kószó, Z., Endrodi, B., Janáky, C., "Anode catalysts in CO2 electrolysis: challenges and untapped opportunities", ACS catalysis, 12(2), 1037-1051, (2022).

Low-voltage hydrogen production from formic acid: The role of different electrolysis parameters

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1655878

Abstract

This study investigates the electrolysis of formic acid for hydrogen production, focusing on the effects of various parameters and materials. In the first phase, experiments were conducted using a single-compartment electrolysis cell with Pd/Pt electrodes at 20°C. The effect of formic acid concentration, electrolytes, and electrode materials on current density was analyzed. The highest current density (5.18 mA/cm² at 1 V) was achieved with H₂SO₄ as an electrolyte. The Zn/Zn electrode pair significantly outperformed Pd/Pt, yielding four times higher current density. In the second phase, electrolysis conditions for hydrogen production at low voltage (2 V) and temperature (50°C) were optimized. Pure hydrogen was obtained at the cathode, confirming the successful hydrogen production under these conditions. Faradic efficiency reached 92% at 2 V, with a high hydrogen production rate. The use of cost-effective Zn electrode, along with mild electrolysis conditions, enhances the practicality and sustainability of the process. These findings highlight that formic acid electrolysis is a promising and efficient method for pure hydrogen production, offering an economical and sustainable alternative for hydrogen generation.

References

  • [1] Megía, P. J., Vizcaíno, A. J., Calles, J. A., Carrero, A., "Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review", Energy & Fuels, 35(20): 16403-16415, (2021).
  • [2] Tashie-Lewis, B. C., Nnabuife, S. G., "Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review", Chemical Engineering Journal Advances, 8, 100172, (2021).
  • [3] Gielen, D., Taibi, E., Miranda, R. Hydrogen: A reviewable energy perspective: Report prepared for the 2nd hydrogen energy ministerial meeting in tokyo, japan, (2019).
  • [4] Büyük, P., Eryaşar, A., "Energy and exergy analysis of green hydrogen production". Politeknik Dergisi, 461-468, (2025).
  • [5] Öztan, H., Çapoğlu, İ. K., Uysal, D., Doğan, Ö., "A parametric study to optimize the temperature of hazelnut and walnut shell gasification for hydrogen and methane production", Bioresource Technology Reports, 23, 101581, (2023).
  • [6] Yao, D., Liu, C., Zhang, Y., Wang, S., Nie, Y., Qiao, M., Zhu, D., "Modulating Selectivity and Stability of the Direct Seawater Electrolysis for Sustainable Green Hydrogen Production", Materials Today Catalysis, 100089, (2025).
  • [7] Franco, A., Giovannini, C., "Recent and future advances in water electrolysis for green hydrogen generation: Critical analysis and perspectives", Sustainability, 15(24), 16917, (2023).
  • [8] Dash, S., Singh, A., Jose, S., Elangovan, D., Surapraraju, S. K., Natarajan, S. K., "Advances in green hydrogen production through alkaline water electrolysis: A comprehensive review", International Journal of Hydrogen Energy, 83, 614-629, (2024).
  • [9] Anwar, S., Khan, F., Zhang, Y., Djire, A., "Recent development in electrocatalysts for hydrogen production through water electrolysis", International Journal of Hydrogen Energy, 46(63), 32284-32317, (2021).
  • [10] Emam, A. S., Hamdan, M. O., Abu-Nabah, B. A., Elnajjar, E., "A review on recent trends, challenges, and innovations in alkaline water electrolysis", International Journal of Hydrogen Energy, 64, 599-625, (2024).
  • [11] Arshad, F., Haq, T. u., Hussain, I., Sher, F., "Recent advances in electrocatalysts toward alcohol-assisted, energy-saving hydrogen production", ACS Applied Energy Materials, 4(9), 8685-8701, (2021).
  • [12] Bambagioni, V., Bevilacqua, M., Bianchini, C., Filippi, J., Lavacchi, A., Marchionni, A., Vizza, F., Shen, P. K., "Self‐sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis", ChemSusChem, 3(7), 851-855, (2010).
  • [13] Ju, H., Giddey, S., Badwal, S. P., "The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis", Electrochimica Acta, 229, 39-47, (2017).
  • [14] Cárdenas-Acero, A., Álvarez-Romero, C., Daza, C., Álvarez, A., Baquero, E. A., "Exploring heterogeneous Ru-based catalysts: CO2 hydrogenation towards formic acid, formaldehyde, and methanol", Discover Catalysis, 1(1), 4, (2024).
  • [15] Chen, X., Liu, Y., Wu, J., "Sustainable production of formic acid from biomass and carbon dioxide", Molecular Catalysis, 483, 110716, (2020).
  • [16] Preuster, P., Albert, J., "Biogenic formic acid as a green hydrogen carrier", Energy Technology, 6(3), 501-509, (2018).
  • [17] Bulushev, D. A., Ross, J. R., "Towards sustainable production of formic acid", ChemSusChem, 11(5), 821-836, (2018).
  • [18] Kainth, S., Sharma, P., Pandey, O. P., "Green sorbents from agricultural wastes: A review of sustainable adsorption materials", Applied Surface Science Advances, 19, 100562, (2024).
  • [19] Hafeez, S., Harkou, E., Spanou, A., Al-Salem, S. M., Villa, A., Dimitratos, N., Manos, G., Constantinou, A., "Review on recent progress and reactor set-ups for hydrogen production from formic acid decomposition", Materials Today Chemistry, 26, 101120, (2022).
  • [20] Guo, W., Li, L., Li, L., Tian, S., Liu, S., Wu, Y., "Hydrogen production via electrolysis of aqueous formic acid solutions", International Journal of Hydrogen Energy, 36(16), 9415-9419, (2011).
  • [21] Li, Z., Xu, Q., "Metal-nanoparticle-catalyzed hydrogen generation from formic acid", Accounts of Chemical Research, 50(6), 1449-1458, (2017).
  • [22] Sordakis, K., Tang, C., Vogt, L. K., Junge, H., Dyson, P. J., Beller, M., Laurenczy, G., "Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols", Chemical reviews, 118(2), 372-433, (2018).
  • [23] Lv, C., Lou, P., Shi, C., Wang, R., Fu, Y., Gao, L., Wang, S., Li, Y., Zhang, C.,"Efficient hydrogen production via sunlight-driven thermal formic acid decomposition over a porous film of molybdenum carbide", Journal of Materials Chemistry A, 9(39), 22481-22488, (2021).
  • [24] Younas, M., Rezakazemi, M., Arbab, M. S., Shah, J., Rehman, W. U., "Green hydrogen storage and delivery: Utilizing highly active homogeneous and heterogeneous catalysts for formic acid dehydrogenation", International Journal of Hydrogen Energy, 47(22), 11694-11724, (2022).
  • [25] Tazikeh, S., Davoudi, A., Zendehboudi, S., Saady, N. M. C., Albayati, T. M., "Predicting hydrogen production from formic acid dehydrogenation using smart connectionist models", International Journal of Hydrogen Energy, 109, 574-590, (2025).
  • [26] Wen, H., Liu, Y., Liu, S., Peng, Z., Wu, X., Yuan, H., Jiang, J., Li, B., "Heterogeneous catalysis in production and utilization of formic acid for renewable energy", Small, 20(18), 2305405, (2024).
  • [27] Grasemann, M., Laurenczy, G., "Formic acid as a hydrogen source–recent developments and future trends" Energy & Environmental Science, 5(8), 8171-8181, (2012).
  • [28] Al-Nayili, A., Majdi, H. S., Albayati, T. M., Saady, N. M. C., "Formic acid dehydrogenation using noble-metal nanoheterogeneous catalysts: Towards sustainable hydrogen-based energy", Catalysts, 12(3), 324, (2022).
  • [29] Asefa, T., Koh, K., Yoon, C. W., "CO2‐mediated H2 storage‐release with nanostructured catalysts: recent progresses, challenges, and perspectives", Advanced Energy Materials, 9(30), 1901158, (2019).
  • [30] Chaparro-Garnica, J. A., Navlani-García, M., Salinas-Torres, D., Morallón, E., Cazorla-Amorós, D., "H2 Production from Formic Acid Using Highly Stable Carbon-Supported Pd-Based Catalysts Derived from Soft-Biomass Residues: Effect of Heat Treatment and Functionalization of the Carbon Support", Materials, 14(21), 6506, (2021).
  • [31] Navlani-García, M., Salinas-Torres, D., Cazorla-Amorós, D., "Hydrogen production from formic acid attained by bimetallic heterogeneous PdAg catalytic systems", Energies, 12(21), 4027, (2019).
  • [32] Boddien, A., Loges, B., Junge, H., Gärtner, F., Noyes, J. R., Beller, M., "Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts", Advanced Synthesis & Catalysis, 351(14‐15), 2517-2520, (2009).
  • [33] Czaun, M., Goeppert, A., Kothandaraman, J., May, R. B., Haiges, R., Prakash, G. S., Olah, G. A., "Formic acid as a hydrogen storage medium: ruthenium-catalyzed generation of hydrogen from formic acid in emulsions", ACS catalysis, 4(1), 311-320, (2014).
  • [34] Strauss, S., Whitmire, K., Shriver, D., "Rhodium (I) catalyzed decomposition of formic acid", Journal of Organometallic Chemistry, 174(3), C59-C62, (1979).
  • [35] Hermosilla, P., Urriolabeitia, A., Iglesias, M., Polo, V., Casado, M. A., "Efficient solventless dehydrogenation of formic acid by a CNC-based rhodium catalyst", Inorganic Chemistry Frontiers, 9(17), 4538-4547, (2022).
  • [36] Boddien, A., Loges, B., Gärtner, F., Torborg, C., Fumino, K., Junge, H., Ludwig, R., Beller, M., "Iron-catalyzed hydrogen production from formic acid", Journal of the American Chemical Society, 132(26), 8924-8934, (2010).
  • [37] Zell, T., Butschke, B., Ben‐David, Y., Milstein, D., "Efficient hydrogen liberation from formic acid catalyzed by a well‐defined iron pincer complex under mild conditions", Chemistry–A European Journal, 19(25), 8068-8072, (2013).
  • [38] Bavykina, A., Goesten, M., Kapteijn, F., Makkee, M., Gascon, J., "Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst", ChemSusChem, 8(5), 809-812, (2015).
  • [39] Czaun, M., Kothandaraman, J., Goeppert, A., Yang, B., Greenberg, S., May, R. B., Olah, G. A., Prakash, G. S., "Iridium-catalyzed continuous hydrogen generation from formic acid and its subsequent utilization in a fuel cell: toward a carbon neutral chemical energy storage", ACS catalysis, 6(11), 7475-7484, (2016).
  • [40] Russo, D., Calabrese, M., Marotta, R., Andreozzi, R., Di Benedetto, A., "Thermodynamics of the cyclic formate/bicarbonate interconversion for hydrogen storage", International Journal of Hydrogen Energy, 47(73), 31370-31380, (2022).
  • [41] Rodriguez-Reinoso, F., "The role of carbon materials in heterogeneous catalysis", Carbon, 36(3), 159-175, (1998).
  • [42] Lam, E., Luong, J. H., "Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals", ACS catalysis, 4(10), 3393-3410, (2014).
  • [43] Enthaler, S., von Langermann, J., Schmidt, T., "Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage", Energy & Environmental Science, 3(9), 1207-1217, (2010).
  • [44] Li, Y., Yao, M.-S., He, Y., Du, S., "Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells: from Nano to Meter Scale Challenges", Nano-Micro Letters, 17(1), 148, (2025).
  • [45] Singh, A. K., Singh, S., Kumar, A., "Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system", Catalysis Science & Technology, 6(1), 12-40, (2016).
  • [46] Tang, W., Zhang, L., Qiu, T., Tan, H., Wang, Y., Liu, W., Li, Y., "Efficient conversion of biomass to formic acid coupled with low energy consumption hydrogen production from water electrolysis", Angewandte Chemie International Edition, 62(30), e202305843, (2023).
  • [47] Kiliç, E. Ö., Koparal, A. S., Öğütveren, Ü. B., "Hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte", Fuel Processing Technology, 90(1), 158-163, (2009).
  • [48] Ren, J.-T., Chen, L., Wang, H.-Y., Tian, W.-W., Yuan, Z.-Y., "Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices", Energy & Environmental Science, 17(1), 49-113, (2024).
  • [49] Dutta, I., Chatterjee, S., Cheng, H., Parsapur, R. K., Liu, Z., Li, Z., Ye, E., Kawanami, H., Low, J. S. C., Lai, Z., "Formic acid to power towards low‐carbon economy", Advanced Energy Materials, 12(15), 2103799, (2022).
  • [50] Lu, X., Leung, D. Y., Wang, H., Leung, M. K., Xuan, J., "Electrochemical reduction of carbon dioxide to formic acid", ChemElectroChem, 1(5), 836-849, (2014).
  • [51] Ramdin, M., Morrison, A. R., De Groen, M., Van Haperen, R., De Kler, R., Irtem, E., Laitinen, A. T., Van Den Broeke, L. J., Breugelmans, T., Trusler, J. M., "High-pressure electrochemical reduction of CO2 to formic acid/formate: effect of pH on the downstream separation process and economics", Industrial & Engineering Chemistry Research, 58(51), 22718-22740, (2019).
  • [52] Orlić, M., Hochenauer, C., Nagpal, R., Subotić, V., "Electrochemical reduction of CO2: A roadmap to formic and acetic acid synthesis for efficient hydrogen storage", Energy Conversion and Management, 314, 118601, (2024).
  • [53] Ewis, D., Arsalan, M., Khaled, M., Pant, D., Ba-Abbad, M. M., Amhamed, A., El-Naas, M. H., "Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation", Separation and Purification Technology, 316, 123811, (2023).
  • [54] Tasgin, B., İlbaş, M., "Pressure analysis investigation of PEM electrolyzer cell used for green hydrogen production", Journal of Polytechnic-Politeknik Dergisi, 26(4), 1533-1541, (2023).
  • [55] Zhigalenok, Y., Abdimomyn, S., Levi, M., Shpigel, N., Ryabicheva, M., Lepikhin, M., Galeyeva, A., Malchik, F., "Water activity: the key to unlocking high-voltage aqueous electrolytes", Journal of Materials Chemistry A, 12(48), 33855-33869, (2024).
  • [56] Kroll, F., Schörner, M., Schmidt, M., Kohler, F. T., Albert, J., Schühle, P., "Hydrogen production from wet biomass via a formic acid route under mild conditions", International Journal of Hydrogen Energy, 62, 959-968, (2024).
  • [57] Boddula, R., Lee, Y.-Y., Masimukku, S., Chang-Chien, G.-P., Pothu, R., Srivastava, R. K., Sarangi, P. K., Selvaraj, M., Basumatary, S., Al-Qahtani, N., "Sustainable hydrogen production: Solar-powered biomass conversion explored through (Photo) electrochemical advancements", Process Safety and Environmental Protection, (2024).
  • [58] Achour, M., Álvarez-Hernández, D., Ruiz-López, E., Megías-Sayago, C., Ammari, F., Ivanova, S., Centeno, M. Á., "Formic acid as renewable reagent and product in biomass upgrading", Tetrahedron Green Chem, 2, 100020, (2023).
  • [59] Saravanan, A., Vo, D.-V. N., Jeevanantham, S., Bhuvaneswari, V., Narayanan, V. A., Yaashikaa, P., Swetha, S., Reshma, B., "A comprehensive review on different approaches for CO2 utilization and conversion pathways", Chemical Engineering Science, 236, 116515. (2021).
  • [60] Wang, Z., Li, H., Dong, T., Geng, Y., Tian, X., Chang, R., Lai, J., Feng, S., Wang, L., "Efficient acidic CO2 electroreduction to formic acid by modulating electrode structure at industrial-level current", Chemical Engineering Journal, 489, 151238, (2024).
  • [61] Fernández-Caso, K., Díaz-Sainz, G., Alvarez-Guerra, M., Irabien, A., "Electroreduction of CO2: advances in the continuous production of formic acid and formate", ACS Energy Letters, 8(4), 1992-2024, (2023).
  • [62] Wang, S., Lu, A., Zhong, C.-J., "Hydrogen production from water electrolysis: role of catalysts", Nano Convergence, 8(1), 4, (2021).
  • [63] Goren, A. Y., Temiz, M., Erdemir, D., Dincer, I., "The role of effective catalysts for hydrogen production: A performance evaluation", Energy, 315, 134257, (2025).
  • [64] Tumiwa, J. R., Mizik, T., "Advancing nickel-based catalysts for enhanced hydrogen production: Innovations in electrolysis and catalyst design", International Journal of Hydrogen Energy, 109, 961-978, (2025).
  • [65] Vidal-Barreiro, I., Sánchez, P., de Lucas-Consuegra, A., Romero, A., "A New Doped Graphene-Based Catalyst for Hydrogen Evolution Reaction Under Low-Electrolyte Concentration and Biomass-Rich Environments", Energy & Fuels, (2025).
  • [66] Folkman, S. J., González-Cobos, J., Giancola, S., Sánchez-Molina, I., Galán-Mascarós, J. R., "Benchmarking catalysts for formic acid/formate electrooxidation", Molecules, 26(16), 4756, (2021).
  • [67] Chen, A., Ostrom, C., "Palladium-based nanomaterials: synthesis and electrochemical applications", Chemical Reviews, 115(21), 11999-12044, (2015).
  • [68] Rego de Vasconcelos, B., Lavoie, J.-M., "Recent advances in power-to-X technology for the production of fuels and chemicals", Frontiers in chemistry, 7, 392, (2019).
  • [69] Yasin, M. C., Johar, M., Gupta, A., Shahgaldi, S., "A comprehensive review of the material innovations and corrosion mitigation strategies for PEMWE bipolar plates", International Journal of Hydrogen Energy, 88, 726-747, (2024).
  • [70] Nnabuife, S. G., Hamzat, A. K., Whidborne, J., Kuang, B., Jenkins, K. W., "Integration of renewable energy sources in tandem with electrolysis: A technology review for green hydrogen production", International Journal of Hydrogen Energy, (2024).
  • [71] Proietto, F., Rinicella, R., Galia, A., Scialdone, O., "Electrochemical conversion of CO2 to formic acid using a Sn based cathode: Combined effect of temperature and pressure", Journal of CO2 Utilization, 67, 102338, (2023).
  • [72] Vos, R. E., Kolmeijer, K. E., Jacobs, T. S., van der Stam, W., Weckhuysen, B. M., Koper, M. T., "How temperature affects the selectivity of the electrochemical CO2 reduction on copper", ACS catalysis, 13(12), 8080-8091, (2023).
  • [73] Yörük, Ö., Uysal, D., Doğan, Ö. M., "Carbon-assisted hydrogen production via electrolysis at intermediate temperatures: Impact of mineral composition, functional groups, and membrane effects on current density", Fuel, 380, 133268, (2025).
  • [74] Qiao, H., Han, M., Ouyang, S., Zheng, Z., Ouyang, J., "An integrated lignocellulose biorefinery process: two-step sequential treatment with formic acid for efficiently producing ethanol and furfural from corn cobs", Renewable Energy, 191, 775-784, (2022).
  • [75] Li, Z., Xu, Y., Li, R., Jia, M., Wang, Q., Chen, Y., Cai, R., Han, Z., "Impact of the water evaporation on the heat and moisture transfer in a high-temperature underground roadway", Case Studies in Thermal Engineering, 28, 101551, (2021).
  • [76] Yıldız, M. G., Yörük, Ö., Uysal, D., Doğan, Ö. M., "Investigation of Hydrogen Production via Black Water Electrolysis", Journal of Polytechnic, 28(2), 585-594, (2025).
  • [77] Yagizatli, Y., Ar, I., "Novel fluoroboric acid additive for blend membrane to be used in PEM fuel cell, characterization studies, and performance test", Journal of Polymers and the Environment, 32(8), 3569-3590, (2024).
  • [78] Tan, H., Zhao, S., Ali, S. E., Zheng, S., Alanazi, A. K., Wang, R., Zhang, H., Abo-Dief, H. M., Xu, B. B., Algadi, H., "Perfluorosulfonic acid proton exchange membrane with double proton site side chain for high-performance fuel cells at low humidity", Journal of Materials Science & Technology, 166, 155-163, (2023).
  • [79] Ito, H., Maeda, T., Nakano, A., Takenaka, H., "Properties of Nafion membranes under PEM water electrolysis conditions", International Journal of Hydrogen Energy, 36(17), 10527-10540, (2011).
  • [80] Kusoglu, A., Savagatrup, S., Clark, K. T., Weber, A. Z., "Role of Mechanical Factors in Controlling the Structure–Function Relationship of PFSA Ionomers", Macromolecules, 45(18), 7467–7476, (2012).
  • [81] Ma, M., Shen, L., Zhao, Z., Guo, P., Liu, J., Xu, B., Zhang, Z., Zhang, Y., Zhao, L., Wang, Z., "Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer", EScience, 100254, (2024).
  • [82] Xu, Z., Qi, Z., He, C., Kaufman, A., "Combined activation methods for proton-exchange membrane fuel cells", Journal of Power Sources, 156(2), 315-320, (2006).
  • [83] Lufrano, E., Simari, C., Di Vona, M. L., Nicotera, I., Narducci, R., "How the morphology of nafion-based membranes affects proton transport", Polymers, 13(3), 359, (2021).
  • [84] Yagizatli, Y., Ulas, B., Sahin, A., Ar, I., "Preparation and Characterization of SPEEK–PVA Blend Membrane Additives with Colloidal Silica for Proton Exchange Membrane Fuel Cell", Journal of Polymers and the Environment, 32(9), 4699-4715, (2024).
  • [85] Kuwertz, R., Kirstein, C., Turek, T., Kunz, U., "Influence of acid pretreatment on ionic conductivity of Nafion® membranes", Journal of Membrane Science, 500, 225-235, (2016).
  • [86] Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., Iriyama, Y., Abe, T., Ogumi, Z., "Durability of perfluorinated ionomer membrane against hydrogen peroxide", Journal of Power Sources, 158(2), 1222-1228, (2006).
  • [87] Tang, H., Peikang, S., Wang, F., Pan, M., "A degradation study of Nafion proton exchange membrane of PEM fuel cells", Journal of Power Sources, 170(1), 85-92, (2007).
  • [88] Kortlever, R., Balemans, C., Kwon, Y., Koper, M. T., "Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst", Catalysis Today, 244, 58-62, (2015).
  • [89] Yörük, Ö., Yıldız, M. G., Uysal, D., Doğan, Ö. M., Uysal, B. Z., "Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: Parametric studies using single-chamber cell", International Journal of Hydrogen Energy, 48(11), 4173-4181, (2023).
  • [90] Bodard, A., Chen, Z., ELJarray, O., Zhang, G., "Green Hydrogen Production by Low‐Temperature Membrane‐Engineered Water Electrolyzers, and Regenerative Fuel Cells", Small Methods, 8(12), 2400574, (2024).
  • [91] Charisiou, N. D., Siakavelas, G. I., Papageridis, K. N., Motta, D., Dimitratos, N., Sebastian, V., Polychronopoulou, K., Goula, M. A., "The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2O3-γ-Al2O3 catalysts for hydrogen production via the steam reforming of glycerol", Catalysts, 10(7), 790, (2020).
  • [92] Yan, H., Li, S., Zhong, J., Li, B., "An electrochemical perspective of aqueous zinc metal anode", Nano-Micro Letters, 16(1), 15, (2024).
  • [93] Chen, S., Ouyang, K., Liu, Y., Qin, H., Cui, M., Liu, A., Wang, Y., Zhang, K., Huang, Y., "Strong Metal‐Support Interaction to Invert Hydrogen Evolution Overpotential of Cu Coating for High‐Coulombic‐Efficiency Stable Zn Anode in Aqueous Zn‐Ion Batteries", Advanced Materials, 2417775, (2025).
  • [94] Wang, Y., Jia, S., Wu, J., Wang, X., Bai, Y., "Two-Step Water Splitting for Hydrogen Production Based on Zinc Deposition and Dissolution", Renewables, 2(6), 414-420, (2024).
  • [95] Qiu, D., Li, B., Zhao, C., Dang, J., Chen, G., Qiu, H., Miao, H., "A review on zinc electrodes in alkaline electrolyte: Current challenges and optimization strategies", Energy Storage Materials, 61, 102903, (2023).
  • [96] Helliwell, M., Helliwell, J., Kaucic, V., Zabukovec Logar, N., Teat, S., Warren, J., Dodson, E., "Determination of zinc incorporation in the Zn-substituted gallophosphate ZnULM-5 by multiple wavelength anomalous dispersion techniques", Structural Science, 66(3), 345-357, (2010).
  • [97] Hu, R.-p., Yu, Y.-h., WU, L., Li, K., Liao, H., Qian, Z., "Preparation of high purity zinc phosphate by precipitation transformation method", Mod. Chem. Ind., 30(11), 48-51, (2010).
  • [98] Marshall, A., Haverkamp, R., "Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell", International Journal of Hydrogen Energy, 33(17), 4649-4654, (2008).
  • [99] Yıldız, M. G., Yörük, Ö., Uysal, D., Doğan, Ö. M., Uysal, B. Z., "Parametric study on electrochemical reforming of glycerol for hydrogen production", International Journal of Hydrogen Energy, 47(95), 40196-40203, (2022).
  • [100] Sanchez, C., Espinos, F. J., Barjola, A., Escorihuela, J., Compañ, V., "Hydrogen production from methanol–water solution and pure water electrolysis using nanocomposite perfluorinated sulfocationic membranes modified by polyaniline", Polymers, 14(21), 4500, (2022).
  • [101] Liang, S., Huang, L., Gao, Y., Wang, Q., Liu, B., "Electrochemical reduction of CO2 to CO over transition metal/N‐doped carbon catalysts: the active sites and reaction mechanism", Advanced Science, 8(24), 2102886, (2021).
  • [102] Larrazábal, G. O., Martín, A. J., Mitchell, S., Hauert, R., Pérez-Ramírez, J., "Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: catalyst evolution is the key", ACS catalysis, 6(9), 6265-6274.
  • [103] Zou, X., Gu, J., "Strategies for efficient CO2 electroreduction in acidic conditions", Chinese Journal of Catalysis, 52, 14-31, (2023).
  • [104] Li, F.-Z., Qin, H.-G., Zhang, H.-L., Yue, X., Fu, L.-K., Xu, B., Lin, M., Gu, J." "Another role of CO-formation catalyst in acidic tandem CO2 electroreduction: Local pH modulator", Joule, 8(6), 1772-1789, (2024).
  • [105] Vass, Á., Kormányos, A., Kószó, Z., Endrodi, B., Janáky, C., "Anode catalysts in CO2 electrolysis: challenges and untapped opportunities", ACS catalysis, 12(2), 1037-1051, (2022).
There are 105 citations in total.

Details

Primary Language English
Subjects Electrochemical Technologies
Journal Section Research Article
Authors

Özgü Yörük 0000-0001-7768-0313

Duygu Uysal 0000-0002-8963-6026

Özkan Murat Doğan 0000-0003-3801-3141

Early Pub Date April 26, 2025
Publication Date October 18, 2025
Submission Date March 11, 2025
Acceptance Date April 14, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Yörük, Ö., Uysal, D., & Doğan, Ö. M. (2025). Low-voltage hydrogen production from formic acid: The role of different electrolysis parameters. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1655878
AMA Yörük Ö, Uysal D, Doğan ÖM. Low-voltage hydrogen production from formic acid: The role of different electrolysis parameters. Politeknik Dergisi. Published online April 1, 2025:1-1. doi:10.2339/politeknik.1655878
Chicago Yörük, Özgü, Duygu Uysal, and Özkan Murat Doğan. “Low-Voltage Hydrogen Production from Formic Acid: The Role of Different Electrolysis Parameters”. Politeknik Dergisi, April (April 2025), 1-1. https://doi.org/10.2339/politeknik.1655878.
EndNote Yörük Ö, Uysal D, Doğan ÖM (April 1, 2025) Low-voltage hydrogen production from formic acid: The role of different electrolysis parameters. Politeknik Dergisi 1–1.
IEEE Ö. Yörük, D. Uysal, and Ö. M. Doğan, “Low-voltage hydrogen production from formic acid: The role of different electrolysis parameters”, Politeknik Dergisi, pp. 1–1, April2025, doi: 10.2339/politeknik.1655878.
ISNAD Yörük, Özgü et al. “Low-Voltage Hydrogen Production from Formic Acid: The Role of Different Electrolysis Parameters”. Politeknik Dergisi. April2025. 1-1. https://doi.org/10.2339/politeknik.1655878.
JAMA Yörük Ö, Uysal D, Doğan ÖM. Low-voltage hydrogen production from formic acid: The role of different electrolysis parameters. Politeknik Dergisi. 2025;:1–1.
MLA Yörük, Özgü et al. “Low-Voltage Hydrogen Production from Formic Acid: The Role of Different Electrolysis Parameters”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1655878.
Vancouver Yörük Ö, Uysal D, Doğan ÖM. Low-voltage hydrogen production from formic acid: The role of different electrolysis parameters. Politeknik Dergisi. 2025:1-.