Review
BibTex RIS Cite

Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim ve Uygulamalar

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1701964

Abstract

Bu derleme çalışması, şekil hafızalı malzemeler (ŞHM) ile öksetik yapıların birleştirilmesi yoluyla oluşturulan şekil hafızalı öksetik metamalzemelerin (ŞHÖ-MM) temel prensiplerini, üretim tekniklerini, karakterizasyon yöntemlerini ve çok yönlü uygulama potansiyellerini kapsamlı biçimde ele almaktadır. ŞHM’lerin çevresel uyaranlara duyarlı, geri dönüşümlü şekil değiştirme yetenekleri ile öksetik yapıların negatif Poisson oranı gibi olağanüstü mekanik tepkileri bir araya getirilerek programlanabilir, çok işlevli ve yüksek performanslı sistemlerin tasarlanması mümkün hale gelmektedir. Çalışmada, bu hibrit metamalzemelerin ölçek bağımlı deformasyon mekanizmaları detaylı şekilde incelenmiş; sonlu elemanlar analizi, malzeme modelleri ve çok ölçekli hesaplamalı yaklaşımlar aracılığıyla gerçekleştirilen güncel simülasyon çalışmaları değerlendirilmiştir. Ayrıca, eriterek biriktirme, stereolitografi, PolyJet baskı ve lazer kesim gibi ileri üretim tekniklerinin bu sistemlerin imalatında kullanımları açıklanmıştır. Karakterizasyon yöntemleri kapsamında, mekanik testler, termal analizler ve şekil geri kazanım performans ölçümleri ele alınmıştır. Biyomedikal implantlar, yumuşak robotik sistemler, esnek elektronikler, darbe emici yapılar ve giyilebilir teknolojiler gibi çeşitli alanlardaki uygulamalara ilişkin son gelişmelere de yer verilmiştir. Literatürde bu iki yenilikçi malzeme sınıfının birlikte değerlendirildiği Türkçe kaynakların bulunmaması nedeniyle, bu çalışma mevcut boşluğu doldurarak akademik literatüre özgün ve bütüncül bir katkı sunmaktadır. Ayrıca, bu malzeme sistemlerinin geleceğine dair öngörüler doğrultusunda, 4B yazıcı teknolojileri, yapay zekâ destekli tasarım optimizasyonları ve çok malzemeli üretim yaklaşımları çerçevesinde araştırma fırsatları da tartışılmıştır.

Ethical Statement

Bu makalenin yazarları çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.

Supporting Institution

Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FKA-2024-3938

Thanks

FKA-2024-3938 numaralı proje ile vermiş oldukları destekten dolayı Kocaeli Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkür ederiz.

References

  • [1] Veselago V. G., ''The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ'', Soviet Physics Uspekhi, 10(4): 509, (1968).
  • [2] Pendry J. B., Holden A. J., Robbins D. J. and Stewart W. J., ''Magnetism from conductors and enhanced nonlinear phenomena'', IEEE Transactions on Microwave Theory and Techniques, 47(11): 2075–2084, (1999).
  • [3] Smith D. R., Pendry J. B. and Wiltshire M. C. K., ''Metamaterials and Negative Refractive Index'', Science, 305(5685): 788–792, (2004).
  • [4] Aydın G., & San S. E., "Breaking the limits of acoustic science: A review of acoustic metamaterials", Mater. Sci. Eng. B, 305, 117384, (2024).
  • [5] Yaman, P., Türkeş E., & Yuksel O. "Determination of the Construction Material for Phononic Band Gap Structures by Tribological Performance", Politeknik Dergisi, 28(1):27-34, (2025).
  • [6] Wayman C. M., ''Shape memory alloys'', MRS Bulletin, 18(4), (1993).
  • [7] Saxena K. K., Das R., Calius E. P., "Three Decades of Auxetics Research − Materials with Negative Poisson’s Ratio: A Review", Adv. Eng. Mater., 18(11): 1847–1870, (2016).
  • [8] Erdoğuş H. B. "Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi", Politeknik Dergisi, 27(5):1673–1680, (2024).
  • [9] Spanos I, Vangelatos Z, Grigoropoulos C, Farsari M., "Design and Characterization of Microscale Auxetic and Anisotropic Structures Fabricated by Multiphoton Lithography", Nanomaterials, 11(2):446, (2021).
  • [10] Dudek K. K., Iglesias Martínez J. A., Ulliac G., Kadic M., "Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing", Adv. Mater., 34:2110115, (2022).
  • [11] Gaspar, N., Smith, C.W., Miller, E.A., Seidler, G.T. and Evans, K.E., "Quantitative analysis of the microscale of auxetic foams", Phys. Stat. Sol. (b), 242: 550-560, (2005).
  • [12] Portone F., Amorini M., Montanari M., Pinalli R., Pedrini A., Verucchi R., Brighenti R., Dalcanale E., "Molecular Auxetic Polymer of Intrinsic Microporosity via Conformational Switching of a Cavitand Crosslinker", Adv. Funct. Mater., 33:2307605, (2023).
  • [13] Lyngdoh G. A., Kelter N. K., Doner S., Krishnan N. M. A., Das S., "Elucidating the auxetic behavior of cementitious cellular composites using finite element analysis and interpretable machine learning", Mater Des., 213:110341, (2022).
  • [14] Caddock B. D., Evans K. E., "Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties", J. Phys. D Appl. Phys., 22(12), (1989).
  • [15] Srivastava C., Mahesh V., Guruprasad P. J., Petrinic N., Scarpa F., Harursampath D., Ponnusami S. A., "Effect of damage evolution on the auxetic behavior of 2D and 3D re-entrant type geometries", Mech. Mater., 193: 104980, (2024).
  • [16] Kolken H. M. A., Zadpoor A. A., "Auxetic mechanical metamaterials", RSC Adv., 7(9): 5111–5129, (2017).
  • [17] Lakes R., "Advances in negative Poisson’s ratio materials", Adv. Mater., 5(4): 293–296, (1993).
  • [18] Lakes R., "Foam Structures with a Negative Poisson’s Ratio", Science, 235(4792): 1038–1040, (1987).
  • [19] Del Broccolo S., Laurenzi S., Scarpa F., "AUXHEX – A Kirigami inspired zero Poisson’s ratio cellular structure", Compos. Struct., 176: 433–441, (2017).
  • [20] Erdoğan İ., & Toktas İ., "Investigation of The Effect of Geometry Inner Thickness on New Designed Auxetic Structure", Politeknik Dergisi, 26(2):901–912, (2023).
  • [21] Alderson K. L., Evans K. E., "The fabrication of microporous polyethylene having a negative Poisson’s ratio", Polymer, 33(20): 4435–4438, (1992).
  • [22] Masters I. G., Evans K. E., "Models for the elastic deformation of honeycombs", Compos. Struct., 35(4): 403–422, (1996).
  • [23] Smith C. W., Grima J. N., Evans K. E., "A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model", Acta Mater., 48(17): 4349–4356, (2000).
  • [24] Yang L., Harrysson O., West H., Cormier D., "Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing", Int. J. Solids Struct., 69–70: 475–490, (2015).
  • [25] Wang X. T., Wang B., Li X. W., Ma L., "Mechanical properties of 3D re-entrant auxetic cellular structures", Int. J. Mech. Sci., 131–132: 396–407, (2017).
  • [26] Guo M. F., Yang H., Zhou Y. M., Ma L., "Mechanical properties of 3D hybrid double arrow-head structure with tunable Poisson’s ratio", Aerosp. Sci. Technol., 119: 107177, (2021).
  • [27] Jefferson A., Schneider J., Schiffer A., Hafeez F., Kumar S., "Dynamic crushing of tailored honeycombs realized via additive manufacturing", Int. J. Mech. Sci., 219: 107126, (2022).
  • [28] Spadoni A., Ruzzene M., "Elasto-static micropolar behavior of a chiral auxetic lattice", J. Mech. Phys. Solids, 60(1): 156–171, (2012).
  • [29] Alderson A., et al., "Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading", Compos. Sci. Technol., 70(7): 1042–1048, (2010).
  • [30] Dudek K. K., Gatt R., Mizzi L., Dudek M. R., Attard D., Grima J. N., "Global rotation of mechanical metamaterials induced by their internal deformation", AIP Adv., 7(9): 95121, (2017).
  • [31] Miller W., Smith C. W., Scarpa F., Evans K. E., "Flatwise buckling optimization of hexachiral and tetrachiral honeycombs", Compos. Sci. Technol., 70(7): 1049–1056, (2010).
  • [32] Lai C. Q., Daraio C., "Highly porous microlattices as ultrathin and efficient impact absorbers", Int. J. Impact Eng., 120: 138–149, (2018).
  • [33] Agnese F., Remillat C., Scarpa F., Payne C., "Composite chiral shear vibration damper", Compos. Struct., 132: 215–225, (2015).
  • [34] Spadoni A., Ruzzene M., "Structural and Acoustic Behavior of Chiral Truss-Core Beams", J. Vib. Acoust., 128(5): 616–626, (2006).
  • [35] Wei K., Peng Y., Qu Z., Pei Y., Fang D., "A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson’s ratio", Int. J. Solids Struct., 150: 255–267, (2018).
  • [36] Yu H., Wu W., Zhang J., Chen J., Liao H., Fang D., "Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation", Compos. Struct., 210: 327–338, (2019).
  • [37] Grima J. N., et al., "On the auxetic properties of generic rotating rigid triangles", Proc. R. Soc. A Math. Phys. Eng. Sci., 468(2139): 810–830, (2012).
  • [38] Tang Y., Yin J., "Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility", Extreme Mech. Lett., 12: 77–85, (2017).
  • [39] Vavlekas D., et al., "Role of PTFE paste fibrillation on Poisson’s ratio", Polym. Test., 61: 65–73, (2017).
  • [40] Ma P., Chang Y., Boakye A., Jiang G., "Review on the knitted structures with auxetic effect", J. Text. Inst., 108(6): 947–961, (2017).
  • [41] Attard D., Casha A. R., Grima J. N., "Filtration Properties of Auxetics with Rotating Rigid Units", Materials, 11(5): 725, (2018).
  • [42] Wang Y., Alsaleh N. A., Djuansjah J., Hassanin H., El-Sayed M. A., Essa K., "Tailoring 3D Star-Shaped Auxetic Structures for Enhanced Mechanical Performance", Aerospace, 11(6): 428, (2024).
  • [43] Wang W., Wang J., Hai H., Xu W., Yu X., "Study of In-Plane Mechanical Properties of Novel Ellipse-Based Chiral Honeycomb Structure", Appl. Sci., 12(20): 10437, (2022).
  • [44] Kim Y., Son K., Lee J., "Auxetic Structures for Tissue Engineering Scaffolds and Biomedical Devices", Materials, 14(22): 6821, (2021).
  • [45] Wen Q., Li P., Zhang Z., Hu H., "Displacement Measurement Method Based on Double-Arrowhead Auxetic Tubular Structure", Sensors, 23(23): 9544, (2023).
  • [46] Hu F., Li T., "An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype", Actuators, 10(4): 67, (2021).
  • [47] Aksöz S., Arslan R., Kardeş Sever N., Bostan B. "NiTi Esaslı Saclara Uygulanan Farklı Çözündürme ve Yaşlandırma Isıl İşlemlerinin Metalografik ve Mekanik Özelliklere Etkileri", Politeknik Dergisi, 26(2):693–700, (2023).
  • [48] Casati R., Passaretti F., Tuissi A., "Effect of electrical heating conditions on functional fatigue of thin NiTi wire for shape memory actuators", Procedia Eng., 10: 3423–3428, (2011).
  • [49] Srivastava R., Alsamhi S. H., Murray N., Devine D., "Shape Memory Alloy-Based Wearables: A Review, and Conceptual Frameworks on HCI and HRI in Industry 4.0", Sensors, 22(18): 6802, (2022).
  • [50] Thakur S., Hu J., Thakur S., Hu J., "Polyurethane: A Shape Memory Polymer (SMP)", Aspects of Polyurethanes, (2017).
  • [51] Uchino K., "Antiferroelectric shape memory ceramics", Actuators, 5(2): 11 (2016).
  • [52] Farrukh A., Nayab S., "Shape memory hydrogels for biomedical applications", Gels, 10(4): 270 (2024).
  • [53] Jung I., Lee S., "Shape recovery properties of 3D printed re-entrant strip using shape memory thermoplastic polyurethane filaments with various temperature conditions", Fash. Text., 10: 27, (2023).
  • [54] Liu R., Xu S., Luo X., Liu Z., "Theoretical and Numerical Analysis of Mechanical Behaviors of a Metamaterial-Based Shape Memory Polymer Stent", Polymers, 12(8): 1784, (2020).
  • [55] Skarsetz O., Slesarenko V., Walther A., "Programmable Auxeticity in Hydrogel Metamaterials via Shape-Morphing Unit Cells", Adv. Sci., 9(23): e2201867, (2022).
  • [56] Lei M., Hong W., Zhao Z., Hamel C., Chen M., Lu H., and Qi H. J.,"3D printing of auxetic metamaterials with digitally reprogrammable shape", ACS Appl. Mater. Interfaces, 11 (25): 22768-22776 (2019).
  • [57] Wan M., Yu K., Sun H., "4D printed programmable auxetic metamaterials with shape memory effects", Compos. Struct., 279: 114791 (2022).
  • [58] Hassanin H., Abena A., Elsayed M. A., Essa K., "4D printing of NiTi auxetic structure with improved ballistic performance", Micromachines, 11(8): 745 (2020).
  • [59] Li Z., Liu Y., Wang Y., Lu H., Lei M., Fu Y. Q., "3D printing of auxetic shape-memory metamaterial towards designable buckling", Int. J. Appl. Mech., 13(01): 2150011 (2021).
  • [60] Hou R., Dong P., Liu Y., "Novel lozenge-chiral auxetic metamaterials (LCAMs): Design and numerical studies", Mater. Lett., 331: 133440 (2023).
  • [61] Chen Y., Ye W., Xu R., Sun Y., Feng J., Sareh P., "A programmable auxetic metamaterial with tunable crystal symmetry", Int. J. Mech. Sci., 249: 108249 (2023).
  • [62] Liu Y., Shu D. W., Lu H., "3D printing shape memory polymer of laminated multi-component metamaterial towards optimization of auxetic and shape recovery behaviors", Smart Mater. Struct., 32(2): 025014 (2023).
  • [63] Lin L., Zhang H., Fan C., "The study on the properties of a metamaterial composed of star-shaped auxetic and curved-beam multi-stable structure", Mech. Adv. Mater. Struct., 31(29): 11979–11995 (2024).
  • [64] Park Y. J., Ahn H., Rodrigue H., "Shape-memory alloy-based auxetic smart metamaterials: Enabling inherently bidirectional actuation", Adv. Intell. Syst., 6(11): 2400040 (2024).
  • [65] Bodaghi M., Liao W. H., "4D printed tunable mechanical metamaterials with shape memory operations", Smart Mater. Struct., 28(4): 045019, (2019).
  • [66] Li Z., Liu Y., Lu H., Shu D. W., "Tunable hyperbolic out-of-plane deformation of 3D-printed auxetic PLA shape memory arrays", Smart Mater. Struct., 31(7): 075025, (2022).
  • [67] Ren L., et al., "3D Printing of Auxetic Metamaterials with High-Temperature and Programmable Mechanical Properties", Adv. Mater. Technol., 7(9): 2101546, (2022).
  • [68] Pandini S., et al., "Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures", Mech. Res. Commun., 103: 103463, (2020).
  • [69] Tao R., et al., "4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves", Compos. B Eng., 201: 108344, (2020).
  • [70] Yao Y., Xu Y., Chen H., Kang Y., Liu Y., Leng J., "Fabrication and characterization of shape memory auxetic metamaterial", J. Intell. Mater. Syst. Struct., 34(1): 101–110, (2023).
  • [71] Abel J., et al., "Fused filament fabrication of niti components and hybridization with laser powder bed fusion for filigree structures", Materials, 14(16): 4399, (2021).
  • [72] Jebellat E., Baniassadi M., Moshki A., Wang K., Baghani M., "Numerical investigation of smart auxetic three-dimensional meta-structures based on shape memory polymers via topology optimization", J. Intell. Mater. Syst. Struct., 31(15): 1838–1852, (2020).
  • [73] Zheng X., Uto K., Hu W. H., Chen T. T., Naito M., Watanabe I., "Reprogrammable flexible mechanical metamaterials", Appl. Mater. Today, 29: 101662, (2022).
  • [74] Yuan Y., et al., "3D printed auxetic metamaterials with tunable mechanical properties and morphological fitting abilities", Mater. Des., 244: 113119, (2024).
  • [75] Hussnain A., Kulkarni S., Khan K. A., "2D material-enhanced multi-fold self-sensing and programmable deployable lattice structure", Sci. Rep., 14(1): 20244, (2024).
  • [76] Salmani A., Rezaei S., "High-velocity impact analysis of modern shape-memory alloy auxetic structures", Aust. J. Mech. Eng., 1-22, (2025).
  • [77] Shirzad M., Zolfagharian A., Bodaghi M., Nam S. Y., "Auxetic metamaterials for bone-implanted medical devices: Recent advances and new perspectives", Eur. J. Mech. A Solids, 98: 104905, (2023).
  • [78] Li S., Hassanin H., Attallah M. M., Adkins N. J. E., Essa K., "The development of TiNi-based negative Poisson’s ratio structure using selective laser melting", Acta Mater., 105: 75–83, (2016).
  • [79] Woo, J, & Abel, J. "Soft Actuators from Flexible Auxetic Metamaterials and Shape Memory Alloys Springs", Adaptive Structures and Intelligent Systems. Austin, Texas, USA. September 11–13, V001T04A013. ASME., (2023).
  • [80] Foster L., Peketi P., Allen T., Senior T., Duncan O., Alderson A., "Application of auxetic foam in sports helmets", Appl. Sci., 8(3): 354, (2018).
  • [81] Scarpa F., Pastorino P., Garelli A., Patsias S., Ruzzene M., "Auxetic compliant flexible PU foams: Static and dynamic properties", Phys. Status Solidi B, 242(3): 681–694, (2005).
  • [82] Lvov V. A., Senatov F. S., Veveris A. A., Skrybykina V. A., Lantada A. D., "Auxetic metamaterials for biomedical devices: Current situation, main challenges, and research trends", Materials, 15(4): 1439, (2022).
  • [83] Konaković-Luković M., Konaković P., Pauly M., "Computational design of deployable auxetic shells", Advances in Architectural Geometry 2018, Gothenburg, Sweden: Chalmers Univ. Technol., 94-111, (2018).
  • [84] Malakooti S., et al., "Meta-Aerogels: Auxetic shape-memory polyurethane aerogels", ACS Appl. Polym. Mater., 3(11): 5727–5738, (2021).
  • [85] Ungureanu B., Achaoui Y., Enoch S., Brûlé S., Guenneau S., "Auxetic-like metamaterials as novel earthquake protections", EPJ Appl. Metamater., 2: 17, (2015).
  • [86] Abdelaal O., Darwish S. M. H., "Analysis, fabrication and a biomedical application of auxetic cellular structures", Int. J. Eng. Innov. Technol. (IJEIT), 2(3): 218–223, (2012).
  • [87] Siniauskaya V., Wang H., Liu Y., Chen Y., Zhuravkov M., Lyu Y., "A review on the auxetic mechanical metamaterials and their applications in the field of applied engineering", Front. Mater., 11: 1453905, (2024).
  • [88] Chen D., Zheng X., "Multi-material additive manufacturing of metamaterials with giant, tailorable negative Poisson’s ratios", Sci. Rep., 8(1): 1–8, (2018).
  • [89] Islam R., Maparathne S., Chinwangso P., Lee T. R., "Review of shape-memory polymer nanocomposites and their applications", Appl. Sci., 15(5): 2419, (2025).
  • [90] Zhang X., Lu X., Wang Z., Wang J., Sun Z., "Biodegradable shape memory nanocomposites with thermal and magnetic field responsiveness", J. Biomater. Sci. Polym. Ed., 24(9): 1057–1070, (2013).
  • [91] Tezsezen E., Yigci D., Ahmadpour A., Tasoglu S., "AI-based metamaterial design", ACS Appl. Mater. Interfaces, 16(23): 29547, (2024).

Shape Memory Mechanical Metamaterials: Design, Fabrication, and Applications

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1701964

Abstract

This review comprehensively examines the fundamental principles, fabrication techniques, characterization methods, and versatile application potentials of shape memory auxetic metamaterials (SMAMs), which are created through the integration of shape memory materials (SMMs) and auxetic structures. By combining the environmentally responsive and reversible shape-changing capabilities of shape memory materials with the exceptional mechanical responses of auxetic structures such as a negative Poisson's ratio, it becomes possible to design programmable, multifunctional, and high-performance systems. The study explores the scale-dependent deformation mechanisms of these hybrid metamaterials in detail and evaluates recent simulation studies carried out using finite element analysis, material modeling, and multiscale computational approaches. Furthermore, advanced manufacturing techniques such as fused deposition modeling, stereolithography, PolyJet printing, and laser cutting are discussed in the context of producing these systems. Within the scope of characterization methods, mechanical testing, thermal analysis, and shape recovery performance measurements are addressed. Recent developments in various application areas such as biomedical implants, soft robotic systems, flexible electronics, impact-absorbing structures, and wearable technologies are also presented. Given the lack of Turkish sources that jointly address these two innovative material classes, this work fills a critical gap in the literature and provides an original and holistic contribution to academic research. In addition, future research opportunities are discussed in the context of 4D printing technologies, AI-assisted design optimizations, and multi-material manufacturing approaches.

Project Number

FKA-2024-3938

References

  • [1] Veselago V. G., ''The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ'', Soviet Physics Uspekhi, 10(4): 509, (1968).
  • [2] Pendry J. B., Holden A. J., Robbins D. J. and Stewart W. J., ''Magnetism from conductors and enhanced nonlinear phenomena'', IEEE Transactions on Microwave Theory and Techniques, 47(11): 2075–2084, (1999).
  • [3] Smith D. R., Pendry J. B. and Wiltshire M. C. K., ''Metamaterials and Negative Refractive Index'', Science, 305(5685): 788–792, (2004).
  • [4] Aydın G., & San S. E., "Breaking the limits of acoustic science: A review of acoustic metamaterials", Mater. Sci. Eng. B, 305, 117384, (2024).
  • [5] Yaman, P., Türkeş E., & Yuksel O. "Determination of the Construction Material for Phononic Band Gap Structures by Tribological Performance", Politeknik Dergisi, 28(1):27-34, (2025).
  • [6] Wayman C. M., ''Shape memory alloys'', MRS Bulletin, 18(4), (1993).
  • [7] Saxena K. K., Das R., Calius E. P., "Three Decades of Auxetics Research − Materials with Negative Poisson’s Ratio: A Review", Adv. Eng. Mater., 18(11): 1847–1870, (2016).
  • [8] Erdoğuş H. B. "Negatif Poisson Oranındaki Stent Tasarımının Üç Katmanlı Arter ve Asimetrik Plak Yapısına Göre Sanki-Statik Analizi", Politeknik Dergisi, 27(5):1673–1680, (2024).
  • [9] Spanos I, Vangelatos Z, Grigoropoulos C, Farsari M., "Design and Characterization of Microscale Auxetic and Anisotropic Structures Fabricated by Multiphoton Lithography", Nanomaterials, 11(2):446, (2021).
  • [10] Dudek K. K., Iglesias Martínez J. A., Ulliac G., Kadic M., "Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing", Adv. Mater., 34:2110115, (2022).
  • [11] Gaspar, N., Smith, C.W., Miller, E.A., Seidler, G.T. and Evans, K.E., "Quantitative analysis of the microscale of auxetic foams", Phys. Stat. Sol. (b), 242: 550-560, (2005).
  • [12] Portone F., Amorini M., Montanari M., Pinalli R., Pedrini A., Verucchi R., Brighenti R., Dalcanale E., "Molecular Auxetic Polymer of Intrinsic Microporosity via Conformational Switching of a Cavitand Crosslinker", Adv. Funct. Mater., 33:2307605, (2023).
  • [13] Lyngdoh G. A., Kelter N. K., Doner S., Krishnan N. M. A., Das S., "Elucidating the auxetic behavior of cementitious cellular composites using finite element analysis and interpretable machine learning", Mater Des., 213:110341, (2022).
  • [14] Caddock B. D., Evans K. E., "Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties", J. Phys. D Appl. Phys., 22(12), (1989).
  • [15] Srivastava C., Mahesh V., Guruprasad P. J., Petrinic N., Scarpa F., Harursampath D., Ponnusami S. A., "Effect of damage evolution on the auxetic behavior of 2D and 3D re-entrant type geometries", Mech. Mater., 193: 104980, (2024).
  • [16] Kolken H. M. A., Zadpoor A. A., "Auxetic mechanical metamaterials", RSC Adv., 7(9): 5111–5129, (2017).
  • [17] Lakes R., "Advances in negative Poisson’s ratio materials", Adv. Mater., 5(4): 293–296, (1993).
  • [18] Lakes R., "Foam Structures with a Negative Poisson’s Ratio", Science, 235(4792): 1038–1040, (1987).
  • [19] Del Broccolo S., Laurenzi S., Scarpa F., "AUXHEX – A Kirigami inspired zero Poisson’s ratio cellular structure", Compos. Struct., 176: 433–441, (2017).
  • [20] Erdoğan İ., & Toktas İ., "Investigation of The Effect of Geometry Inner Thickness on New Designed Auxetic Structure", Politeknik Dergisi, 26(2):901–912, (2023).
  • [21] Alderson K. L., Evans K. E., "The fabrication of microporous polyethylene having a negative Poisson’s ratio", Polymer, 33(20): 4435–4438, (1992).
  • [22] Masters I. G., Evans K. E., "Models for the elastic deformation of honeycombs", Compos. Struct., 35(4): 403–422, (1996).
  • [23] Smith C. W., Grima J. N., Evans K. E., "A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model", Acta Mater., 48(17): 4349–4356, (2000).
  • [24] Yang L., Harrysson O., West H., Cormier D., "Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing", Int. J. Solids Struct., 69–70: 475–490, (2015).
  • [25] Wang X. T., Wang B., Li X. W., Ma L., "Mechanical properties of 3D re-entrant auxetic cellular structures", Int. J. Mech. Sci., 131–132: 396–407, (2017).
  • [26] Guo M. F., Yang H., Zhou Y. M., Ma L., "Mechanical properties of 3D hybrid double arrow-head structure with tunable Poisson’s ratio", Aerosp. Sci. Technol., 119: 107177, (2021).
  • [27] Jefferson A., Schneider J., Schiffer A., Hafeez F., Kumar S., "Dynamic crushing of tailored honeycombs realized via additive manufacturing", Int. J. Mech. Sci., 219: 107126, (2022).
  • [28] Spadoni A., Ruzzene M., "Elasto-static micropolar behavior of a chiral auxetic lattice", J. Mech. Phys. Solids, 60(1): 156–171, (2012).
  • [29] Alderson A., et al., "Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading", Compos. Sci. Technol., 70(7): 1042–1048, (2010).
  • [30] Dudek K. K., Gatt R., Mizzi L., Dudek M. R., Attard D., Grima J. N., "Global rotation of mechanical metamaterials induced by their internal deformation", AIP Adv., 7(9): 95121, (2017).
  • [31] Miller W., Smith C. W., Scarpa F., Evans K. E., "Flatwise buckling optimization of hexachiral and tetrachiral honeycombs", Compos. Sci. Technol., 70(7): 1049–1056, (2010).
  • [32] Lai C. Q., Daraio C., "Highly porous microlattices as ultrathin and efficient impact absorbers", Int. J. Impact Eng., 120: 138–149, (2018).
  • [33] Agnese F., Remillat C., Scarpa F., Payne C., "Composite chiral shear vibration damper", Compos. Struct., 132: 215–225, (2015).
  • [34] Spadoni A., Ruzzene M., "Structural and Acoustic Behavior of Chiral Truss-Core Beams", J. Vib. Acoust., 128(5): 616–626, (2006).
  • [35] Wei K., Peng Y., Qu Z., Pei Y., Fang D., "A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson’s ratio", Int. J. Solids Struct., 150: 255–267, (2018).
  • [36] Yu H., Wu W., Zhang J., Chen J., Liao H., Fang D., "Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation", Compos. Struct., 210: 327–338, (2019).
  • [37] Grima J. N., et al., "On the auxetic properties of generic rotating rigid triangles", Proc. R. Soc. A Math. Phys. Eng. Sci., 468(2139): 810–830, (2012).
  • [38] Tang Y., Yin J., "Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility", Extreme Mech. Lett., 12: 77–85, (2017).
  • [39] Vavlekas D., et al., "Role of PTFE paste fibrillation on Poisson’s ratio", Polym. Test., 61: 65–73, (2017).
  • [40] Ma P., Chang Y., Boakye A., Jiang G., "Review on the knitted structures with auxetic effect", J. Text. Inst., 108(6): 947–961, (2017).
  • [41] Attard D., Casha A. R., Grima J. N., "Filtration Properties of Auxetics with Rotating Rigid Units", Materials, 11(5): 725, (2018).
  • [42] Wang Y., Alsaleh N. A., Djuansjah J., Hassanin H., El-Sayed M. A., Essa K., "Tailoring 3D Star-Shaped Auxetic Structures for Enhanced Mechanical Performance", Aerospace, 11(6): 428, (2024).
  • [43] Wang W., Wang J., Hai H., Xu W., Yu X., "Study of In-Plane Mechanical Properties of Novel Ellipse-Based Chiral Honeycomb Structure", Appl. Sci., 12(20): 10437, (2022).
  • [44] Kim Y., Son K., Lee J., "Auxetic Structures for Tissue Engineering Scaffolds and Biomedical Devices", Materials, 14(22): 6821, (2021).
  • [45] Wen Q., Li P., Zhang Z., Hu H., "Displacement Measurement Method Based on Double-Arrowhead Auxetic Tubular Structure", Sensors, 23(23): 9544, (2023).
  • [46] Hu F., Li T., "An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype", Actuators, 10(4): 67, (2021).
  • [47] Aksöz S., Arslan R., Kardeş Sever N., Bostan B. "NiTi Esaslı Saclara Uygulanan Farklı Çözündürme ve Yaşlandırma Isıl İşlemlerinin Metalografik ve Mekanik Özelliklere Etkileri", Politeknik Dergisi, 26(2):693–700, (2023).
  • [48] Casati R., Passaretti F., Tuissi A., "Effect of electrical heating conditions on functional fatigue of thin NiTi wire for shape memory actuators", Procedia Eng., 10: 3423–3428, (2011).
  • [49] Srivastava R., Alsamhi S. H., Murray N., Devine D., "Shape Memory Alloy-Based Wearables: A Review, and Conceptual Frameworks on HCI and HRI in Industry 4.0", Sensors, 22(18): 6802, (2022).
  • [50] Thakur S., Hu J., Thakur S., Hu J., "Polyurethane: A Shape Memory Polymer (SMP)", Aspects of Polyurethanes, (2017).
  • [51] Uchino K., "Antiferroelectric shape memory ceramics", Actuators, 5(2): 11 (2016).
  • [52] Farrukh A., Nayab S., "Shape memory hydrogels for biomedical applications", Gels, 10(4): 270 (2024).
  • [53] Jung I., Lee S., "Shape recovery properties of 3D printed re-entrant strip using shape memory thermoplastic polyurethane filaments with various temperature conditions", Fash. Text., 10: 27, (2023).
  • [54] Liu R., Xu S., Luo X., Liu Z., "Theoretical and Numerical Analysis of Mechanical Behaviors of a Metamaterial-Based Shape Memory Polymer Stent", Polymers, 12(8): 1784, (2020).
  • [55] Skarsetz O., Slesarenko V., Walther A., "Programmable Auxeticity in Hydrogel Metamaterials via Shape-Morphing Unit Cells", Adv. Sci., 9(23): e2201867, (2022).
  • [56] Lei M., Hong W., Zhao Z., Hamel C., Chen M., Lu H., and Qi H. J.,"3D printing of auxetic metamaterials with digitally reprogrammable shape", ACS Appl. Mater. Interfaces, 11 (25): 22768-22776 (2019).
  • [57] Wan M., Yu K., Sun H., "4D printed programmable auxetic metamaterials with shape memory effects", Compos. Struct., 279: 114791 (2022).
  • [58] Hassanin H., Abena A., Elsayed M. A., Essa K., "4D printing of NiTi auxetic structure with improved ballistic performance", Micromachines, 11(8): 745 (2020).
  • [59] Li Z., Liu Y., Wang Y., Lu H., Lei M., Fu Y. Q., "3D printing of auxetic shape-memory metamaterial towards designable buckling", Int. J. Appl. Mech., 13(01): 2150011 (2021).
  • [60] Hou R., Dong P., Liu Y., "Novel lozenge-chiral auxetic metamaterials (LCAMs): Design and numerical studies", Mater. Lett., 331: 133440 (2023).
  • [61] Chen Y., Ye W., Xu R., Sun Y., Feng J., Sareh P., "A programmable auxetic metamaterial with tunable crystal symmetry", Int. J. Mech. Sci., 249: 108249 (2023).
  • [62] Liu Y., Shu D. W., Lu H., "3D printing shape memory polymer of laminated multi-component metamaterial towards optimization of auxetic and shape recovery behaviors", Smart Mater. Struct., 32(2): 025014 (2023).
  • [63] Lin L., Zhang H., Fan C., "The study on the properties of a metamaterial composed of star-shaped auxetic and curved-beam multi-stable structure", Mech. Adv. Mater. Struct., 31(29): 11979–11995 (2024).
  • [64] Park Y. J., Ahn H., Rodrigue H., "Shape-memory alloy-based auxetic smart metamaterials: Enabling inherently bidirectional actuation", Adv. Intell. Syst., 6(11): 2400040 (2024).
  • [65] Bodaghi M., Liao W. H., "4D printed tunable mechanical metamaterials with shape memory operations", Smart Mater. Struct., 28(4): 045019, (2019).
  • [66] Li Z., Liu Y., Lu H., Shu D. W., "Tunable hyperbolic out-of-plane deformation of 3D-printed auxetic PLA shape memory arrays", Smart Mater. Struct., 31(7): 075025, (2022).
  • [67] Ren L., et al., "3D Printing of Auxetic Metamaterials with High-Temperature and Programmable Mechanical Properties", Adv. Mater. Technol., 7(9): 2101546, (2022).
  • [68] Pandini S., et al., "Shape memory response and hierarchical motion capabilities of 4D printed auxetic structures", Mech. Res. Commun., 103: 103463, (2020).
  • [69] Tao R., et al., "4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves", Compos. B Eng., 201: 108344, (2020).
  • [70] Yao Y., Xu Y., Chen H., Kang Y., Liu Y., Leng J., "Fabrication and characterization of shape memory auxetic metamaterial", J. Intell. Mater. Syst. Struct., 34(1): 101–110, (2023).
  • [71] Abel J., et al., "Fused filament fabrication of niti components and hybridization with laser powder bed fusion for filigree structures", Materials, 14(16): 4399, (2021).
  • [72] Jebellat E., Baniassadi M., Moshki A., Wang K., Baghani M., "Numerical investigation of smart auxetic three-dimensional meta-structures based on shape memory polymers via topology optimization", J. Intell. Mater. Syst. Struct., 31(15): 1838–1852, (2020).
  • [73] Zheng X., Uto K., Hu W. H., Chen T. T., Naito M., Watanabe I., "Reprogrammable flexible mechanical metamaterials", Appl. Mater. Today, 29: 101662, (2022).
  • [74] Yuan Y., et al., "3D printed auxetic metamaterials with tunable mechanical properties and morphological fitting abilities", Mater. Des., 244: 113119, (2024).
  • [75] Hussnain A., Kulkarni S., Khan K. A., "2D material-enhanced multi-fold self-sensing and programmable deployable lattice structure", Sci. Rep., 14(1): 20244, (2024).
  • [76] Salmani A., Rezaei S., "High-velocity impact analysis of modern shape-memory alloy auxetic structures", Aust. J. Mech. Eng., 1-22, (2025).
  • [77] Shirzad M., Zolfagharian A., Bodaghi M., Nam S. Y., "Auxetic metamaterials for bone-implanted medical devices: Recent advances and new perspectives", Eur. J. Mech. A Solids, 98: 104905, (2023).
  • [78] Li S., Hassanin H., Attallah M. M., Adkins N. J. E., Essa K., "The development of TiNi-based negative Poisson’s ratio structure using selective laser melting", Acta Mater., 105: 75–83, (2016).
  • [79] Woo, J, & Abel, J. "Soft Actuators from Flexible Auxetic Metamaterials and Shape Memory Alloys Springs", Adaptive Structures and Intelligent Systems. Austin, Texas, USA. September 11–13, V001T04A013. ASME., (2023).
  • [80] Foster L., Peketi P., Allen T., Senior T., Duncan O., Alderson A., "Application of auxetic foam in sports helmets", Appl. Sci., 8(3): 354, (2018).
  • [81] Scarpa F., Pastorino P., Garelli A., Patsias S., Ruzzene M., "Auxetic compliant flexible PU foams: Static and dynamic properties", Phys. Status Solidi B, 242(3): 681–694, (2005).
  • [82] Lvov V. A., Senatov F. S., Veveris A. A., Skrybykina V. A., Lantada A. D., "Auxetic metamaterials for biomedical devices: Current situation, main challenges, and research trends", Materials, 15(4): 1439, (2022).
  • [83] Konaković-Luković M., Konaković P., Pauly M., "Computational design of deployable auxetic shells", Advances in Architectural Geometry 2018, Gothenburg, Sweden: Chalmers Univ. Technol., 94-111, (2018).
  • [84] Malakooti S., et al., "Meta-Aerogels: Auxetic shape-memory polyurethane aerogels", ACS Appl. Polym. Mater., 3(11): 5727–5738, (2021).
  • [85] Ungureanu B., Achaoui Y., Enoch S., Brûlé S., Guenneau S., "Auxetic-like metamaterials as novel earthquake protections", EPJ Appl. Metamater., 2: 17, (2015).
  • [86] Abdelaal O., Darwish S. M. H., "Analysis, fabrication and a biomedical application of auxetic cellular structures", Int. J. Eng. Innov. Technol. (IJEIT), 2(3): 218–223, (2012).
  • [87] Siniauskaya V., Wang H., Liu Y., Chen Y., Zhuravkov M., Lyu Y., "A review on the auxetic mechanical metamaterials and their applications in the field of applied engineering", Front. Mater., 11: 1453905, (2024).
  • [88] Chen D., Zheng X., "Multi-material additive manufacturing of metamaterials with giant, tailorable negative Poisson’s ratios", Sci. Rep., 8(1): 1–8, (2018).
  • [89] Islam R., Maparathne S., Chinwangso P., Lee T. R., "Review of shape-memory polymer nanocomposites and their applications", Appl. Sci., 15(5): 2419, (2025).
  • [90] Zhang X., Lu X., Wang Z., Wang J., Sun Z., "Biodegradable shape memory nanocomposites with thermal and magnetic field responsiveness", J. Biomater. Sci. Polym. Ed., 24(9): 1057–1070, (2013).
  • [91] Tezsezen E., Yigci D., Ahmadpour A., Tasoglu S., "AI-based metamaterial design", ACS Appl. Mater. Interfaces, 16(23): 29547, (2024).
There are 91 citations in total.

Details

Primary Language Turkish
Subjects Material Physics, Functional Materials
Journal Section Review Article
Authors

Gülcan Aydın 0000-0003-4627-961X

Hacer Çelebi 0000-0001-7248-388X

İdris Candan 0000-0002-9950-713X

Sait Eren San 0000-0001-5042-4555

Project Number FKA-2024-3938
Early Pub Date July 16, 2025
Publication Date October 13, 2025
Submission Date May 19, 2025
Acceptance Date July 6, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Aydın, G., Çelebi, H., Candan, İ., San, S. E. (2025). Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim ve Uygulamalar. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1701964
AMA Aydın G, Çelebi H, Candan İ, San SE. Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim ve Uygulamalar. Politeknik Dergisi. Published online July 1, 2025:1-1. doi:10.2339/politeknik.1701964
Chicago Aydın, Gülcan, Hacer Çelebi, İdris Candan, and Sait Eren San. “Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim Ve Uygulamalar”. Politeknik Dergisi, July (July 2025), 1-1. https://doi.org/10.2339/politeknik.1701964.
EndNote Aydın G, Çelebi H, Candan İ, San SE (July 1, 2025) Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim ve Uygulamalar. Politeknik Dergisi 1–1.
IEEE G. Aydın, H. Çelebi, İ. Candan, and S. E. San, “Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim ve Uygulamalar”, Politeknik Dergisi, pp. 1–1, July2025, doi: 10.2339/politeknik.1701964.
ISNAD Aydın, Gülcan et al. “Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim Ve Uygulamalar”. Politeknik Dergisi. July2025. 1-1. https://doi.org/10.2339/politeknik.1701964.
JAMA Aydın G, Çelebi H, Candan İ, San SE. Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim ve Uygulamalar. Politeknik Dergisi. 2025;:1–1.
MLA Aydın, Gülcan et al. “Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim Ve Uygulamalar”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1701964.
Vancouver Aydın G, Çelebi H, Candan İ, San SE. Şekil Hafızalı Mekanik Metamalzemeler: Tasarım, Üretim ve Uygulamalar. Politeknik Dergisi. 2025:1-.