Research Article
BibTex RIS Cite

Modification of Wood Surfaces with Nanomaterials Having Hydrophobic and Hydrophilic Properties

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1665234

Abstract

Surface modification of wood materials covers various methods to increase durability, performance, aesthetics and lifespan. These techniques, which are widely used in areas such as furniture, structural wood and decoration, are further developed with the innovations offered by nanotechnology. In particular, nanotechnology offers an effective solution in creating stain-proof and hygienic surfaces by applying hydrophobic coatings to wood surfaces, preventing water permeation and extending their lifespan.
In this study, three different nanocoating solutions (AS-54, HL-31 and SH-5) were created to increase the hydrophobic properties of wood surfaces and applied to Scots pine (Pinus sytvestris L.), Turkish beech (Fagus orientalis Lipsky) and cedar (Cedar libani A. Rich.) wood species. Then, color, gloss, contact angle (wettability) and FTIR tests of the coated surfaces were performed. Experimental results show that SH-5 nano solution synthesis applied to oriental beech samples gives the best result with a contact angle of 103,51°, creating a hydrophobic (water repellent) and stain-resistant surface. This research highlights the critical role of nanomaterials in protecting wooden surfaces and ensuring hygiene conditions.

References

  • [1] Ateş M., Yılmaz E., Kar B., Kars Durukan İ., “Synthesis and characterization silver nanoparticles and coating with chitosan”, Journal of Polytechnic, 24(4): 1401-1408, (2021).
  • [2] Wang S., Li B., Zheng J., Surat'man N., Wu J., Wang N., Liu Y., “Nanotechnology in covalent adaptable networks: from nanocomposites to surface patterning”, ACS Materials Letters, 5(2): 608–628, (2023).
  • [3] Bhure R., Mahapatro A., “Silicon based nanocoatings on metal alloys and their role in surface engineering”, Silicon, 2(3): 117–151, (2010).
  • [4] Si Y., Guo Z., “Superhydrophobic nanocoatings: from materials to fabrications and to applications”, Nanoscale, 7(14): 5922–5946, (2015).
  • [5] Liu W., Ping W., Liu X., “Tribological characteristics of nanostructured ceramic coatings deposited by plasma spraying”, Advanced Materials Research, 472–475: 2752–2755, (2012).
  • [6] Kummer K., Taylor E., Webster T., “Anodized nanotubular TiO₂ structures significantly improve titanium implant materials in vitro and in vivo”, Journal of Nanomedicine & Nanotechnology, 3(4), (2012).
  • [7] Baena R., Rizzo S., Manzo L., Lupi S., “Nanofeatured titanium surfaces for dental implantology: biological effects, biocompatibility, and safety”, Journal of Nanomaterials, 2017: 1–18, (2017).
  • [8] Yalınkılıç A. C., Aksoy E., Atar M., Keskin H., “Effect of the bleaching and varnishing processon the collapse time in combustion of wood material, Part 1”, Journal of Polytechnic, 24(2): 637-643, (2021).
  • [9] Özder C., Atar M., “The effects of some antibacterial nano materials on varnish layer hardness”, Journal of Polytechnic, 26(4): 1705-1714, (2023).
  • [10] Singh S., Mishra S., Song J., Pramanik M., Padmanabhan P., Gulyás B., “Nanotechnology facilitated cultured neuronal network and its applications”, International Journal of Molecular Sciences, 22(11): 5552, (2021).
  • [11] Zhao F., Wang J., Guo H., Liu S., He W., “The effects of surface properties of nanostructured bone repair materials on their performances”, Journal of Nanomaterials, (2015).
  • [12] Tuong V., Huyen N., Kien N., Dien N., “Durable epoxy-ZnO coating for improvement of hydrophobicity and color stability of wood”, Polymers, 11(9): 1388, (2019).
  • [13] Zheng R., Tshabalala M., Li Q., Wang H., “Weathering performance of wood coated with a combination of alkoxysilanes and rutile TiO₂ hierarchical nanostructures”, BioResources, 10(4), (2015).
  • [14] Zheng R., Tshabalala M., Li Q., Wang H., “Photocatalytic degradation of wood coated with a combination of rutile TiO₂ nanostructures and low-surface free-energy materials”, BioResources, 11(1), (2016).
  • [15] Nagarajappa G., Nair S., Srinivas K., Rao A., Pandey K., “Photostability of acetylated wood coated with nano zinc oxide”, Maderas Ciencia y Tecnología, (ahead), (2020).
  • [16] Roşu L., Varganici C., Mustaţă F., Roşu D., Roșca I., Rusu T., “Epoxy coatings based on modified vegetable oils for wood surface protection against fungal degradation”, ACS Applied Materials & Interfaces, 12(12): 14443–14458, (2020).
  • [17] Cīrule D., Sansonetti E., Andersone I., Kuka E., Andersons B., “Enhancing thermally modified wood stability against discoloration”, Coatings, 11(1): 81, (2021).
  • [18] Baysal E., Tomak E., Ozbey M., Altin E., “Surface properties of impregnated and varnished Scotch pine wood after accelerated weathering”, Coloration Technology, 130(2): 140–146, (2013).
  • [19] Miklečić J., “The effect of polyacrylate emulsion coating with unmodified and modified nano-TiO₂ on weathering resistance of untreated and heat-treated wood”, Polymers, 16(4): 511, (2024).
  • [20] Riedl B., Angel C., Prégent J., Blanchet P., Stafford L., Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion”, BioResources, 9(3), (2014).
  • [21] Qin Y., Yan X., “Preparation of healable shellac microcapsules and color-changing microcapsules and their effect on properties of surface coatings on hard broad-leaved wood substrates”, Coatings, 12(7): 991, (2022).
  • [22] Davis K., Leavengood S., Morrell J., “Performance of exterior wood coatings in temperate climates”, Coatings, 11(3): 325, (2021).
  • [23] Atilgan A., Atar M., Peker H., “Application of environmentally friendly organic upper surface process material on wood and its effect on some surface properties”, Journal of the Faculty of Engineering and Architecture of Gazi University, 37(1): 107–120, (2022).
  • [24] Özder C., Atar M., Atılgan A., “Determination of the antimicrobial effect of varnishes modified with nano particles on the surface of wood materials”, BioResources, 19(4): 8935–8946, (2024).
  • [25] Atilgan A., “Effect of silane-siloxane based water-repellent impregnant on the dimensional stability of some wood species”, BioResources, 18(4): 7172–7185, (2023).
  • [26] TSE ISO 3129, “Wood- Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens,” (2021).
  • [27] TS ISO 13061-1, “Physical and mechanical properties of wood- Test methods for small clear wood specimens- Part 1: Determination of moisture content for physical and mechanical tests”, (2021).
  • [28] Dyo, “Dewilux Püskürtme Tabancası Hareket Etüdü”, Teknik Bülten, İzmir, (1990).
  • [29] ASTM D 3023, “Determination of Resistance of Factory Applied Coatings on Wood Products of Stain and Reagents”, American Society for Testing and Materials, U.S.A., (1981).
  • [30] ASTM–D 2224–2 e1, Standard Practice for Calculation or Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates, American Society for Testing and Materials, U.S.A., (2003).
  • [31] Hunter, R.S. and Harold, R.W., “The Measurement of Appearance. John Wiley & Sons,” Hoboken, (1987).
  • [32] Oliver, J.R., Blakeney, A.B., Allen, H.M., “Measurement of Flour Color in Color Space Parameters”, Cereal Chem, 69, 546-551, (1992).
  • [33] Johansson D., “Strenght and colour response of solid wood to heat treatment,” Licentiate Thesis, Luleå Technology University, Department of Skellefteå Campus, Swedish, (2005).
  • [34] TS EN ISO 2813, “Paints and varnishes- Determination of gloss value at 20 degrees, 60 degrees and 85 degrees”, (2014).
  • [35] ASTM D523-14, “Standard test method for specular gloss”, (2018).
  • [36] Berns, R.S., “Billmeyer and Saltzman’s Principles of Color Technology”, 3rd Edition, Wiley, 71-74, (2000).
  • [37] Wei, X., Niu, X., “Recent Advances in Superhydrophobic Surfaces and Applications on Wood”, Polymers, 15(7), 1-18, (2023).
  • [38] Jiang, J., Jingjing D., Huixian L., Changtong M., and Xuemei G., “Hydrophobicity Improvement on Wood for a Better Application of This Bio-Based Material” Coatings, 12(10): 1465, (2022).
  • [39] Tuong V.M., Chu T.V., “Improvement of color stability of Acacia hybrid wood by TiO₂ nano sol impregnation”, BioResources, 10(3): 5417–5425, (2015).
  • [40] Tuong V. M., Huyen N. V., Kien N. T., Dien N. V., “Durable Epoxy@ZnO coating for improvement of hydrophobicity and color stability of wood”, Polymers, 11(9): 1388, (2019).
  • [41] Jia Z., Bao W., Tao C., et al., “Reversibly photochromic wood constructed by depositing microencapsulated / polydimethylsiloxane composite coating”, Journal of Forestry Research, 33: 1409–1418, (2022).
  • [42] Khorshidi F.H., Najafi S.K., Najafi F., Pizzi A., Sandberg D., Behrooz R., “Color and gloss changes of a lignin-based polyurethane coating under accelerated weathering”, Journal of Renewable Materials, 12(2): 305–323, (2024).
  • [43] Wu L., Chen M., Xu J., Fang F., Li S., Zhu W., “Nano-SiO₂-modified waterborne acrylic acid resin coating for wood wallboard”, Coatings, 12(10): 1453, (2022).

Hidrofobik ve Hidrofilik Özelliklere Sahip Nano Malzemelerin Ahşap Yüzeylerdeki Modifikasyonu

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1665234

Abstract

Ahşap malzemelerin yüzey modifikasyonu, dayanıklılık, performans, estetik ve kullanım ömrünü artırmaya yönelik çeşitli yöntemleri kapsar. Mobilya, yapısal ahşap ve dekorasyon gibi alanlarda yaygın olarak kullanılan bu teknikler, nanoteknolojinin sunduğu yeniliklerle daha da gelişmektedir. Özellikle nanoteknoloji, ahşap yüzeylere hidrofobik kaplamalar uygulayarak su geçirimini engelleyip ömrünü uzatırken, leke tutmaz ve hijyenik yüzeyler oluşturmada etkili bir çözüm sunmaktadır.
Bu çalışmada, Ahşap yüzeylerin hidrofobik özelliklerini artırmak için üç farklı nano kaplama çözeltisi (AS-54, HL-31 ve SH-5) oluşturuldu ve sarıçam (Pinus sytvestris L.), Doğu kayını (Fagus orientalis Lipsky) ve Sedir (C. libani A. Rich.) ağaç türlerine uygulandı. Deney sonuçları, doğu kayını örneklerine uygulanan SH-5 nano solüsyon sentezinin 103,51° temas açısı ile en iyi sonucu verdiğini, hidrofobik (su itici) ve leke tutmaz bir yüzey oluşturduğunu göstermektedir. Bu araştırma, ahşap yüzeylerin korunması ve hijyen koşullarının sağlanmasında nano malzemelerin kritik rolünü vurgulamaktadır.

References

  • [1] Ateş M., Yılmaz E., Kar B., Kars Durukan İ., “Synthesis and characterization silver nanoparticles and coating with chitosan”, Journal of Polytechnic, 24(4): 1401-1408, (2021).
  • [2] Wang S., Li B., Zheng J., Surat'man N., Wu J., Wang N., Liu Y., “Nanotechnology in covalent adaptable networks: from nanocomposites to surface patterning”, ACS Materials Letters, 5(2): 608–628, (2023).
  • [3] Bhure R., Mahapatro A., “Silicon based nanocoatings on metal alloys and their role in surface engineering”, Silicon, 2(3): 117–151, (2010).
  • [4] Si Y., Guo Z., “Superhydrophobic nanocoatings: from materials to fabrications and to applications”, Nanoscale, 7(14): 5922–5946, (2015).
  • [5] Liu W., Ping W., Liu X., “Tribological characteristics of nanostructured ceramic coatings deposited by plasma spraying”, Advanced Materials Research, 472–475: 2752–2755, (2012).
  • [6] Kummer K., Taylor E., Webster T., “Anodized nanotubular TiO₂ structures significantly improve titanium implant materials in vitro and in vivo”, Journal of Nanomedicine & Nanotechnology, 3(4), (2012).
  • [7] Baena R., Rizzo S., Manzo L., Lupi S., “Nanofeatured titanium surfaces for dental implantology: biological effects, biocompatibility, and safety”, Journal of Nanomaterials, 2017: 1–18, (2017).
  • [8] Yalınkılıç A. C., Aksoy E., Atar M., Keskin H., “Effect of the bleaching and varnishing processon the collapse time in combustion of wood material, Part 1”, Journal of Polytechnic, 24(2): 637-643, (2021).
  • [9] Özder C., Atar M., “The effects of some antibacterial nano materials on varnish layer hardness”, Journal of Polytechnic, 26(4): 1705-1714, (2023).
  • [10] Singh S., Mishra S., Song J., Pramanik M., Padmanabhan P., Gulyás B., “Nanotechnology facilitated cultured neuronal network and its applications”, International Journal of Molecular Sciences, 22(11): 5552, (2021).
  • [11] Zhao F., Wang J., Guo H., Liu S., He W., “The effects of surface properties of nanostructured bone repair materials on their performances”, Journal of Nanomaterials, (2015).
  • [12] Tuong V., Huyen N., Kien N., Dien N., “Durable epoxy-ZnO coating for improvement of hydrophobicity and color stability of wood”, Polymers, 11(9): 1388, (2019).
  • [13] Zheng R., Tshabalala M., Li Q., Wang H., “Weathering performance of wood coated with a combination of alkoxysilanes and rutile TiO₂ hierarchical nanostructures”, BioResources, 10(4), (2015).
  • [14] Zheng R., Tshabalala M., Li Q., Wang H., “Photocatalytic degradation of wood coated with a combination of rutile TiO₂ nanostructures and low-surface free-energy materials”, BioResources, 11(1), (2016).
  • [15] Nagarajappa G., Nair S., Srinivas K., Rao A., Pandey K., “Photostability of acetylated wood coated with nano zinc oxide”, Maderas Ciencia y Tecnología, (ahead), (2020).
  • [16] Roşu L., Varganici C., Mustaţă F., Roşu D., Roșca I., Rusu T., “Epoxy coatings based on modified vegetable oils for wood surface protection against fungal degradation”, ACS Applied Materials & Interfaces, 12(12): 14443–14458, (2020).
  • [17] Cīrule D., Sansonetti E., Andersone I., Kuka E., Andersons B., “Enhancing thermally modified wood stability against discoloration”, Coatings, 11(1): 81, (2021).
  • [18] Baysal E., Tomak E., Ozbey M., Altin E., “Surface properties of impregnated and varnished Scotch pine wood after accelerated weathering”, Coloration Technology, 130(2): 140–146, (2013).
  • [19] Miklečić J., “The effect of polyacrylate emulsion coating with unmodified and modified nano-TiO₂ on weathering resistance of untreated and heat-treated wood”, Polymers, 16(4): 511, (2024).
  • [20] Riedl B., Angel C., Prégent J., Blanchet P., Stafford L., Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion”, BioResources, 9(3), (2014).
  • [21] Qin Y., Yan X., “Preparation of healable shellac microcapsules and color-changing microcapsules and their effect on properties of surface coatings on hard broad-leaved wood substrates”, Coatings, 12(7): 991, (2022).
  • [22] Davis K., Leavengood S., Morrell J., “Performance of exterior wood coatings in temperate climates”, Coatings, 11(3): 325, (2021).
  • [23] Atilgan A., Atar M., Peker H., “Application of environmentally friendly organic upper surface process material on wood and its effect on some surface properties”, Journal of the Faculty of Engineering and Architecture of Gazi University, 37(1): 107–120, (2022).
  • [24] Özder C., Atar M., Atılgan A., “Determination of the antimicrobial effect of varnishes modified with nano particles on the surface of wood materials”, BioResources, 19(4): 8935–8946, (2024).
  • [25] Atilgan A., “Effect of silane-siloxane based water-repellent impregnant on the dimensional stability of some wood species”, BioResources, 18(4): 7172–7185, (2023).
  • [26] TSE ISO 3129, “Wood- Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens,” (2021).
  • [27] TS ISO 13061-1, “Physical and mechanical properties of wood- Test methods for small clear wood specimens- Part 1: Determination of moisture content for physical and mechanical tests”, (2021).
  • [28] Dyo, “Dewilux Püskürtme Tabancası Hareket Etüdü”, Teknik Bülten, İzmir, (1990).
  • [29] ASTM D 3023, “Determination of Resistance of Factory Applied Coatings on Wood Products of Stain and Reagents”, American Society for Testing and Materials, U.S.A., (1981).
  • [30] ASTM–D 2224–2 e1, Standard Practice for Calculation or Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates, American Society for Testing and Materials, U.S.A., (2003).
  • [31] Hunter, R.S. and Harold, R.W., “The Measurement of Appearance. John Wiley & Sons,” Hoboken, (1987).
  • [32] Oliver, J.R., Blakeney, A.B., Allen, H.M., “Measurement of Flour Color in Color Space Parameters”, Cereal Chem, 69, 546-551, (1992).
  • [33] Johansson D., “Strenght and colour response of solid wood to heat treatment,” Licentiate Thesis, Luleå Technology University, Department of Skellefteå Campus, Swedish, (2005).
  • [34] TS EN ISO 2813, “Paints and varnishes- Determination of gloss value at 20 degrees, 60 degrees and 85 degrees”, (2014).
  • [35] ASTM D523-14, “Standard test method for specular gloss”, (2018).
  • [36] Berns, R.S., “Billmeyer and Saltzman’s Principles of Color Technology”, 3rd Edition, Wiley, 71-74, (2000).
  • [37] Wei, X., Niu, X., “Recent Advances in Superhydrophobic Surfaces and Applications on Wood”, Polymers, 15(7), 1-18, (2023).
  • [38] Jiang, J., Jingjing D., Huixian L., Changtong M., and Xuemei G., “Hydrophobicity Improvement on Wood for a Better Application of This Bio-Based Material” Coatings, 12(10): 1465, (2022).
  • [39] Tuong V.M., Chu T.V., “Improvement of color stability of Acacia hybrid wood by TiO₂ nano sol impregnation”, BioResources, 10(3): 5417–5425, (2015).
  • [40] Tuong V. M., Huyen N. V., Kien N. T., Dien N. V., “Durable Epoxy@ZnO coating for improvement of hydrophobicity and color stability of wood”, Polymers, 11(9): 1388, (2019).
  • [41] Jia Z., Bao W., Tao C., et al., “Reversibly photochromic wood constructed by depositing microencapsulated / polydimethylsiloxane composite coating”, Journal of Forestry Research, 33: 1409–1418, (2022).
  • [42] Khorshidi F.H., Najafi S.K., Najafi F., Pizzi A., Sandberg D., Behrooz R., “Color and gloss changes of a lignin-based polyurethane coating under accelerated weathering”, Journal of Renewable Materials, 12(2): 305–323, (2024).
  • [43] Wu L., Chen M., Xu J., Fang F., Li S., Zhu W., “Nano-SiO₂-modified waterborne acrylic acid resin coating for wood wallboard”, Coatings, 12(10): 1453, (2022).
There are 43 citations in total.

Details

Primary Language English
Subjects Wood Physics and Mechanics
Journal Section Research Article
Authors

Abdi Atılgan 0000-0002-5893-2113

Oğuzhan Evcin 0009-0003-7919-0678

Early Pub Date July 17, 2025
Publication Date October 19, 2025
Submission Date April 9, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Atılgan, A., & Evcin, O. (2025). Modification of Wood Surfaces with Nanomaterials Having Hydrophobic and Hydrophilic Properties. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1665234
AMA Atılgan A, Evcin O. Modification of Wood Surfaces with Nanomaterials Having Hydrophobic and Hydrophilic Properties. Politeknik Dergisi. Published online July 1, 2025:1-1. doi:10.2339/politeknik.1665234
Chicago Atılgan, Abdi, and Oğuzhan Evcin. “Modification of Wood Surfaces With Nanomaterials Having Hydrophobic and Hydrophilic Properties”. Politeknik Dergisi, July (July 2025), 1-1. https://doi.org/10.2339/politeknik.1665234.
EndNote Atılgan A, Evcin O (July 1, 2025) Modification of Wood Surfaces with Nanomaterials Having Hydrophobic and Hydrophilic Properties. Politeknik Dergisi 1–1.
IEEE A. Atılgan and O. Evcin, “Modification of Wood Surfaces with Nanomaterials Having Hydrophobic and Hydrophilic Properties”, Politeknik Dergisi, pp. 1–1, July2025, doi: 10.2339/politeknik.1665234.
ISNAD Atılgan, Abdi - Evcin, Oğuzhan. “Modification of Wood Surfaces With Nanomaterials Having Hydrophobic and Hydrophilic Properties”. Politeknik Dergisi. July2025. 1-1. https://doi.org/10.2339/politeknik.1665234.
JAMA Atılgan A, Evcin O. Modification of Wood Surfaces with Nanomaterials Having Hydrophobic and Hydrophilic Properties. Politeknik Dergisi. 2025;:1–1.
MLA Atılgan, Abdi and Oğuzhan Evcin. “Modification of Wood Surfaces With Nanomaterials Having Hydrophobic and Hydrophilic Properties”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1665234.
Vancouver Atılgan A, Evcin O. Modification of Wood Surfaces with Nanomaterials Having Hydrophobic and Hydrophilic Properties. Politeknik Dergisi. 2025:1-.